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In this paper, we analyse the convergence rate of a branching stochastic parti-
cle method proposed by Sherman & Peskin for the numerical resolution of one-
dimensional convection-reaction–diffusion equations. We prove precise estimates in
terms of the number of particles at time zero and the time-discretization step.
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1. Introduction and notation

In this paper, we study the Sherman & Peskin (1986) stochastic particle method to
solve partial differential equations (PDEs) of the type

∂V

∂t
(t, x) = b(x)

∂

∂x
V (t, x) + 1

2σ(x)2
∂2

∂x2 V (t, x) + f ◦ V (t, x),

V (0, x) = V0(x).


 (1.1)

This family of PDEs include the Kolmogorov–Petrovskii–Piskunov (KPP) equa-
tion.

For equations of the type (1.1), the Puckett (1989) stochastic particle method is
based on the simulation of independent particles with interacting weights. Bernard
et al. (1994) have proven precise estimates on the global error of the method. In
particular they have shown that, in spite of the fact that the particles are dependent,
the global error is of order O(1/

√
N) + O(

√
∆t) for all N and ∆t, where N stands

for the number of simulated particles and ∆t for the discretization time-step used to
simulate the paths of the particles. The proof is based on an appropriate probabilistic
interpretation of the gradient equation

∂u

∂t
(t, x) = 1

2σ2(x)
∂2u

∂x2 (t, x) + [b(x) + σ(x)σ′(x)]
∂u

∂x
(t, x) + b′(x)u(t, x)

+ f ′
( ∫ x

−∞
u(t, y) dy

)
u(t, x),

u(0, x) = V ′
0(x).




(1.2)
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200 H. Régnier and D. Talay

The Sherman–Peskin method is completely different from the Chorin–Puckett
method, since it consists in simulating a measure-valued branching particle system
with mean-field interaction. For a continuous-time version of the Sherman–Peskin
system, Chauvin et al. (1991) have proven the propagation of chaos property and
explicated the relationship between the limit law of the particle system and equa-
tions (1.1). In addition, Chauvin et al . have proven fluctuation results (see § 2).

Here our objective is twofold. Firstly, we aim to extend the Sherman–Peskin
method, originally designed for the KPP equation (for which σ(·) ≡ 1 and b(·) ≡ 0),
to the more general equations (1.1): as we will see, one has to be careful when defining
the free motion of the particles. Secondly, we aim to provide accurate non-asymptotic
estimates on the numerical approximation error of V (t, x) by the empirical distri-
bution function of the particles that are live at time t. We thus show that, as for
the Chorin–Puckett method, the global error of the Sherman–Peskin method is of
order O(1/

√
N) + O(

√
∆t) for all N and ∆t, where N stands for the initial number

of particles and ∆t for the discretization time-step used to simulate the lifetimes of
the particles and the free motions during the lifetimes.

The paper is organized as follows: in § 2 we present the interacting branching
process (Zt), which allows one to construct a probabilistic interpretation of (1.1); in
§ 3 we list the successive approximations of (Zt) which are involved in the Sherman–
Peskin algorithm, and we state our main result, that is, an estimate on the global
error of the algorithm; in §§ 4–8 we prove estimates on the successive approximations
listed in § 3.

The two main ingredients of the global error analysis are the decomposition of the
algorithm in terms of a succession of approximations, and the technique used in § 8
consisting of introducing ‘independent intermediate trees’. For probabilistic methods
for nonlinear PDEs, in order to get the optimal rate of convergence with respect to
the number of particles, it is crucial to introduce in the error analysis appropriate
independent objects close to the set of dependent particle weights or particle motions
involved in the method under study (see Bernard et al. 1994; Bossy & Talay 1996,
1997). See also Talay (1996) for a review and Bossy (2004) for estimates which are
optimal with respect to the number of particles and the time-discretization step.

The authors have taken a long time to write this paper, which is based on the PhD
thesis by Régnier (1999), where complementary results and numerical experiments
can be found. A summary of the main results has been published without proofs in
Régnier & Talay (2001).

(a) Notation

Throughout the paper we use the following notation.
MF denotes the set of the finite positive measures on R.
S := D([0, T ], MF ) denotes the Skorokhod space of the MF valued càdlàg (continue

à droite, limite à gauche) functions endowed with the weak convergence topology.
For various sets S, M1(S) denotes the set of the probability measures defined on S.
B(R) denotes the set of Borel sets of R.
For all j ∈ N, W 2,−j(R) is the dual space of W 2,j(R), the Sobolev space of the

functions j-times differentiable such that

‖φ‖W 2,j(R) =
( j∑

k=0

∫
R

∣∣∣∣∂kφ

∂xk
(x)

∣∣∣∣
2

dx

)1/2

< +∞.
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The Sherman and Peskin branching stochastic particle method 201

For all positive integer-valued random variable N , we set

N∑
i=1

(· · · ) = 0 on the event [N = 0]. (1.3)

We define the function Hx by

Hx(·) := H(x − ·), (1.4)

where H denotes the Heaviside function: H(z) = 1 if z � 0, H(z) = 0 otherwise.
Finally, throughout the paper, C denotes a positive number which may vary from

line to line but remains independent of the numerical parameters N and ∆t (a
contrario, it depends on all the data, particularly T and the L∞ norms of derivatives
of b, σ, f and V0).

2. A measure-valued branching process

Hypothesis 2.1. We are given

(1) a function f which belongs to C2
b (R) and satisfies

f(0) = f(1) = 0; f ′(0) > 0;

f ′(x) � f ′(0) for all x ∈ [0, 1]; f ′(x) < 0 for all x ∈ R+ \ [0, 1];

(2) functions b and σ, which belong to C∞
b (R), the function σ satisfying the con-

dition that there exists a positive number C0 such that σ(x) � C0 > 0 for
all x;

(3) a probability density V ′
0 such that

∃M > 0, ∃η > 0, ∃λ > 0, ∀|x| > M, |V ′
0(x)| � η exp(−λx2).

We define the function α : R × MF → R+ as

α(x, µ) := |f ′(〈µ,Hx〉)|, (2.1)

where the function Hx is as in (1.4). We define the function p0 : R × MF → [0, 1] as

p0(x, µ) := If ′(〈µ,Hx〉)�0, (2.2)

and we set

p2(x, µ) := 1 − p0(x, µ). (2.3)

In the following, the quantities p0(x, µ) and p2(x, µ), respectively, are the proba-
bilities of destruction or creation of particles at point x.

