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Summary. We establish a Poincaré inequality for the law at time t of the explicit
Euler scheme for a stochastic differential equation. When the diffusion coefficient is
constant, we also establish a Logarithmic Sobolev inequality for both the explicit
and implicit Euler scheme, with a constant related to the convexity of the drift
coefficient. Then we provide exact confidence intervals for the convergence of Monte
Carlo methods.

1 Poincaré and Logarithmic Sobolev Inequalities

To describe and control the statistical errors of probabilistic numerical meth-
ods, one can use better results than limit theorems such as Central Limit The-
orems. Indeed, it is worthy having non asymptotic error estimates in order to
choose numerical parameters (number of Monte Carlo simulations, or number
of particles, or time length of an ergodic simulation) in terms of the desired
accuracy and confidence interval. To this end, concentration inequalities are
extremely useful and accurate. As reminded in the section 6 below, sufficient
conditions for concentration inequalities are Poincaré (or spectral gap) and
Logarithmic Sobolev inequalities. Such inequalities consist in bounding from
above a variance or an entropy by an energy quantity. We start by defining
Poincaré and Logarithmic Sobolev inequalities for measures on Rd.

Remark 1. In what follows, we call “smooth” function a C∞ function with
polynomial growth.

Definition 1 (Poincaré inequality). A probability measure µ on Rd satis-
fies a Poincaré (or spectral gap) inequality with constant C if

Varµ(f) := Eµ(f2)− (Eµf)2 ≤ C Eµ

(
|∇f |2

)
(1)

for all smooth functions f with bounded derivatives.
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Definition 2 (Logarithmic Sobolev inequality). The probability measure
µ on Rd satisfies a Logarithmic Sobolev inequality with constant C if

Entµ

(
f2
)

:=
∫

f2 log f2 dµ−
∫

f2 dµ log
∫

f2 dµ ≤ C Eµ

(
|∇f |2

)
(2)

for all smooth functions f bounded derivatives.

The Logarithmic Sobolev inequality implies the Poincaré inequality and a
better concentration inequality (see (18) and (19)) below.

One can easily check that the Gaussian measure N (m,S) on Rd satis-
fies a Poincaré (respectively Logarithmic Sobolev) inequality with constant ρ
(respectively 2ρ), where ρ is the largest eigenvalue of the covariance matrix
S.

We now consider a much less elementary example and we follow [3]. Let
(Xt) be a time continuous Markov process with infinitesimal generator L. Set

α(s) := Ps

[
(Pt−sf)2

]
.

As the time derivative of Ptf is PtLf , one has

α′(s) = 2PsΓPt−sf, (3)

where

Γ (f, g) :=
1
2
[L(fg)− fLg − gLf ] and Γ f := Γ (f, f).

Suppose that the semigroup Pt satisfies the commutation relation

∃ρ ∈ R, ΓPtf ≤ e−2ρtPtΓ f. (4)

Then it also satisfies the Poincaré inequality since

Pt

(
f2
)
− (Ptf)2 = α(t)− α(0) =

∫ t

0

α′(s) ds ≤ 1− e−2ρt

ρ
PtΓ f.

It now remains to get sufficient conditions for (4). Set

Γ2f :=
1
2
[L(Γ f)− 2Γ (f,Lf)],

and notice that α′′(s) = 4PsΓ2Pt−sf . Suppose that the Bakry–Émery criterion
with curvature ρ holds, that is,

Γ2f ≥ ρ Γ f. (5)

Then α′′(s) ≥ 2ρα′(s), from which one can deduce (4).
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We end this section by considering the special case of diffusion processes.
Let (Xt)t≥0 be the Rd valued diffusion process solution of the stochastic dif-
ferential equation

Xt = X0 +
∫ t

0

b(Xs) ds +
∫ t

0

√
2σ(Xs) dBs, (6)

where (Bt)t≥0 is a Brownian motion on Rd, σ(x) is a d × d matrix valued
function, and b(x) is a Rd valued function. A straightforward computation
provides

Γ (f) = |σ∇f |2.

