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Abstract. In this paper we carefully study the large time behaviour of

u(t, x, y) := Ex,y f(Xt, Yt)−
∫
f dµ,

where (Xt, Yt) is the solution of a stochastic Hamiltonian dissipative system
with non gbally Lipschitz coefficients, µ its unique invariant law, and f a smooth
function with polynomial growth at infinity. Our aim is to prove the exponential
decay to 0 of u(t, x, y) and all its derivatives when t goes to infinity, for all (x, y)
in R2d.

We apply our precise estimates on u(t, x, y) to analyze the convergence rate
of a probabilistic numerical method based upon the implicit Euler discretization
scheme which approximates

∫
f dµ.
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1. Introduction

Consider a stochastic differential system of the type
Xt = X0 +

t∫
0

∂yH(Xs, Ys) ds,

Yt = Y0 −
t∫

0

∂xH(Xs, Ys) ds−
t∫

0

F (Xs, Ys) ∂yH(Xs, Ys) ds+Wt,

(1.1)

where Xt, Yt and Wt belong to Rd. The process (Wt) is a standard Brownian
motion. Here and in all the paper, for all function φ defined on Rd ×Rd, we
denote by ∂xφ the vector (∂φ/∂xi, 1 ≤ i ≤ d); the notation ∂yφ is defined
similarly.

Under the assumptions stated below, the Hamiltonian function H and the
function F are such that there exists a unique global solution to equation (1.1)
and this solution is an ergodic process. Soize [20] describes the applications of
such models in Mechanics, investigates the question of existence and uniqueness
of the invariant law and, under appropriate constraints onH and F , give explicit
formulae for the density p(x, y) of the unique invariant probability measure µ of
(Xt, Yt). If such constraints are not satisfied, one must use numerial methods
to approximate quantities of the type

∫
f dµ.

The objective of this paper is two-fold. We first study the large time be-
haviour of

u(t, x, y) := (x, y) −→ Ex,y f(Xt, Yt)−
∫
f dµ,

for all smooth function f with polynomial growth at infinity. Our aim is to
prove the exponential decay to 0 of u(t, x, y) and all its derivatives when t
goes to infinity, for all (x, y) in R2d. In analytical terms, that means that we
prove the exponential decay in time of the solution of a degenerate parabolic
partial differential equation with non globally Lipschitz coefficients, and of the
spatial derivatives of this solution. In this context, under our hypotheses (see
Hypothesis 1.1 below), our result extends those of, e.g., Bakry [1], Malrieu [9],
Ganidis, Roynette and Vallois [5] (see also the references in these publications).
We emphasize that these authors use hypercontractivity techniques whereas
here we use variational techniques. We then apply our precise estimates on
u(t, x, y) to analyze the convergence rate of a probabilistic numerical method
which approximates

I :=
∫

R2d

f(x, y)µ(dx, dy). (1.2)
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This probabilistic procedure avoids the numerical resolution of the stationary
Fokker – Planck equation

L∗µ = 0, (1.3)

where L∗ is formal adjoint of the infinitesimal generator L of the process (Xt, Yt).
Such a resolution may be impossible, or extremely long, or numerically instable,
for the two following reasons. First, the dimension of the state space may be
very large, especially for models used in Random Mechanics models (think of
multidimensional nonlinear oscillators, e.g.). Second, the generator L is degen-
erate since there is no noise in the dynamics of (Xt).

A natural way to approximate I defined in (1.2) is to apply the ergodic
theorem: given any initial distribution of (X0, Y0), one has

I = lim
T→∞

1
T

T∫
0

f(Xs, Ys) ds P−a.s. (1.4)

A time discretization with step-size h of the integral in the right hand side
of (1.4) and the choice of a large time T = Nh (N ∈ N − {0}) lead to the
approximation

I ∼=
1
N

N∑
p=1

f(Xph, Yph). (1.5)

As the explicit resolution of equation (1.1) is impossible, one then has to con-
struct a process which approximates (Xt, Yt).