Let W = (Wt, t � 0) be a Brownian motion defined on a probability space
(Ω, F , P). We denote by (Y y

t ) the real-valued diffusion process starting from y at
time t = 0 solution of

Yt = y +
∫ t

0
(σ(Ys)σ′(Ys) − b(Ys)) ds +

∫ t

0
σ(Ys) dWs. (2.4)

Proc. R. Soc. Lond. A (2004)
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202 H. Régnier and D. Talay

Under hypothesis 2.1 it is well known that, for all positive bounded measure ν0,
there exists a unique flow of positive bounded measures νs (s � 0) such that

d
ds

〈νs, φ〉 = 〈L∗νs, φ〉 + 〈f ′ ◦ V (s, ·)νs, φ〉, for all φ ∈ C∞
K (R),

where V (s, ·) is the solution of (1.1) and L∗ is the adjoint operator of the generator
L of the process (Y y

t ), that is,

L∗f(x) = 1
2σ2(x)f ′′(x) + (b(x) + σ(x)σ′(x))f ′(x) + b′(x)f(x). (2.5)

Observe that (2.5) explains why we consider (2.4) to construct our probabilistic
interpretation of (1.2).

Definition 2.2. A probability π on the space S is said to be a solution of the
nonlinear martingale problem (MP) if, for all functions g ∈ C2

b (R, (0, 1)), one has the
fact that

exp(〈Zt, log g〉) − exp(〈Z0, log g〉) −
∫ t

0
exp〈Zs, log g〉

〈
Zs,

H + R(·, 〈π, Zs〉, g)
g

〉
ds

is a (Ft)-martingale, where (Zt) and (Ft), respectively, denote the canonical process
of S and the corresponding natural augmented filtration, and

R(x, µ, g) := α(x, µ)(p0(x, µ) + p2(x, µ)g2 − g).

Under the law π the process (Zt) is called the spatial branching process with mean-
field interaction (the reproduction measure depends on the state of the process)
directed by the deterministic measure νt on (R, B(R)) defined by

∀B ∈ B(R), νt(B) = 〈π, Zt〉(B) =
∫

〈Zt, IB〉 dπ(Z).

The probability law π can be constructed as follows. At time zero, we are given
initial discrete measures Z

N(i)
0 ; these measures are independent and identically dis-

tributed with common distribution πN
0 ∈ M1(MF ). Let N N

t be the number of par-
ticles that are live at time t. Let ZN

t be the branching process defined as

ZN
t :=

N N
t∑

j=1

δzj
t
,

where zj
t denotes the position of the particle number j live at time t. We set

VN (t, x) :=
1
N

N N
t∑

j=1

H(x − zj
t ).

The dynamics of N N
t and of the particles is as follows: between t and t + dt, each

particle moves independently of the other live particles, and the trajectory of each
particle is a trajectory of the solution of (2.4). In addition, at all time t, the proba-
bility that one particle among the N N

t live particles dies at time t + dt is

dt

Nt∑
j=1

|f ′ ◦ VN (t, zj
t )|,

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 203

and it is the particle located at zJ
t with probability

|f ′ ◦ VN (t, zJ
t )|

(N N
t∑

j=1

|f ′ ◦ VN (t, zj
t )|

)−1

.

It has no descendant if f ′ ◦ VN (t, zJ
t ) � 0 and gives birth to two particles otherwise

(in the latter case we say that the dying particle ‘branches’).
One has the following strong law of large numbers and propagation of chaos results

obtained by Chauvin et al . in the case where σ(·) ≡ 1 and b(·) ≡ 0, that is, when the
differential operator of (1.1) reduces to the Laplace operator. It is straightforward to
extend their results and their proofs to our more general situation†, so that we may
state the following theorem.

Theorem 2.3 (Chauvin & Rouault 1990). Suppose that hypothesis 2.1 holds.
Suppose also that∫

R

(1 + |x|p)
∣∣∣∣ 1
N

ZN
0 − µ0

∣∣∣∣(dx) < ∞ for some integer p > 0,

where µ0 is the measure V ′
0(x) dx and | · · · | stands for the total variation norm.

The sequence of processes ((1/N)ZN
· ) then converges weakly in D([0, T ], W 2,−3) to

a deterministic process (µt). In addition, the flow µt is a solution in the sense of
the distributions to (1.2), and therefore the distribution function of µt is solution
of (1.1).

Theorem 2.4 (Chauvin et al. 1991). Suppose that the hypothesis 2.1 holds.
Suppose also that the initial measures Z

N(i)
0 (i = 1, . . . , N) are i.i.d. with com-

mon distribution πN
0 ∈ M1(MF ), and Law(πN

0 ) ⇒ Law(π0) in M1(M1(MF )). The
propagation of chaos then holds in the sense that (Law(πN )) ⇒ δπ in M1(M1(S)),
where π is the unique solution of the MP of the definition 2.2 with π(Z0 ∈ ·) = π0(·).

In addition, the following fluctuation result holds:
√

N((1/N)ZN
· − µ·) converges

weakly in D([0, T ], W 2,−5) to a generalized Ornstein–Uhlenbeck process.

Remark 2.5. We emphasize that the process which governs the free motions
of the particles is the solution of (2.4). This is due to the fact that the empirical
distribution of the particles approximates the gradient equation (1.2). Of course, this
crucial observation was not needed by Sherman et al . to treat the KPP equation.

To prove the uniqueness of the limit of ((1/N)ZN
· ) in theorem 2.3, Chauvin &

Rouault make use of an integral equation which corresponds to the KPP equation and
therefore involves Gaussian kernels (in the KPP case, (Yt) reduces to the Brownian
motion). In our extended situation one can use the result (see, for example, Rothe
1984) that assertions (I) and (II) are equivalent.

(I) The function V (t, x) is the unique solution in C1,2([0, T ] × R, [0, 1]) of (1.1).

(II) The function V (t, x) is in L∞([0, T ] × R) and solves the integral equation

V (t, x) = T 0
t V0(x) +

∫ t

0
T 0

t−sf(V (s, ·))(x) ds, (2.6)

† In Chauvin & Rouault (1990) the results are obtained under slightly weaker assumptions on V0 and
f than those we make here to obtain our convergence rate estimates.

Proc. R. Soc. Lond. A (2004)
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204 H. Régnier and D. Talay

where T 0
θ is the transition operator of the process (Xx

t ) starting from x at the
time t = 0 solution of

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs. (2.7)

3. Extension of Sherman & Peskin’s method to general
convection-reaction equations and main results

Our extension of Sherman & Peskin’s method proceeds as follows.

(a) Initialization of the particles

At time zero, N particles with mass 1/N are located at points V −1
0 (i/N), i =

1, . . . , N −1, and V −1
0 (1−1/2N). These particles are destined to diffuse, branch and

interact.

(b) Offspring rule

At each time-step (k + 1)∆t one looks at the particles that are live during the
time-interval [k∆t, (k +1)∆t), and one creates and deletes particles according to the
following rule.