Using the fact that L is the generator of a diffusion process, one can prove
that the logarithmic Sobolev inequality

EntPt

(
f2
)
≤ 2

ρ

(
1− e−2ρt

)
Pt(Γ f)

is implied by the reinforced commutation relation√
ΓPtf ≤ e−ρtPt

(√
Γ f
)
,

that is,
|σ∇Ptf | ≤ e−ρtPt(|σ∇f |). (7)

In addition, one can show that this reinforced commutation relation is equiv-
alent to the Bakry–Émery curvature criterion. In the case of one–dimensional
diffusions, this criterion is equivalent to the condition

∃ρ ∈ R, inf
x∈R

(
σ(x)σ′′(x) +

σ′(x)
σ(x)

b(x)− b′(x)
)
≥ ρ. (8)

Observe that this condition obviously holds true when σ, σ′, σ′′, b and b′ are
bounded functions, and σ is bounded from below by a positive constant.

We now aim to get Poincaré and Logarithmic Sobolev inequalities for ap-
proximation schemes of diffusion processes and particle systems for McKean–
Vlasov partial differential equations. Complete proofs will appear in [10].

2 Poincaré Inequalities for Multidimensional Euler
Schemes

Consider the Euler scheme (Xγ
n)n∈N on Rd with discretization step γ:

Xγ
n+1 := Xγ

n + b(Xγ
n)γ +

√
2σ(Xγ

n)(Bn+1 −Bn). (9)

This scheme discretizes (6) and defines a Markov chain on Rd with transition
kernel
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K(f)(x) := E
[
f
(
x + b(x)γ +

√
2γσ(x)Y

)]
,

where Y is GaussianN (0, Id). We conjecture that, under appropriate hypothe-
ses on the functions b and σ, the law of Xγ

n satisfies a Poincaré inequality with

a constant uniform in γ < 1 and 1 ≤ n ≤ 1
γ

. However, at the time being, we

have succeeded to only get a partial version of this result. The extension is in
progress.

Proposition 1. If d = 1, suppose that the functions σ and b have continuous
and bounded derivatives and σ is bounded. If d > 1, suppose in addition that
σ is constant. Then, for all n ∈ N and all smooth functions f ,

Kn
(
f2
)
(x)− (Knf(x))2 ≤ Cγ,nKn

(
|∇f |2

)
(x).

The constant Cγ,n can be chosen as

Cγ,n = γc
(Cγ)n − 1
Cγ − 1

, (10)

where Cγ satisfies

∃C > 0, ∀0 < γ < 1, C1/γ
γ ≤ C.

Proof. We mimic the continuous time semigroup argument. Observe that

Kn(f2)− (Knf)2 =
n∑

i=1

{
Ki
[
(Kn−if)2

]
−Ki−1

[(
Kn−i+1f

)2]}
=

n∑
i=1

Ki−1
{

K
[
(Kn−if)2

]
−
[
K
(
Kn−if

)2]}
.

Therefore,

VarKn(f) =
n∑

i=1

Ki−1VarK

(
Kn−if

)
. (11)

Notice that the operator VarK() is the discrete time version of the operator Γ .
The kernel K is the Gaussian law with mean x+ b(x)γ and covariance matrix
2γσ(x)σ∗(x). Thus, since σ is bounded, it satisfies the Poincaré inequality

VarK(f)(x) ≤ 2γ K
(
|σ(x)∇f |2

)
(x) ≤ cγ K

(
|∇f |2

)
(x). (12)

In addition,

∇Kf(x) = E[(Id + γJac b(x) +
√

γJac (σ(x)Y ))∇f(x + γb(x) +
√

γσ(x)Y )].

Therefore, the Cauchy–Schwarz inequality leads to
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|∇Kf(x)|2 ≤
∑

i

E

1 + bi(x)γ +
√

γ
∑
j,k

∂σij

∂xk
(x)Yj

2

K
(
|∇f |2

)
(x),

from which the desired result easily follows.

In the next sections we prove that, under the above restrictive hypotheses,
we even can get Logarithmic Sobolev inequalities.