Such a procedure has been studied by Talay and Tubaro [22] for general
stochastic differential equations

Zt = Z0 +

t∫
0

b(Zs) ds+

t∫
0

σ(Zs) dWs. (1.6)

Talay and Tubaro [22] propose to use the Euler method to discretize the sys-
tem (1.6) in time in order to construct a discrete time Markov process (Zh

ph, p ∈
N). For example, the Euler approximation with step-size h is

Zh
(p+1)h = Zh

ph + b(Zh
ph)h+ σ(Zh

ph)∆h
p+1W, (1.7)

where
∆h

p+1W := W(p+1)h −Wph. (1.8)

Under appropriate conditions on the functions b and σ the process (Zh
ph, p ∈

N) is ergodic, and the simulation of a single trajectory of (Zh
ph) provides the

following approximation of I:

I ∼= Ih,N :=
1
N

N∑
p=1

f
(
Zh

ph

)
.
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The global error I − Ih,N depends on the two numerical parameters h and N
and can be decomposed as follows:

I − Ih,N = I −
∫

R2d

f(x, y)µh(dx, dy)

︸ ︷︷ ︸
ed(h)

+
∫

R2d

f(x, y)µh(dx, dy)− Ih,N

︸ ︷︷ ︸
es(h,N)

,

where µh is the unique invariant probability measure of (Zh
ph). The statisti-

cal error es(h,N) can be estimated owing to the Central Limit Theorem for√
Nes(h,N) which converges in distribution to a Gaussian law with zero mean

(see, e.g., Revuz [17]). In addition, the variance of the limit law can usually be
bounded from above uniformly in h owing to results such as Lemma 4.1 below.
Numerical experiments show that the discretization error ed(h), which of course
is independent of the simulation time Nh, may be extremely large even for small
values of h. This is explained by the following expansion obtained by Talay and
Tubaro [22]:

ed(h) = C1h+C2h
2 + · · ·+CKh

K +O
(
hK+1

)
for all K ∈ N−{0}. (1.9)

This estimate justifies the use of the Romberg extrapolation method in order to
accelerate the convergence rate: discretize (1.6) with the step-sizes h and h/2,
and consider the new approximation

I ∼= 2Ih/2,N − Ih,N =
1
N

N∑
p=1

f
(
Zh

ph

)
− 1

2N

2N∑
p=1

f
(
Z

h/2
ph

)
. (1.10)

The corresponding discretization error is

Ed(h) := I −
{

2
∫

R2d

f(x, y)µh/2(dx, dy)−
∫

R2d

f(x, y)µh(dx, dy)
}
.

The expansion (1.9) implies that Ed(h) = O
(
h2

)
.

To obtain estimate (1.9), Talay and Tubaro need several technical assump-
tions:

A. The functions bi and σi
j are of class C∞(Rd) with bounded derivatives of

all order; the function σ is bounded.

B. There exists a strictly positive real number ν such that

d∑
i,j=1

(
ai

j(x)ξ
iξj

)
≥ ν|ξ|2 for all x ∈ Rd and ξ ∈ Rd, (1.11)

where a(x) denotes the matrix σ(x)σ(x)∗.
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C. There exist strictly positive real numbers β and C such that

x · b(x) ≤ −β|x|2 + C for all x ∈ Rd. (1.12)

As we are motivated by models in Random Mechanics, these assumptions are
too stringent. First, the coefficient ∂xH of (1.1) may not be globally Lipschitz:
see, e.g., the nonlinear oscillator with cubic restoring force. Second, as already
mentioned, condition (1.11) is not satisfied by systems where the noise acts on
certain coordinates only. In addition, the ordinary Euler scheme (1.7) maybe
unstable when the coefficients of the differential system (1.1) are unbounded: see
below. Therefore a new error analysis is needed. Our objective is to construct an
implicit Euler scheme which has some good stability properties (see Section 4),
and to prove that the discretization error satisfies (1.9).