For k � 1 let N̄ N
k∆t denote the number of particles that are live at time k∆t, and

set

V̄ N (k∆t, x) :=
1
N

N̄ N
k∆t∑

j=1

H(x − z̄j
k∆t),

where the {z̄j
k∆t} are the locations of the simulated particles that are live at time

k∆t. The particle located at {z̄j
k∆t} dies with probability

∆t|f ′ ◦ V̄ N (k∆t, z̄j
k∆t)|.

It has no descendant if f ′ ◦ V̄ N (k∆t, z̄j
k∆t) � 0 and gives birth to two particles other-

wise. That offspring procedure is achieved by the simulation of a family of indepen-
dent random variables {η̄j

(k+1)∆t, j � 1, k � 0} with uniform law on [0, 1].

(c) Diffusion of the particles

We discretize the time-interval [0, T ] by using a fixed step size ∆t = T/L for some
integer L. In all the following we suppose that

0 < ∆t < min
(

1,
1

max0�x�1 |f ′(x)|

)
. (3.1)

Between times k∆t and (k + 1)∆t, each particle which is live at time k∆t moves
independently of the other particles; its position at time (k + 1)∆t is

Ȳ(k+1)∆t = Ȳk∆t + (σ(Ȳk∆t)σ′(Ȳk∆t) − b(Ȳk∆t))∆t

+ σ(Ȳk∆t)(W(k+1)∆t − W∆t)

+ 1
2σ(Ȳk∆t)σ′(Ȳk∆t)((W(k+1)∆t − W∆t)2 − ∆t). (3.2)

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 205

This Markov chain is the Milstein discretization scheme of (2.4). For a survey on
discretization schemes of stochastic differential equations, see, for example, Talay
(1996).

Theorem 3.1. Suppose that the hypothesis 2.1 and the condition (3.1) hold. Let
Φ be a positive function in L1(R)

⋂
L∞(R). Set

‖g‖L1,Φ(R) :=
∫

R

|g(x)|Φ(x) dx

for all Lebesgue integrable functions g. One then obtains the fact that there exists
C > 0 such that

max
0�k∆t�T

E‖V (k∆t, ·) − V̄ N (k∆t, ·)‖L1,Φ(R) � C√
N

+ C
√

∆t.

Remark 3.2.

(i) The use of the norm ‖ · ‖L1,Φ(R) comes from the fact that the random function
V̄ N (t, x) does not tend to unity when x tends to +∞ (whereas V (t, x) does);
consequently, almost surely the function V (t, ·) − V̄ N (t, ·) is not integrable at
infinity with respect to Lebesgue’s measure.

(ii) All our results below also hold, e.g. when the function V ′
0 has a compact sup-

port and is continuous on its support, or when µ0 is a Dirac measure (see
remark 4.2).

We now give a sketch of the lengthy and technical proof before going into details.
We decompose the global error E‖V (k∆t, ·) − V̄ N (k∆t, ·)‖L1,Φ(R) into several terms,
each one corresponding to one of the local approximations to which the algorithm
proceeds.

The first ingredient of the algorithm consists in approximating the initial condition
V (0, ·) by

V N (0, x) :=
1
N

N∑
i=1

H(x − zi
0), (3.3)

where

zi
0 =




V −1
0

(
i

N

)
, i = 1, . . . , N − 1,

V −1
0

(
1 − 1

2N

)
, i = N.

Let V N (t, ·) be the solution of (1.1) with initial condition V N (0, x). In § 4 we prove

max
0�t�T

‖V (t, ·) − V N (t, ·)‖L1(R) � C

√
log(N)
N

. (3.4)

The second ingredient consists in discretizing the lifetimes. To estimate its effect
on the global error, we consider a branching process (Z̃N

t ) similar to the process (ZN
t )

of § 2, except that the lifetimes take the discrete values k∆t only. In § 5, denoting by

Proc. R. Soc. Lond. A (2004)
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206 H. Régnier and D. Talay

Ṽ N (t, ·) the mean value of the distribution function of the particles which are live at
time t, we show that

max
0�k∆t�T

E‖V N (k∆t, ·) − Ṽ N (k∆t, ·)‖L1,Φ(R) � C
√

∆t. (3.5)

The third ingredient consists in governing the independent free motions of the
particles by the Milstein discretization scheme (3.2) (instead of the solution of (2.4)
itself). We denote by V̆ N (t, ·) the corresponding mean value of the distribution func-
tion at time t. In § 6 we show that

max
0�k∆t�T

‖Ṽ N (k∆t, ·) − V̆ N (k∆t, ·)‖L1,Φ(R) � C
√

∆t. (3.6)

The fourth ingredient consists in approximating V̆ N (k∆t, ·) by the empirical dis-
tribution ̂̆

V N (k∆t, ·)

of the particles which are live at time k∆t. For this statistical error we prove in § 7
that

max
0�k∆t�T

E‖V̆ N (k∆t, ·) − ̂̆
V N (k∆t, ·)‖L1,Φ(R) � C√

N
. (3.7)

The last ingredient consists in replacing the independent branching processes by
the simulated branching processes which are in mean-field interaction. In § 8 we prove
that

max
0�k∆t�T

E‖ ̂̆
V N (k∆t, ·) − V̄ N (k∆t, ·)‖L1,Φ(R) � C√

N
+ C∆t. (3.8)

The conclusion of theorem 3.1 results from collecting the inequalities (3.4)–(3.8).
The rest of the paper is devoted to the proof of these inequalities. To start with, we
readily get the following estimates on the total number of live particles in the various
trees we consider the following lemmas.

Lemma 3.3. Let
Ñ N(i)

k∆t , N̆ N(i)
k∆t N̄ N(i)

k∆t ,

respectively, denote the number of particles of the trees

Z̃
N(i)
k∆t , Z̆

N(i)
k∆t , Z̄

N(i)
k∆t ,

issued from zi
0, which are live at time k∆t. For all integer m there exists C > 0

(depending on m but not on N) such that

E[Ñ N(i)
k∆t ]m � exp(Ck∆t), (3.9)

E[N̆ N(i)
k∆t ]m � exp(Ck∆t), (3.10)

E[N̄ N(i)
k∆t ]m � exp(Ck∆t) (3.11)

for all i = 1, . . . , N .

Proc. R. Soc. Lond. A (2004)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 A

ug
us

t 2
02

3 



The Sherman and Peskin branching stochastic particle method 207

Proof . Since similar arguments allow us to prove the three preceding inequalities,
we only prove (3.9). We obviously can choose C large enough to have

Ñ N(i)
(k+1)∆t � Ñ N(i)

k∆t +
Ñ N(i)

k∆t∑
j=1

IC∆t�η̃j
(k+1)∆t

. (3.12)

Use (
N +

N∑
j=1

Iωj

)m

� N m + 2mN m−1
N∑

j=1

Iωj
for all integers m and N � 1,

which readily follows from ( N∑
j=1

Iωj

)p

� N p−1
N∑

j=1

Iωj

in view of Hölder’s inequality. This results in

E[Ñ N(i)
(k+1)∆t]

m � (1 + 2mC∆t)E[Ñ N(i)
k∆t ]m.