3 Logarithmic Sobolev Inequalities for One-Dimensional
Euler and Milstein Schemes

The aim of this section is to establish Logarithmic Sobolev inequalities for
numerical schemes in dimension one and to make the constants explicit in the
inequalities in terms of the curvature of the solution of (6).

The Commutation Relation for the Bernoulli Scheme

Consider the approximation scheme with transition kernel

Jf(x) := E
[
f(x + γb(x) +

√
2γσ(x)Z)

]
,

where the law of Z is the probability measure 1
2δ−1 + 1

2δ1. Then (σ(Jf)′)(x)
is equal to

E
[(

σ(x)(1 + γb′(x) +
√

2γσ′(x)Z)
)
f ′
(
x + γb(x) +

√
2γσ(x)Z

)]
.

Thus

σ(x)(Jf)′(x) = E
[
(1− αx(γ))(σf ′)

(
x + γb(x) +

√
2γσ(x)Z

)]
,

where

αx(γ) :=
σ(x + γb(x) +

√
2γσ(x)Z)− σ(x)(1 + γb′(x) +

√
2γσ′(x)Z)

σ(x + γb(x) +
√

2γσ(x)Z)
.

In view of the Taylor formula,

σ
(
x + γb(x) +

√
2γσ(x)Z

)
= σ(x) + σ′(x)

(
b(x)γ +

√
2γσ(x)Z

)
+ σ′′(x)σ(x)2Z2γ + O(γ3/2).

Therefore

αx(γ) =
[
σ(x)σ′′(x) +

σ′(x)b(x)
σ(x)

− b′(x)
]
γ + O(γ3/2),
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since Z2 = 1 almost surely. The curvature criterion (8) leads to

αx(γ) ≥ ργ + O(γ3/2).

Consequently, for all γ small enough it holds that

|σ(x)(Jf)′(x)| ≤
[
1− ργ + O(γ3/2)

]
J(|σf ′|)(x).

Now, the Bernoulli law satisfies a Logarithmic Sobolev inequality with con-
stant 2 (see [1]). We thus deduce that the iterated kernel Jn of the Bernoulli
scheme satisfies a Logarithmic Sobolev inequality with constant

2
ρ + O(γ1/2)

(
1− (1− ργ + O(γ3/2))2n

)
.

The Milstein Scheme

The previous result seems surprising since we have used that Bernoulli r.v.
satisfy Z2 = 1 a.s. Consider the new Markov chain with kernel

Jf(x) := E
[
f
(
x + γb(x) +

√
2γZ + σ′(x)σ(x)(Z2 − 1)γ

)]
,

where the law of Z is a probability measure with compact support, mean 0
and variance 1. This chain is the one-dimensional Milstein scheme for (6). For
a comparison with the Euler scheme, see, e.g. [15]. Similar arguments as above
lead to the following result.

Proposition 2. Let Z have a law with compact support, mean 0 and vari-
ance 1 which satisfies a Logarithmic Sobolev inequality with constant c. Then
the iterated kernel Jn of the Milstein scheme satisfies a Logarithmic Sobolev
inequality with constant

c

ρ + O(γ1/2)

(
1− (1− ργ + O(γ3/2))2n

)
.

4 Logarithmic Sobolev Inequalities for Multidimensional
Euler Schemes with Constant Diffusion Coefficient and
Potential Drift Coefficient

In this section, we are given a smooth function U and we consider the equation

dXt =
√

2dBt −∇U(Xt) dt.
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4.1 The Explicit Euler Scheme

Assume in this subsection that ∇U is a uniformly Lipschitz function on Rd.
For U(x) = |x|2/2 one gets the Ornstein–Uhlenbeck process. The transition
kernel of the explicit Euler scheme is

Kf(x) = E
[
f
(
x−∇U(x)γ +

√
2γY

)]
,

where Y is a d dimensional Gaussian vector N (0, Id).
Let λ ∈ R be the largest real number such that

〈Hess U(x)v, v〉 ≥ λ|v|2 (13)

for all x and v in Rd. We now assume that λγ < 1. This technical assumption
is not restrictive since the discretization step γ is small.