Remark 1.1. In the internal report [23] the following laboratory example has
been treated in detail:

Xt = X0 +

t∫
0

Ys ds,

Yt = Y0 −
t∫

0

(Ys +X3
s ) ds+Wt,

(1.13)

where (Wt) is a real valued Brownian motion and the random variables X0 and
Y0 have finite moments of all order. The present paper generalizes the technique
and the result to systems of type (1.1).

We also underline that we only consider discretization schemes with a con-
stant step-size. For other methods, see the review paper by Pagès [15] and the
references therein, particularly the paper by Lamberton and Pagès [8].

Two useful equalities and assumptions. We define the differential opera-
tor L by

Lφ := ∂yH · ∂xφ− (∂xH + F ∂yH) · ∂yφ+
1
2

d∑
i=1

∂yiyiφ. (1.14)

We will often use the following obvious equalities:

L(φψ) = φ Lψ + ψ Lφ+
d∑

i,j=1

∂yφ · ∂yψ, (1.15)
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and, in particular,

L(φ2) = 2φ Lφ+
d∑

i,j=1

|∂yφ|2. (1.16)

In all the paper we make the following assumption:

Hypothesis 1.1. The function F and H are of class C∞(R2d). The functions
F and ∂yH are bounded and all their derivatives are bounded. The function
H and its derivatives have a polynomial growth at infinity.
There exist (strictly) positive numbers δ, M and ν, there exists a function R
on R2d with second derivatives having a polynomial growth at infinity, such
that

H(x, y) +R(x, y) +M ≥ δ (|x|ν + |y|ν), (1.17)

0 < ν ≤ F (x, y) ≤M, (1.18)

ν|x|2 + ν|y|2 ≤ H(x, y) +M, (1.19)

LH(x, y) + LR(x, y) ≤ −δ(H(x, y) +R(x, y)) +M, (1.20)

|∂yH(x, y) + ∂yR(x, y)|2 ≤M (H(x, y) +R(x, y) + 1), (1.21)

0 < ν|ζ|2 ≤
d∑

i,j=1

(∂yiyj
H(x, y)− ∂xiyj

H(x, y))ζiζj , (1.22)

0 < ν|ζ|2 ≤
d∑

i,j=1

∂yiyj
H(x, y)ζiζj , (1.23)

for all x, y, ζ in Rd.

Example 1.1. For the system (1.13) one has H(x, y) = 1
4x

4 +
1
2
y2. One can

choose R(x, y) := α x y with α positive and small enough.

Example 1.2. Consider the case where F ≡ 1 and

H(x, y) := V (x) +
1
2
|y|2.
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Suppose that ∇V is a Lipschitz function and satisfies

−∇V (x) · x ≤ −a|x|2 + b, (1.24)

0 ≤ V (x) ≤ k|x|2 + `, (1.25)

for some strictly positive real numbers a, b, k and `. Let 0 < α small enough
(in particular, suppose 2kα < a). The inequalities (1.24) and (1.25) imply

−∇V (x) · x ≤ (−a+ 2kα)|x|2 − 2αV (x) + 2α`+ b. (1.26)

To ensure (1.20) and (1.21) one can choose M large enough and

R(x, y) :=
1− α

4
|x|2 +

1
2
x · y. (1.27)

If, in addition, V is such that (1.19) holds true, then (1.17) is also satisfied. The
other inequalities obviously hold true.

2. Moments and ergodicity of the Hamiltonian system

In this section, we prove that (Xt, Yt) solution to (1.13) has a unique invari-
ant measure. We have to face two dificulties:

• The drift coefficient of (1.1) does not satisfy a condition of the type (1.12).
As it may even not be globally Lipschitz we introduce a Lyapunov func-
tion. This is a classical argument (see, e.g., Hasminskii [6]), but it seems
somewhat new to apply it to examples such as 1.2.

• The differential operator L is not uniformly strictly elliptic. To overcome
this difficulty, we also use classical arguments (see, e.g., Campillo [3] for
systems with discontinuous coefficients having a linear growth at infinity,
and the introductory paper by Pagès [15]).

Lemma 2.1. (i) The solution of the system (1.1) has moments of all order
which are bounded uniformly in time.