The conclusion follows from Ñ N(i)
0 = 1. �

4. The error due to the discretization of the initial condition V (0, x)

The aim of this section is to prove the following proposition.

Proposition 4.1. Let V N (t, ·) be the solution of (1.1) with initial condition
V N (0, ·) defined as in (3.3). There exists a positive number C such that

max
0�t�T

‖V (t, ·) − V N (t, ·)‖L1(R) � C‖V (0, ·) − V N (0, ·)‖L1(R) (4.1)

and
‖V (0, ·) − V N (0, ·)‖L1(R) � ε(N)

N
, (4.2)

where ε(N) := C
√

log(N).

Proof . Let L denote the generator of the solution (Xx
t ) of (2.7), and set w(t, x) :=

V (t, x) − V N (t, x). That function satisfies

∂w

∂t
(t, x) = Lw(t, x) + w(t, x)

f ◦ V (t, x) − f ◦ V N (t, x)
V (t, x) − V N (t, x)

,

w(0, x) = V (0, x) − V N (0, x).

As the function f is Lipschitz, the Feynman–Kac formula implies

|w(t, x)| � CE|w0(Xx
t )|.

Thus the inequality (4.1) results from the following inequality, which is easy to obtain
(see Bernard et al. 1994, lemma 2.2, p. 559),∫

R

pX
t (x, y) dx � C, (4.3)

Proc. R. Soc. Lond. A (2004)
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208 H. Régnier and D. Talay

where pX
t (x, y) denotes the density of Xx

t whose existence is ensured by the hypoth-
esis 2.1 (2) (see, for example, Friedman 1975). To get (4.2) one can then proceed as
in the proof of lemma 2.4 in Bossy & Talay (1997). �

Remark 4.2. When V0 is the Heaviside function, then obviously ε(N) = 0. When
the function V ′

0 has a compact support and is continuous on its support, ε(N) can
be chosen as a constant function (see Bossy & Talay 1997).

5. The lifetimes discretization error

Remember that the step size ∆t < 1 is of the form T/L for some integer L. We
define a branching process, the lifetimes of which are of the form k∆t. We denote
the number of particles which are live at time k∆t by Ñ N

k∆t and we set

Z̃N
k∆t :=

Ñ N
k∆t∑

j=1

δz̃j
k∆t

,

where z̃j
k∆t denotes the location of the particle number j at time k∆t. We set

Ṽ N (k∆t, x) :=
1
N

E

Ñ N
k∆t∑

j=1

H(x − z̃j
k∆t).

During their lives the particles move independently of the others according to the
description in § 2. In addition, at all times k∆t, the particle located at z̃j

k∆t dies with
probability

∆t |f ′ ◦ Ṽ N (k∆t, z̃j
k∆t)|.

It then has no descendant if f ′ ◦ Ṽ N (k∆t, z̃j
k∆t) � 0 and gives birth to two particles

otherwise. We aim to prove the following proposition.

Proposition 5.1. There exists a positive real number C such that

max
0�k∆t�T

‖V N (k∆t, ·) − Ṽ N (k∆t, ·)‖L1,Φ(R) � C
√

∆t. (5.1)

We start with a series of lemmas.

(a) Preliminaries

Lemma 5.2. For all ∆t satisfying (3.1) and all x ∈ R one has

V N ((k + 1)∆t, x) = EV N (k∆t, Xx
∆t) + ∆tEf ◦ V N (k∆t, Xx

∆t) + Rk∆t(x), (5.2)

with
‖Rk∆t(·)‖L1(R) � C∆t3/2, for all ∆t � k∆t � T. (5.3)

Proof . See Bernard et al. (1994, theorem 6.1) for the technical calculation. �

Lemma 5.3. Let (F̃N
k∆t) denote the filtration generated by (Z̃N

k∆t). Fix an arbi-
trary time

∆t � k∆t � T

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 209

and an arbitrary real number x. Let (Xx
t ) be a solution of (2.7) starting at x at time

zero and independent of F̃N
k∆t. There holds

Ṽ N ((k + 1)∆t, x) = EṼ N (k∆t, Xx
∆t) + ∆tEf ◦ Ṽ N (k∆t, Xx

∆t) + R̃N
k∆t(x), (5.4)

with
max

0�k∆t�T
‖R̃N

k∆t(·)‖L1,Φ(R) � C∆t3/2. (5.5)

Proof . Because of the combinatory of the mechanism of creation and deletion of
the particles, it appears convenient to consider the trees Z̃

N(i)
k∆t , where the index i

means that the tree is issued from zi
0. We denote by z̃

(i)j
k∆t the locations of the particles

of the tree Z̃
N(i)
k∆t , and we set

Ṽ N(i)(k∆t, x) :=
1
N

E

Ñ N(i)
k∆t∑

j=1

H(x − z̃
(i)j
k∆t).

We then set
Ỹ

(i)j
∆t,k∆t := ξY

0,∆t(y)|
y=z̃

(i)j
k∆t

,

where ξY
θ,t(y) stands for the continuous version of the stochastic flow defined by

(2.4) governed by a Brownian motion independent of F̃N
k∆t. The desired expansion

results from equalities (5.6)–(5.8) and inequality (5.9), where the expectation E
Y

is computed under the law of ξY
0,∆t:

Ṽ N(i)((k + 1)∆t, x)

=
1
N

E

Ñ N(i)
k∆t∑

j=1

E
Y H(x − Ỹ

(i)j
∆t,k∆t)

+
∆t

N
E

Ñ N(i)
k∆t∑

j=1

f ′ ◦ Ṽ N (k∆t, z̃
(i)j
k∆t)E

Y H(x − Ỹ
(i)j
∆t,k∆t) + R̃N(i)

(k+1)∆t(x), (5.6)

1
N

E

Ñ N(i)
k∆t∑

j=1

E
Y H(x − Ỹ

(i)j
∆t,k∆t) = EṼ N(i)(k∆t, Xx

∆t), (5.7)

N∑
i=1

E

Ñ N(i)
k∆t∑

j=1

f ′ ◦ Ṽ N (k∆t, z̃
(i)j
k∆t)E

Y H(x − Ỹ
(i)j
∆t,k∆t) = Ef ◦ Ṽ N (k∆t, Xx

∆t), (5.8)

max
0�k∆t�T

‖R̃
N(i)
k∆t (·)‖L1,Φ(R) � C∆t2. (5.9)