Theorem 1. For all n ∈ N, x ∈ R and smooth functions f from Rd to R,

EntKn

(
f2
)
≤ Dγ,nKn

(
|∇f |2

)
,

where
Dγ,n :=

4
λ(2− λγ)

(
1− (1− λγ)2n

)
. (14)

Remark 2. If λ is equal to 0, Dγ,n needs to be understood as 4nγ.

Proof. The kernel K satisfies a Logarithmic Sobolev inequality with constant
4γ. Moreover,

∇Kf(x) = (Id − γHess U(x))K(∇f)(x).

Therefore
|∇Kf(x)| ≤ (1− γλ)K(|∇f |)(x). (15)

Observe that

EntKn

(
f2
)

:= Kn(f2 log f2)−Kn(f2) log Kn(f2)

is equal to

n∑
i=1

{
Ki
[
Kn−i(f2) log Kn−i(f2)

]
−Ki−1

[
Kn−i+1(f2) log Kn−i+1(f2)

]}
.

In the sequel, gn−i will stand for
√

Kn−i(f2). We have

EntKn

(
f2
)

=
n∑

i=1

Ki−1
[
EntK

(
g2

n−i

)]
≤ 4γ

n∑
i=1

Ki
(
|∇gn−i|2

)
,
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since K satisfies a Logarithmic Sobolev inequality with constant 4γ. Now, in
view of the commutation relation (15), we get

|∇gn−i|2 =

∣∣∇Kn−i(f2)
∣∣2

4Kn−i(f2)
≤ (1− λγ)2

[
K
∣∣∇Kn−i−1(f2)

∣∣]2
4KKn−i−1(f2)

for all 1 ≤ i ≤ n. Therefore, using Cauchy–Schwarz inequality,

(Kf)2

K(g)
≤ K

(
f2

g

)
,

from which[
K
∣∣∇Kn−i−1(f2)

∣∣]2
4KKn−i−1(f2)

≤ K

[∣∣∇Kn−i−1(f2)
∣∣2

4Kn−i−1(f2)

]
= K

[
|∇gn−i−1|2

]
.

A straightforward induction shows that

|∇gn−i|2 ≤ (1− λγ)2(n−i)Kn−i
[
|∇f |2

]
.

Consequently,

EntKn

(
f2
)
≤ 4γ

[
n−1∑
i=0

(1− λγ)2i

]
Kn
[
|∇f |2

]
= 4γ

1− (1− λγ)2n

1− (1− λγ)2
Kn
[
|∇f |2

]
=

4
λ(2− λγ)

(
1− (1− λγ)2n

)
Kn
[
|∇f |2

]
,

which ends the proof.

4.2 The Implicit Euler Scheme

In this subsection we assume that U is a uniformly convex function, that is,
there exists λ > 0 such that

〈Hess U(x)v, v〉 ≥ λ|v|2 for all x, v ∈ Rd.

Since the drift coefficient −∇U is not necessarily globally Lipschitz, we con-
sider the implicit Euler scheme

Xγ
n+1 = Xγ

n −∇U
(
Xγ

n+1

)
γ +

√
2γY,

where Y is a standard Gaussian variable on Rd. Setting

ϕ(x) := (I +∇U(x)γ)−1(x),

the kernel K of the implicit Euler scheme is
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Kf(x) = E
[
f ◦ ϕ

(
x +

√
2γY

)]
.

Let N (x, 2γI) be the Gaussian distribution with mean x and covariance ma-
trix 2γId. We have

EntK

(
f2
)

= EntN (x,2γI)

(
(f ◦ ϕ)2

)
≤ 4γEN (x,2γI)

[
|∇(f ◦ ϕ)|2

]
.

In view of the definition of ϕ we get

Jac ϕ(x) = [Id + γHess U(x)]−1
,

and thus
〈Jac ϕ(x)v, v〉 ≤ (1 + γλ)−1|v|2

for all v in Rd, from which

|∇(f ◦ ϕ)| = |(Jac ϕ)(∇f(ϕ))| ≤ 1
1 + λγ

|(∇f) ◦ ϕ|.