(ii) The process (Xt, Yt) is a Feller process, which means that, for each boun-
ded continuous function g from R2 to R, the map

(x, y) 7→ Ex,y[g(Xt, Yt)]

is continuous.

Proof. To prove (i), we introduce the positive Lyapunov function

Γ(x, y) := H(x, y) +R(x, y) +M, (2.1)
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where R and M are as in (1.20), M being possibly increased to get the positivity
of Γ. We aim to prove the sufficient condition

sup
t≥0

E Γ(Xt, Yt)m <∞ for all m ∈ N. (2.2)

We start by proving (2.2) for m = 1. Let τN be the first exit time of the process
(Xt, Yt) from the ball of radius N . From Itô’s formula and (1.20) we deduce
that there exist λ > 0 and M > 0 such that

E Γ(Xt∧τN
, Yt∧τN

) = E Γ(X0, Y0) + E

t∧τN∫
0

LΓ(Xθ, Yθ) dθ

≤ E Γ(X0, Y0) + E

t∧τN∫
0

{
− δΓ(Xθ, Yθ) +M

}
dθ.

Let N tend to infinity and use Fatou’s lemma. It comes

E Γ(Xt, Yt) ≤ E Γ(X0, Y0) +Mt <∞ for all t > 0,

which, in view of (1.21), implies that

E

t∫
0

∂yΓ(Xs, Ys) dWs = 0 for all t ≥ 0.

Thus
d

dt
E Γ(Xt, Yt) = ELΓ(Xt, Yt) ≤ −δ E Γ(Xt, Yt) +M. (2.3)

Differentiating exp(δt) E Γ(Xt, Yt) we finally get

sup
t≥0

E Γ(Xt, Yt) <∞.

We have thus proved (2.2) for m = 1. We now prove (2.2) by induction on m.
The induction hypothesis, inequality (1.21) and Itô’s formula applied to Γ(Xt)
allow us to write

d

dt

{
E Γ(Xt, Yt)m+1

}
= (m+ 1) E Γ(Xt, Yt)mLΓ(Xt, Yt)

+
m(m+ 1)

2
E

{
Γ(Xt, Yt)m−1

∣∣∂yΓ(Xt, Yt)
∣∣2}

≤ (m+ 1)E
{
Γ(Xt, Yt)m(−δΓ(Xt, Yt) +M)

}
+
m(m+ 1)

2
E

{
Γ(Xt, Yt)m−1

∣∣∂yΓ(Xt, Yt)
∣∣2}. (2.4)
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In view of (1.21), one has

E
{
Γ(Xt, Yt)m−1

∣∣∂yΓ(Xt, Yt)
∣∣2}

≤
(
E Γ(Xt, Yt)m

)(m−1)/m(
E

∣∣∂yΓ(Xt, Yt)
∣∣2m)1/m

≤ Cm E Γ(Xt, Yt)m

for some positive constant Cm. We thus have proved (i).
In view of the Lebesgue Dominated Convergence Theorem, the part (ii) of

Lemma 2.1 results from the continuity of the stochastic flow

(x, y) 7→ (Xx,y
· , Y x,y

· ),

where (Xx,y
t , Y x,y

t ) is the solution to (1.13) with initial condition (X0, Y0) =
(x, y), and this continuity results from the local Lipschitz property of the co-
efficients and the non explosion of the solution (see Protter [16, Chapter V,
Theorem 38]). 2

As the law of (Xx,y
t , Y x,y

t ) has moments of all order which are uniformly
bounded in time, the sequence of measures

µn(•) :=
1
n

n∫
0

P{(Xx,y
s , Y x,y

s ) ∈ •} ds

is tight (see, e.g., Billingsley [2, Chapter 1]). It then is straightforward (see,
e.g., Ethier and Kurtz [4]) to get

Corollary 2.1. The process (Xt, Yt) has at least one invariant probability mea-
sure.