To prove equation (5.6) we consider the event Õ(i)j
(k+1)∆t: ‘the particle located at

z̃
(i)j
k∆t, and that particle only, dies at time k∆t’, that is,

Õ(i)j
(k+1)∆t = [Ñ N(i)

k∆t � 1] ∩ [∆t|f ′ ◦ Ṽ N (k∆t, z̃
(i)j
k∆t)| � η̃

(i)j
(k+1)∆t]⋂

θ �=j

[∆t|f ′ ◦ Ṽ N (k∆t, z̃
(i)θ
k∆t)| � η̃

(i)θ
(k+1)∆t]. (5.10)

Proc. R. Soc. Lond. A (2004)
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210 H. Régnier and D. Talay

We postpone for a while the proof of the equality

P
F̃N

k∆tÕ(i)j
(k+1)∆t = ∆t|f ′ ◦ Ṽ N (k∆t, z̃

(i)j
k∆t)|IÑ N

k∆t�1 + r
(i)j
(k+1)∆t, (5.11)

where the reminder satisfies

E

Ñ N(i)
k∆t∑

j=1

|r(i)j
(k+1)∆t| � C∆t2. (5.12)

Let Q̃N(i)
(k+1)∆t denote the event ‘at least two particles of Z̃

N(i)
k∆t die’. We then have

that

Ñ N(i)
(k+1)∆t∑
j=1

H(x − z̃
(i)j
(k+1)∆t) =

Ñ N(i)
k∆t∑

j=1

H(x − Ỹ
(i)j
∆t,k∆t)

+
Ñ N(i)

k∆t∑
j=1

H(x − z̃
(i)j
(k+1)∆t)IÕ(i)j

(k+1)∆t

I
f ′ ◦ Ṽ N (k∆t,z̃

(i)j
k∆t)>0

−
Ñ N(i)

k∆t∑
j=1

H(x − z̃
(i)j
k∆t)IÕ(i)j

(k+1)∆t

I
f ′ ◦ Ṽ N (k∆t,z̃

(i)j
k∆t)�0

+

Ñ N(i)
(k+1)∆t∑
j=1

H(x − z̃
(i)j
(k+1)∆t)IQ̃N(i)

(k+1)∆t

.

Owing to (5.11), (5.12) and obvious independence arguments, we get (5.6) with

R̃N(i)
(k+1)∆t(x) :=

1
N

Ñ N(i)
(k+1)∆t∑
j=1

H(x − z̃
(i)j
(k+1)∆t)IQ̃N(i)

(k+1)∆t

.

Lemma 5.4 below provides (5.9).
We now proceed to the proof of (5.7). It is well known that the stochastic flow

defined by (2.4) has a version which is strictly increasing, and that the inverse flow
ξY,−1
θ,t (y) satisfies

ξY,−1
θ,t (y) = y +

∫ t

θ

b(ξY,−1
s,t (y)) ds −

∫ t

θ

σ(ξY,−1
s,t (y)) d̂Ws for all θ < t, (5.13)

where d̂Ws denotes the ‘backward stochastic integral’ (see Kunita 1984). Therefore,
conditionally to F̃N

k∆t, H(x − Ỹ
(i)j
∆t,k∆t) has the same law as H(Xx

∆t − z̃
(i)j
k∆t), which

provides (5.7).
To prove (5.8) we observe that, for all k � 1, the function Ṽ N (k∆t, ·) is differen-

tiable (this results from the fact that, in view of hypothesis 2.1 (2), the law of Y y
t

has a continuous density for all t > 0 and all y ∈ R). In view of Fubini’s theorem†,

† The justification of the use of Fubini’s theorem results from (3.9).
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The Sherman and Peskin branching stochastic particle method 211

one has

E

Ñ N
k∆t∑

j=1

f ′ ◦ Ṽ N (k∆t, z̃j
k∆t)E

Y H(x − Ỹ j
∆t,k∆t)

=
∫

E

∫ ξ

−∞
f ′ ◦ Ṽ N (k∆t, z)Z̃N

k∆t(dz) dPXx
∆t

(ξ)

=:
∫

ρ(ξ) dPXx
∆t

(ξ).

Now, using the integrations by parts formula for Stieltjes integrals, we get

ρ(ξ) = Ef ′ ◦ Ṽ N (k∆t, ξ)Z̃N
k∆t(−∞, ξ)

− E

∫ ξ

−∞
Z̃N

k∆t(−∞, z)f ′′ ◦ Ṽ N (k∆t, z)
∂

∂z
Ṽ N (k∆t, z) dz

= f ′ ◦ Ṽ N (k∆t, ξ)Ṽ N (k∆t, ξ)

−
∫ ξ

−∞
Ṽ N (k∆t, z)f ′′ ◦ Ṽ N (k∆t, z)

∂

∂z
Ṽ N (k∆t, z) dz

= f ◦ Ṽ N (k∆t, ξ),

so that (5.8) is proved. �

In the preceding proof we used the following result.

Lemma 5.4. We have

P
F̃N

k∆tÕ(i)j
(k+1)∆t = ∆t|f ′ ◦ Ṽ N (k∆t, z̃

(i)j
k∆t)|IÑ N

k∆t�1 + r
(i)j
(k+1)∆t, (5.14)

where the reminder satisfies

E

Ñ N(i)
k∆t∑

j=1

|r(i)j
(k+1)∆t| � C∆t2. (5.15)

There also holds
P

F̃N
k∆tQ̃N(i)

(k+1)∆t � C∆t2. (5.16)

Proof . Using (5.10) and independence arguments we get

P
F̃N

k∆tÕ(i)j
(k+1)∆t = P

F̃N
k∆t [∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃

(i)j
k∆t)| � η̃

(i)j
(k+1)∆t]

×
Ñ N(i)

k∆t∏
θ �=j

P
F̃N

k∆t [∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃
(i)θ
k∆t)| � η̃

(i)θ
(k+1)∆t]IÑ N(i)

k∆t �2

= ∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃
(i)j
k∆t)|

Ñ N(i)
k∆t∏

θ=1,
θ �=j

(1 − ∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃
(i)θ
k∆t)|).

Proc. R. Soc. Lond. A (2004)
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212 H. Régnier and D. Talay

We now set

r
(i)j
(k+1)∆t = ∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃

(i)j
k∆t)|

( Ñ N(i)
k∆t∏

θ �=j

(1 − ∆t|f ′ ◦ Ṽ N(i)(k∆t, z̃
(i)θ
k∆t)|) − 1

)
.

We have the following rough estimate,

1 −
N∏

j=1

(1 − aj) � −
N∑

j=1

log(1 − aj) �
N∑

j=1

aj

1 − aj
� N max(aj)

1 − max(aj)
, (5.17)

for all integer N and {aj , 0 < aj < 1}. In view of (3.1) one thus has

E

Ñ N(i)
k∆t∑

j=1

|r(i)j
(k+1)∆t| � CE[Ñ N(i)

k∆t ]2 ∆t2.