Consequently, the kernels (K(·)(x))x satisfy a Logarithmic Sobolev inequality
with constant 4γ

1+λγ .
On the other hand,

∇Kf(x) = EN (x,2γI)[(Jac ϕ)(∇f) ◦ ϕ].

Then K and ∇ satisfy the commutation relation∣∣∇K(f)(x)
∣∣ ≤ (1 + γλ)−1

K(|∇f |)(x).

Obvious adaptations of the proof of Theorem 1 lead to

Theorem 2. For all n ∈ N, x ∈ R and smooth functions f from Rd to R one
has

EntK
n

(
f2
)
≤ Dγ,nK

n
(
|∇f |2

)
,

where

Dγ,n =
4(1 + λγ)
λ(2 + λγ)

(
1− 1

(1 + λγ)2n

)
. (16)

5 Uniform Logarithmic Sobolev Inequalities for
One–Dimensional Euler Schemes with Constant
Diffusion Coefficient and Convex Potential Drift
Coefficient

Let V be a smooth functions from R to R. Let (Xt)t≥0 be the solution of

dXt =
√

2 dBt − V ′(Xt) dt.
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Notice that

∇Ptf(x) = Ex

[
∇f(Xt) exp

(
−
∫ t

0

V ′′(Xs) ds

)]
. (17)

When V ′′ ≥ λ > 0 we easily get the commutation relation

|∇Ptf | ≤ e−λtPt(|∇f |).

We now consider the less obvious case where V ′′ is supposed nonnegative only.

5.1 Poincaré Inequality for the Diffusion Process

Lemma 1. Let

D(t, x) := Ex

[
exp

(
−2
∫ t

0

V ′′(Xs) ds

)]
.

Then it exist t0 > 0 such that D(t0) := sup
x∈R

D(t0, x) < 1.

Proof. One has D(t + s) ≤ D(t)D(s) for all t ≥ 0 and s ≥ 0. Indeed, for all
t ≥ 0, s ≥ 0 and x ∈ R, the Markov property ensures that

D(t + s, x) = Ex

[
exp

(
−2
∫ t

0

V ′′(Xu) du

)
EXt

{
exp

(
−2
∫ s

0

V ′′(Xu) du

)}]
= Ex

[
D(s,Xt) exp

(
−2
∫ t

0

V ′′(Xu) du

)]
≤ D(s)Ex

[
exp

(
−2
∫ t

0

V ′′(Xu) du

)]
= D(s)D(t, x) ≤ D(s)D(t).

For x ≥ a, set τa := inf {t ≥ 0, Xx
t = a}. Then,

D(t, x) = Ex

[
1I{τa<t} exp

(
−2
∫ t

0

V ′′(Xs) ds

)]
+ Ex

[
1I{τa≥t} exp

(
−2
∫ t

0

V ′′(Xs) ds

)]
.

The second term on the r.h.s. is bounded from above by exp(−λt). The first
one can be bounded from above as follows:

Ex

[
1I{τa<t} exp

(
−2
∫ t

0

V ′′(Xs) ds

)]
= Ex

[
1I{τa<t}e

−λτaE
{

exp
(
−2
∫ t

τa

V ′′(Xs) ds

)∣∣∣∣Fτa

}]
= Ex

[
1I{τa<t}e

−λτaD(t− τa, a)
]

= Ex
[
1I{τa<t/2}e

−λτaD(t− τa, a)
]

+ Ex
[
1I{t/2≤τa<t}e

−λτaD(t− τa, a)
]

≤ D(t/2, a) + e−λt/2.
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One can easily show that

sup
x≥a

D(t, x) ≤ D(t/2, a) + e−λt/2 + e−λt.

The right hand side is bounded from above by 1 for all t large enough. By
symmetry, one also has

sup
|x|≥a

D(t, x) < 1.

Finally, the continuity of x 7→ D(t, x) ensures that

sup {D(t, x), x ∈ [−a, a]} < 1

for all t > 0, which ends the proof.