It now remains to use the lemma 3.3. The expansion (5.14) follows.
One can prove (5.16) with similar arguments and the following rough estimate

deduced from the inequalities in (5.17):

1 −
N∏

j=1

(1 − aj) −
N∑

j=1

aj

N∏
k=1,
k �=j

(1 − ak) �
N∑

j=1

aj

1 − aj
−

N∑
j=1

aj

1 − aj

N∏
k=1

(1 − ak)

� N 2 max(aj)2

(1 − max(aj))2
. (5.18)

We omit the details. �

We are now in a position to proceed to the proof of proposition 5.1.

(b) Proof of proposition 5.1

Let Φk be the density of Xk∆t when the distribution function of X0 is Φ. Set
wk∆t(x) := V N (k∆t, x) − Ṽ N (k∆t, x). In view of (5.2) and (5.4), as f is Lipschitz
we have

‖w(k+1)∆t(·)‖L1,Φ(R) � (1 + C∆t)‖Ewk∆t(·)‖L1,Φ1 (R)

+ ‖Rk∆t(·)‖L1,Φ(R) + ‖R̃k∆t(·)‖L1,Φ(R). (5.19)

We then use (5.3) and (5.5) and proceed by iteration up to k = 0. The desired
result follows.

6. The path-discretization error

The process (Z̃N
k∆t) has continuous paths between times k∆t and (k + 1)∆t. We now

consider its time-discrete approximation (Z̆N
k∆t). We define the z̆j

k∆t and N̆ N
k∆t in an

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 213

obvious way. The free motion of the particles during their lifetimes is described by
the Milstein scheme for equation (2.4) (see (3.2)). We set

V̆ N (k∆t, x) :=
1
N

E

N̆k∆t∑
j=1

H(x − z̆j
k∆t). (6.1)

At time (k + 1)∆t the particle located at z̆j
k∆t dies with probability

∆t|f ′ ◦ V̆ N (k∆t, z̆j
k∆t)|.

It then has no descendant if f ′ ◦ V̆ N (k∆t, z̆j
k∆t) � 0 and gives birth to two particles

otherwise.

Proposition 6.1. There exists C > 0 such that

max
0�k∆t�T

‖Ṽ N (k∆t, ·) − V̆ N (k∆t, ·)‖L1,Φ(R) � C
√

∆t. (6.2)

The proof of the preceding proposition proceeds as the proof of proposition 5.1,
once we have proven lemma 6.2.

Lemma 6.2. For all k∆t in [0, T − ∆t] and all x ∈ R, one has

V̆ N ((k + 1)∆t, x) = EV̆ N (k∆t, Xx
∆t) + Ef ◦ V̆ N (k∆t, Xx

∆t) + R̆(k+1)∆t(x), (6.3)

with
max

0�k∆t�T
‖R̆(k+1)∆t(·)‖L1,Φ(R) � C∆t3/2. (6.4)

Proof . We denote by (Y̆ y
k∆t) the Milstein scheme for (2.4) with initial condition y

at time zero, and set
Y̆ j

∆t,k∆t := Y̆ y
∆t|y=z̆j

k∆t
.

Proceeding as in § 5 we get

V̆ N ((k + 1)∆t, x) =
1
N

E

N̆ N
k∆t∑

j=1

E
Y̆ H(x − Y̆ j

∆t,k∆t)

+
∆t

N
E

N̆ N
k∆t∑

j=1

f ′ ◦ V̆ N (k∆t, z̆j
k∆t)E

Y̆ H(x − Y̆ j
∆t,k∆t)

+ R̆(k+1)∆t(x).

It then remains to prove that

∥∥∥∥ 1
N

E

N̆ N
k∆t∑

j=1

E
Y̆ H(x − Y̆ j

∆t,k∆t) − EV̆ N (k∆t, Xx
∆t)

∥∥∥∥
L1,Φ(R)

� C(∆t)3/2, (6.5)

Proc. R. Soc. Lond. A (2004)
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214 H. Régnier and D. Talay

and

∥∥∥∥ 1
N

E

N̆ N
k∆t∑

j=1

f ′ ◦ V̆ N (k∆t, z̆j
k∆t)E

Y̆ H(x − Y̆ j
∆t,k∆t)

−Ef ◦ V̆ N (k∆t, Xx
∆t)

∥∥∥∥
L1,Φ(R)

� C(∆t)3/2. (6.6)

To prove (6.5) we observe that the left-hand side is bounded from above by

1
N

E

N̆ N
k∆t∑

j=1

‖E
Y̆ H(x − Y̆ j

∆t,k∆t) − E
Y H(x − ξY

0,∆t ◦ z̆j
k∆t)‖L1(R),

from which, as
∫

|H(x − a) − H(x − b)| dx = |a − b|, we get the new bound from
above

1
N

E

N̆ N
k∆t∑

j=1

E|Y̆ x
∆t − Y x

∆t|x=z̆j
k∆t

.

One then uses the following property of the Milstein scheme:

∃C > 0, E|Y̆ x
∆t − Y x

∆t| � C∆t3/2 for all x ∈ R and 0 � ∆t < 1. (6.7)

Lemma 3.3 allows then us to obtain (6.5).
To prove (6.6) we use (6.7) and a calculation similar to that made to prove (5.8).

�

Remark 6.3. The choice of the Milstein scheme rather than the Euler scheme
is due to the estimate (6.7). It is likely that one could adapt the technique devel-
oped by Bossy (2004) and then get a global discretization error of order ∆t for the
Euler scheme, but we have chosen not to do this because of the complexity of the
corresponding calculation.

7. The statistical error

We now estimate the effect of substituting

̂̆
V N (k∆t, x) :=

1
N

N̆ N
k∆t∑

j=1

H(x − z̆j
k∆t) (7.1)

with V̆ N .

Proposition 7.1. There exists C > 0 such that

max
0�k∆t�T

E‖V̆ N (k∆t, ·) − ̂̆
V N (k∆t, ·)‖L1,Φ(R) � C√

N
. (7.2)

Proof . Set

εk∆t := E‖V̆ N (k∆t, ·) − ̂̆
V N (k∆t, ·)‖L1,Φ(R),

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 215

and denote by Z̆
N(i)
k∆t the tree issued from zi

0. With obvious notation we have

〈Z̆N(i)
k∆t , Hx〉 =

N̆ N(i)
k∆t∑

j=1

H(x − z̆
(i)j
k∆t),

and therefore

εk∆t =
1
N

∫
R

E

∣∣∣∣
N∑

i=1

(E〈Z̆N(i)
k∆t , Hx〉 − 〈Z̆N(i)

k∆t , Hx〉)
∣∣∣∣Φ(x) dx.

By independence one has

E

∣∣∣∣
N∑

i=1

(E〈Z̆N(i)
k∆t , Hx〉 − 〈Z̆N(i)

k∆t , Hx〉)
∣∣∣∣
2

=
N∑

i=1

Var〈Z̆N(i)
k∆T , Hx〉.

In view of lemma 3.3 one has

Var〈Z̆N(i)
k∆t , Hx〉 � E(N̆ N(i)

k∆t )2 � C,

so that, since Φ belongs to L1(R), one gets

εk∆t � C√
N

.

�

8. The interaction error

The process (Z̆k∆t) cannot be simulated, since the distribution function EV̆ N (·, ·) is
unknown. We thus finally consider the branching process (Z̄N

k∆t), the offspring law
of which depends on the empirical measure of the particles. We define the z̄j

k∆t and
N̄ N

k∆t in an obvious way and we set

V̄ N (k∆t, x) :=
1
N

N̄ N
k∆t∑

j=1

H(x − z̄j
k∆t).

At time (k + 1)∆t the particle located at z̄j
k∆t dies with probability

∆t|f ′ ◦ V̄ N (k∆t, z̄j
k∆t)|.

It then has no descendant if f ′ ◦ V̄ N (k∆t, z̄j
k∆t) � 0 and gives birth to two particles

otherwise.

Proposition 8.1. There exists C > 0 such that

max
0�k∆t�T

E‖ ̂̆
V N (k∆t, ·) − V̄ N (k∆t, ·)‖L1,Φ(R) � C∆t +

C√
N

. (8.1)

To prove proposition 8.1 we need the following expansion.
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216 H. Régnier and D. Talay

Lemma 8.2. Set

εk∆t := E

∥∥∥∥ 1
N

N̆ N
k∆t∑

j=1

H(· − z̆j
k∆t) − 1

N

N̄ N
k∆t∑

j=1

H(· − z̄j
k∆t)

∥∥∥∥
L1,Φ(R)

, (8.2)

and denote the particles of the tree Z̆
N(i)
k∆t,(k−�)∆t issued from zi

0 by z̆
(i)j
k∆t,(k−�)∆t. There

exists C > 0 such that

εk∆t � C∆t

N

N∑
i=1

k−1∑
�=1

E

N̆ N(i)
(k−�)∆t∑
j=1

|V̆ N ((k − �)∆t, z̆
(i)j
(k−�)∆t) − V̄ N ((k − �)∆t, z̆

(i)j
(k−�)∆t)|

+ C∆t (8.3)

for all 0 � k∆t � T .

For the right-hand side of (8.3) we have the following estimate.

Lemma 8.3. There exists C > 0 such that

E

N̆ N(i)
k∆t∑

j=1

|V̆ N (k∆t, z̆
(i)j
k∆t) − V̄ N (k∆t, z̆

(i)j
k∆t)|

� C∆t

k−1∑
�=1

E

N̆ N(i)
(k−�)∆t∑
j=1

|V̆ N ((k − �)∆t, z̆
(i)j
(k−�)∆t) − V̄ N ((k − �)∆t, z̆

(i)j
(k−�)∆t)|

+ C∆t +
C√
N

(8.4)

for all 0 � k∆t � T .

Suppose for a while that the lemmas 8.2 and 8.3 are proven. Set

η(k∆t) :=
1
N

N∑
i=1

E

N̆ N(i)
k∆t∑

j=1

|V̆ N (k∆t, z̆
(i)j
k∆t) − V̄ N (k∆t, z̆

(i)j
k∆t)|.

In view of (8.4) one has

η(k∆t) � C∆t

k−1∑
�=1

η(�∆t) + C∆t +
C√
N

. (8.5)

We deduce that
k+1∑
�=1

η(�∆t) −
k∑

�=1

η(�∆t) � C∆t
k∑

�=1

η(�∆t) + C∆t +
C√
N

.

An easy induction shows that

k∑
�=1

η(�∆t) � C∆t +
C√
N

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 217
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(k + 1)∆t

k∆t

(k − 1)∆t

4∆t

3∆t

2∆t

∆t

ZN
(k + 1)∆t

˘ ZN
(k + 1)∆t,k∆t

˘− ZN
(k + 1)∆t,(k − 1)∆t

−˘

ZN
k∆t,(k − 1)∆t

−˘ZN
k∆t

˘

ZN
(k − 1)∆t

˘

ZN
(k + 1)∆t,3∆t

˘− ZN
(k + 1)∆t,2∆t

˘− ZN
(k + 1)∆t

−

ZN
k∆t,2∆t

˘−ZN
k∆t,3∆t

˘− ZN
k∆t

−

ZN
(k − 1)∆t,3∆t

˘− ZN
(k − 1)∆t,2∆t

˘− ZN
(k − 1)∆t

−

ZN
4∆t

˘

ZN
3∆t,2∆t

˘−ZN
3∆t

˘

ZN
2∆t

˘

ZN
∆t = Z

N
∆t

˘ −

ZN
2∆t

ZN
3∆t

ZN
4∆t

−

−

−ZN
4∆t,3∆t

˘− ZN
4∆t,2∆t

˘−

Figure 1. Construction of the intermediate trees.

for all k∆t � T , from which η(k∆t) � C∆t + C/
√

N in view of (8.5). The desired
inequality (8.1) then follows from the lemma 8.2.

It now remains to prove lemmas 8.2 and 8.3. The calculation is tricky because of
interaction between the particles induced by the randomness of the offspring rule
which governs the process (Z̄N

t ). This leads us to introduce a family of new trees
whose representation is as follows. In figure 1, ↖ means that the offspring rule is
governed by the deterministic function V̆ N , whereas ↗ means that the offspring
rule is governed by the random function V̄ N . For two trees whose names are on the
same horizontal line and are neighbours, the particles having the same ancestor die,
branch and diffuse by means of the same random trials.

(a) Proof of lemma 8.2

Denote by ¯̆z(i)j
k∆t,(k−�)∆t the particles of the tree ¯̆

Z
N(i)
k∆t,(k−�)∆t issued from Z̆

N(i)
(k−�)∆t,

and set

¯̆
Q

N(i)
k,� (x) :=

∣∣∣∣
¯̆N N(i)

k∆t,(k−�+1)∆t∑
j=1

H(x − ¯̆z(i)j
k∆t,(k−�+1)∆t) −

¯̆N N(i)
k∆t,(k−�)∆t∑

j=1

H(x − ¯̆z(i)j
k∆t,(k−�)∆t)

∣∣∣∣.
(8.6)

We obviously have

εk∆t � 1
N

N∑
i=1

k−1∑
�=1

E‖ ¯̆
Q

N(i)
k,� (·)‖L1,Φ(R). (8.7)

We observe that, by construction, the particles which belong to one of the trees

¯̆
Z

N(i)
k∆t,(k−�+1)∆t and ¯̆

Z
N(i)
k∆t,(k−�)∆t,

Proc. R. Soc. Lond. A (2004)
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218 H. Régnier and D. Talay

but do not belong to the other, are descendants of particles which have appeared in
one of the trees

¯̆
Z

N(i)
(k−�+1)∆t,(k−�)∆t and Z̆

N(i)
(k−�+1)∆t,

and not in the other one. This leads us to introduce the events ¯̆ωN(i)
(k−�+1)∆t(m) defined

as

{Exactly m particles of the trees ¯̆
Z

N(i)
(k−�+1)∆t,(k−�)∆t

and Z̆
N(i)
(k−�+1)∆t belong to one tree and not the other one} ∩ {N̆ N(i)

(k−�)∆t � m}.