Proposition 3. Assume that V is convex and it exists a ≥ 0 and λ > 0 such
that sup {V ′′(x), |x| ≥ a}. It then exists t0 ≥ 0 such that D(t0) < 1 and

VarPt(·)(x)(f) ≤ 2t0

(
1 +

1−D(t0)t/t0−1

1−D(t0)

)
Pt

(
|∇f |2

)
for all t > t0. Moreover, the invariant measure µ of (Xt) satisfies a Poincaré
inequality with constant 2t0(1 + 1/(1−D(t0))).

Observe that the proposition implies that, for all t0 > 0 and n ∈ N,

|∇Pnt0f(x)|2 ≤ D(nt0)Pnt0

(
|∇f |2

)
(x) ≤ D(t0)nPnt0

(
|∇f |2

)
(x).

Proof. Let t0 > 0 be as in Lemma 1 and set K(f)(x) := Pt0f(x). Arbitrarily
choose t > 0. Let n be the integer part of t/t0. We have

VarPt(·)(x)(f) = Pt(f2)(x)− (Pt(f)(x))2

= Pnt0

(
VarPt−nt0

(f)
)

+ VarPnt0
(Pt−nt0f).

Since t − nt0 < t0, Pt−nt0 satisfies a Poincaré inequality with a constant
bounded by 2t0. Therefore,

VarPt(·)(x)(f) ≤ 2t0Pt

(
|∇f |2

)
+ VarKn(Pt−nt0(f)).

Moreover, Kn satisfies the Poincaré inequality

VarKn(f) =≤ 2t0(1−D(t0)n)
1−D(t0)

Kn(|∇f |2).

In view of the commutation relation |∇Pt−nt0(f)|2 ≤ Pt−nt0(|∇f |2), we finally
get

VarPt(·)(x)(f) ≤ 2t0Pt

(
|∇f |2

)
+

2t0(1−D(t0)n)
1−D(t0)

KnPt−nt0(|∇f |2).
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5.2 Uniform Poincaré Inequality for the Euler Scheme

We now get a uniform Poincaré inequality for the Euler scheme with kernel

K(f)(x) = E{f(x− V ′(x)α + Y )},

where Y is Gaussian N (0, 2α). Consider the commutation relation

∇K2f(x) = (1− αV ′′(x))Ex[(1− αV ′′(X1))∇f(X2)].

As 1− αV ′′(x) ≤ 1, we have∣∣∇K2f(x)
∣∣2 ≤ Ex

[
(1− αV ′′(X1))2

]
K2(|∇f |2)(x).

Since the support of the law of X1 is the entire real line, for all x ∈ R,
Ex
[
(1− αV ′′(X1))2

]
< 1. Moreover

sup
x∈R

Ex
[
(1− αV ′′(X1))2

]
< 1

since V ′′(y) ≥ λ > 0 if |y| ≥ a. This observation leads to Poincaré inequal-
ities for both Kn and the invariant measure of the Euler scheme; in these
inequalities the constants are uniform w.r.t. time.

5.3 Uniform Logarithmic Sobolev Inequality

In view of (17) we have

|∇Pt(f)(x)| ≤ Ex

[
|f ′(Xt)| exp

(
−
∫ t

0

V ′′(Xs) ds

)]
= E

[
|f ′(Xt)|E

{
exp

(
−
∫ t

0

V ′′(Xs) ds

)∣∣∣∣X0 = x,Xt

}]
.

To get the commutation relation |∇Pt(f)| ≤ ρPt(|f ′|), one needs to suppose
that the following property holds true:

Property 1. There exists t0 > 0 such that D(t0) := supx,y∈R D(t0, x, y) < 1,
where

D(t0, x, y) := E
[
exp

(
−
∫ t0

0

V ′′(Xs) ds

)∣∣∣∣X0 = x, Xt0 = y

]
for all t > 0 and x, y in R.