Observe that, on the event ¯̆ωN(i)
(k−�+1)∆t(0), whose probability may be close to unity

(see (8.9)), one has Q̆
N(i)
k,� (·) ≡ 0, since the free motions of the particles of the two

trees are identical. We now ‘localize’ by proving that, for m � 2, the contribution of
the event ¯̆ωN(i)

(k−�+1)∆t(m) is small, that is,

∃C > 0, E

{
¯̆
Q

N(i)
k,� (x)

N̆ N(i)
(k−�)∆t∑
m=2

I ¯̆ωN(i)
(k−�+1)∆t

(m)
}

� C∆t2 for all x ∈ R. (8.8)

To this end, set

α
(i)j
(k−�)∆t := min(|f ′ ◦ V̆ N ((k − �)∆t, z̆

(i)j
(k−�)∆t)|, |f

′ ◦ V̄ N ((k − �)∆t, z̆
(i)j
(k−�)∆t)|),

β
(i)j
(k−�)∆t := max(|f ′ ◦ V̆ N ((k − �)∆t, z̆

(i)j
(k−�)∆t)|, |f

′ ◦ V̄ N ((k − �)∆t, z̆
(i)j
(k−�)∆t)|),

δ
(i)j
(k−�)∆t := β

(i)j
(k−�)∆t − α

(i)j
(k−�)∆t.

On ¯̆ωN(i)
(k−�+1)∆t(0), either no particle dies at time (k−�)∆t, or any dying particle dies

in the two trees simultaneously (that is, all the jth uniform trials have taken values
outside the respective intervals (∆tα

(i)j
(k−�)∆t, ∆tβ

(i)j
(k−�)∆t)). We obviously have

P
F̆N

(k−�)∆t ¯̆ωN(i)
(k−�+1)∆t(0) =

N̆ N(i)
(k−�)∆t∏
j=1

(1 − ∆tδ
(i)j
(k−�)∆t). (8.9)

Similarly,

P
F̆N

(k−�)∆t ¯̆ωN(i)
(k−�+1)∆t(1) = ∆t

N̆ N(i)
(k−�)∆t∑
j=1

δ
(i)j
(k−�)∆t

N̆ N(i)
(k−�)∆t∏
θ=1,
θ �=j

(1 − ∆tδ
(i)θ
(k−�)∆t). (8.10)

We thus get (8.8) by using⋃
m�2

¯̆ωN(i)
(k−�+1)∆t(m) = Ω − ¯̆ωN(i)

(k−�+1)∆t(0) − ¯̆ωN(i)
(k−�+1)∆t(1)

and (5.18), and by proceeding as in the proof of lemma 3.3, to get

E
F̆N

(k−�+1)∆t
¯̆
Q

N(i)
k,� (x) � C( ¯̆N N(i)

(k−�)∆t,(k−�+1)∆t + N̆ N(i)
(k−�+1)∆t) � 4CN̆ N(i)

(k−�)∆t,

and
EN̆ N(i)

(k−�)∆t � C.

Proc. R. Soc. Lond. A (2004)
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The Sherman and Peskin branching stochastic particle method 219

Let us now restrict ourselves to the event ¯̆ωN(i)
(k−�+1)∆t(1) and consider the particle

belonging to one of the trees and not to the other one; conditionally to F̆N
(k−�)∆t, the

moments of the number of its descendants at time k∆t obviously satisfy inequalities
of the type (3.10). By conditioning with respect to F̆N

(k−�)∆t, and then using (8.10)
and proceeding as in the proof of (5.14), we finally obtain

E
¯̆
Q

N(i)
k,� (x) � C∆tE

N̆ N(i)
(k−�)∆t∑
j=1

|V̆ N ((k − �)∆t, z̆
(i)j
(k−�)∆t) − V̄ N ((k − �)∆t, z̆

(i)j
(k−�)∆t)|

+ C(∆t)2 (8.11)

for some positive number C which is independent of x. In view of (8.7) the proof of
the lemma 8.2 is thus completed.

(b) Proof of lemma 8.3

Consider the left-hand side of (8.4) and insert ̂̆
V N (k∆t, z̆

(i)j
k∆t) into the sum.

The expression

E

N̆ N(i)
k∆t∑

j=1

|V̆ N (k∆t, z̆
(i)j
k∆t) − ̂̆

V N (k∆t, z̆
(i)j
k∆t)|

can be bound from above by

1
N

E

N̆ N(i)
k∆t∑

j=1

{|(E〈Z̆N(i)
k∆t , Hx〉 − 〈Z̆N(i)

k∆t , Hx〉)|
x=z̆

(i)j
k∆t

}

+
1
N

E

N̆ N(i)
k∆t∑

j=1

{∣∣∣∣
N∑

i′=1,
i′ �=i

(E〈Z̆N(i′)
k∆t , Hx〉 − 〈Z̆N(i′)

k∆t , Hx〉)
∣∣∣∣
x=z̆

(i)j
k∆t

}
.

The first term can be bounded from above by C/N in view of lemma 3.3. The second
term can be bounded from above by C/

√
N by using the same arguments as in the

proof of (7.2) and, again, the lemma 3.3.
We finally have to consider

E

N̆ N(i)
k∆t∑

j=1

| ̂̆V N (k∆t, z̆
(i)j
k∆t) − V̄ N (k∆t, z̆

(i)j
k∆t)|.

Proceeding as in the proof of lemma 3.3 we easily get

E
¯̆
Q

N(i)
k,� (z̆(i)j

k∆t)I ¯̆ωm
(k−�+1)∆t(1)

� CP[¯̆ωm
(k−�+1)∆t(1)].

Similar arguments to those of the proof of lemma 8.2 then allow us to conclude. We
omit the details.
While this paper was in press, Axel Grorud, from the Université de Provence, suddenly died.
Axel had been a member of the Omega research group at INRIA since its creation. He helped
the first author a lot while studying for his PhD, and he was more than a good friend to the
second author. We dedicate this paper to his memory, in remembrance of the happy moments
we spent doing mathematics together.
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