This property holds true when V ′′ is nonnegative. We are now trying to relax
the convexity condition on V , assuming only that V is strictly convex out of
a compact set.
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6 Applications

6.1 Monte Carlo Simulations

Poincaré and Logarithmic Sobolev inequalities are important for applications
because they provide concentration inequalities for empirical means. The proof
of this claim uses a tensorization argument and the Herbst’s argument that
we now remind.

Theorem 3. Let µ be a probability measure on Rd. If µ satisfies a spectral
gap (respectively Logarithmic Sobolev) inequality with constant C, then the
measure µ⊗N on RdN satisfies a spectral gap (respectively Logarithmic Sobolev)
inequality with constant C.

Theorem 4. If µ satisfies a Logarithmic Sobolev inequality with constant c,
then for all Lipschitz functions f with Lipschitz constant ε and all λ > 0,

K
(
eλf
)
≤ ecλ2ε2/4eλKf .

The Herbst’s argument ensures that a measure which satisfies a Logarith-
mic Sobolev inequality has Gaussian tails (see [9]). One then deduces

Theorem 5. Let the measure µ on Rd satisfy the Logarithmic Sobolev in-
equality (2) with constant C. Let X1, . . . , XN be i.i.d. random variables with
law µ. Then, for all bounded Lipschitz functions on Rd, it holds

P

(∣∣∣∣∣ 1
N

N∑
i=1

f(Xi)− E(f(X1))

∣∣∣∣∣ ≥ r

)
≤ 2e−Nr2/C . (18)

One can also show

Theorem 6. Assume that the measure µ on Rd satisfies the Poincaré inequal-
ity (1) with constant c. Let X1, . . . , XN be i.i.d. random variables with law µ.
Then, for all bounded Lipschitz functions on Rd with Lipschitz constant α, it
holds

P

(∣∣∣∣∣ 1
N

N∑
i=1

f(Xi)− E(f(X1))

∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
−N

K
min

(
r

α
,
r2

α2

))
. (19)

6.2 Ergodic Simulations

Let (Yn)n be a Markov chain on Rd with transition kernel K such that, for
all smooth functions f ,

|∇Kf |(x) ≤ αK(|∇f |)(x), (20)

for some α < 1. For example, fix t0 > 0 and set K = Pt0 , where (Pt) is the
semi-group of the diffusion
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dXt = dBt −∇U(Xt) dt

with Hess U(x) ≥ ρI and ρ > 0. One can then choose α = e−ρt0 . Alternatively,
K can be chosen as the transition kernel of the implicit Euler scheme which
discretizes (Xt). Using Herbst’s argument one can show

Proposition 4. For all 1-Lipschitz functions f on Rd,

Px

(∣∣∣∣∣ 1
N

N∑
i=1

f(Yi)−
∫

f dµ

∣∣∣∣∣ ≥ r +
dx

N

)
≤ 2 exp

(
−N(1− α)2

c
r2

)
, (21)

where dx =
α

1− α
Ex(|x−X1|).

6.3 Stochastic Particle Methods for McKean–Vlasov Equations

Consider the McKean–Vlasov equation

∂

∂t
Pt =

1
2

d∑
i,j=1

∂2

∂xi∂xj
(aij [x, Pt]Pt)−

d∑
i=1

∂

∂xi
(bi[x, Pt]Pt), (22)

where Pt is a probability measure on Rd and, for some functions b and σ,

b[x, p] =
∫

Rd

b(x, y) p(dy),

σ[x, p] =
∫

Rd

σ(x, y) p(dy),

a[x, p] = σ[x, p]σ[x, p]∗

for all x in Rd and all probability measures p. The functions b and σ are the
interaction kernels. This equation has been introduced by [13] and then widely
studied from both probabilistic and analytic points of view (see, e.g., [14] for
a review). Under appropriate conditions one can show that Pt is the marginal
law at time t of the law of the solution of the nonlinear stochastic differential
equation {

Xt = X0 +
∫ t

0
σ
[
Xs, Qs

]
dBs +

∫ t

0
b
[
Xs, Qs

]
ds,

L(Xt) = Qt,

where L(Xt) stands for the law of Xt: one thus has Pt = Qt. This probabilistic
interpretation suggests to consider the stochastic particle system in mean field
interactiondXi,N

t =
1
N

∑N
j=1 σ(Xi,N

t , Xj,N
t )dBi

t +
1
N

∑N
j=1 b(Xi,N

t , Xj,N
t ) dt,

Xi,N
0 = Xi

0, i = 1, . . . , N,
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where (Bi
. )i are independent Brownian motions on Rd. One aims to approxi-

mate Pt by the empirical measure µN
t of the particle system:

µN

t =
1
N

N∑
i=1

δXi,N
t

.

The convergence of the particle system to the nonlinear process has been
deeply studied (see [14]). Suppose now that σ is constant (for the same reason
as in section 2). It can also be shown that the law of the particle system at
time t satisfies a Logarithmic Sobolev inequality with a constant which does
not depend on the number of particles. However the corresponding confidence
intervals are not fully satisfying for numerical purposes since the particle sys-
tem needs to be discretized in time to be simulated. The convergence rate
of the Euler scheme in terms of N and the discretization step are studied
in [6, 7, 2, 5]. Refining the proof of Theorem 1 by precisely expliciting the dif-
fusion matrix of the particle system, one can also show that the Euler scheme
satisfies a spectral gap inequality with a constant independent of N :

Proposition 5. Suppose that the coefficient b is a bounded Lipschitz func-
tion, and σ is constant. Then the Euler scheme for the above particle system
satisfies

P

(∣∣∣∣∣ 1
N

N∑
i=1

f
(
Xγ,i,N

t (x)
)
− Ef

(
Xγ,i,N

t (x)
)∣∣∣∣∣ ≥ r

)
≤ 2 exp

(
− N

Cγ
t

r2

)
for all Lipschitz functions f with Lipschitz constant equal to 1 and all r ≥ 0,

We again conjecture that, when the diffusion kernel is not constant, under
appropriate conditions the particle system and the corresponding discretizated
system satisfy a Poincaré inequality. Then the above inequality would still hold
true with min(r, r2) instead of r2.

We now consider the granular media equation:

∂u

∂t
= div [∇u + u(∇V +∇W ∗ u)],

where ∗ stands for the convolution and V and W are convex potentials on
Rd. This equation in R with V = |x|2/2 and W = |x|3 has been introduced
by [4] to describe the evolution of media composed of many particles colliding
inelastically in a thermal bath. One can show that the solution ut of the
nonlinear partial differential equation converges to an equilibrium distribution
u∞. Indeed, define the generalized relative entropy as

η(u) =
∫

u log u +
∫

uV +
1
2

∫ ∫
W (x− y)u(x)u(y).

One has
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Theorem 7 ([8]). If V is uniformly convex, i.e. Hess V ≥ λI and W is even
and convex then

η(ut)− η(u∞) ≤ Ke−2λt

where u∞ is the unique minimizer of η or equivalently the unique solution of

u∞ =
1
Z

exp (−V (x)−W ∗ u∞(x)),

with
Z =

∫
exp (−V (x)−W ∗ u∞(x)) dx.

The granular media equations can be viewed as McKean–Vlasov equations.
The particle system well defined and the propagation of chaos result holds
uniformly in time (see [11]):

E
(∣∣∣Xi,N

t −X
i

t

∣∣∣) ≤ c√
N

,

where the X
i
’s are independent copies of the solution of the nonlinear equa-

tion. As the interaction kernels are not globally Lipschitz, one needs to use
the implicit Euler scheme to discretize the particle system. Let (Y N,γ

n )n∈N be
this implicit Euler scheme with discretization step γ. We have (see [12]):

Theorem 8. There exists c > 0 such that

P

(∣∣∣∣∣ 1
N

N∑
i=1

f(Y i,N,γ
t )−

∫
f du∞

∣∣∣∣∣ ≥ r + c
√

γ +
c√
N

+ ce−λt

)
≤ 2e−Nλr2/2

for all Lipschitz functions f with Lipschitz constant 1.
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