We now examine the question of uniqueness of the invariant measure. To
this end we first prove

Lemma 2.2 (Step 2). For all law of (X0, Y0) and all strictly positive time t,
the law of (Xt, Yt) has a density p(t, x, y) with respect to the Lebesgue measure,
and this density is everywhere strictly positive.

Proof. We use the two following arguments. First, we get the existence of the
density p(t, x, y) by using the Girsanov transformation. Second, we prove the
strict positivity of p(t, x, y) by studying the controllability of a deterministic
system obtained by substituting deterministic controls to the ‘noise’ (Wt).

It is easy to see that we do not restrict the problem by supposing that
(X0, Y0) is a deterministic vector (x0, y0): if not, we use the Markov property of
(Xt, Yy) and integrate the density corresponding to the initial condition (x0, y0)
with respect to the initial law of (X0, Y0).



10 D. Talay

Set

X0
t := x0 +

t∫
0

∂yH(X0
s , Y

0
s ) ds,

Y 0
t := y0 +Wt,

M0
t := −

t∫
0

∂xH(X0
s , Y

0
s ) dWs −

t∫
0

F (X0
s , Y

0
s ) ∂yH(X0

s , Y
0
s ) dWs,

Z0
t := exp

(
M0

t −
1
2
〈M0〉t

)
.

Classical arguments (see, e.g., Ustünel and Zakäı [24, Theorem 2.4.2]) show that
the law of the random variable (Xt, Yt) is absolutely continuous with respect to
the law of the pair (X0

t , Y
0
t ), and that

Ex,y Ψ(Xt, Yt) = Ex,y

[
Ψ(X0

t , Y
0
t ) Z0

t

]
(2.5)

for all bounded measurable real valued function Ψ. In view of (1.23) the gen-
erator of (X0

t , Y
0
t ) is hypo-elliptic and thus the law of (X0

t , Y
0
t ) has a density.

Therefore equality (2.5) shows that the random variable (Xt, Yt) has a density
p(t, x, y) with respect to Lebesgue’s measure.

To get the everywhere positivity of p(t, x, y) we use a result of Michel and
Pardoux [12, Section 3.3.6.1]: it is sufficient to show that for all t in R+ − {0}
and all (x, y) in R2d, the set

A(t, x, y) := {(Xx,y
t (u), Y x,y

t (u)), u ∈ H1(R+;Rd)}

is equal to R2d, where (Xx,y
t (u), Y x,y

t (u)) solves

Xx,y
t (u) = x+

t∫
0

∂yH(Xx,y
s (u), Y x,y

s (u)) ds,

Y x,y
t (u) = y −

t∫
0

∂xH(Xx,y
s (u), Y x,y

s (u)) ds

−
t∫

0

F (Xx,y
s (u), Y x,y

s (u)) ∂yH(Xx,y
s (u), Y x,y

s (u)) ds

+ ut.

(2.6)

Owing to Hypothesis 1.1 it is easy to check that the set A(t, x) is equal to the
whole space (e.g., one can adapt the argument used in the proof of the lemma
3.4 in Mattingly, Stuart and Higham [10]). 2
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Corollary 2.2. The process (Xt, Yt) has a unique invariant probability mea-
sure. This probability measure has an everywhere strictly positive density
p(x, y) with respect to the Lebesgue measure.

Proof. Lemma 2.2 implies that any invariant probability measure µ has an ev-
erywhere strictly positive density p(x, y) with respect to the Lebesgue measure
since µ is left invariant by the transition operator of (Xt, Yt). Thus two in-
variant probability measures are equivalent. The ergodic theorem (see, e.g.,
Skorokhod [19, Chapter 1,Theorem 7]) implies that they are identical since one
has

µ(A) = lim
t→∞

1
t

t∫
0

Ex,y IA(Xs, Ys) ds, (2.7)

for all Borel subset A of R2d and µ-almost (x, y). 2

We are going to prove that the invariant measure µ has finite moments of
all order. To this end we prove the following statement which will be useful for
other purposes in the sequel.

Lemma 2.3. The process (Xt, Yt) has finite moments of all order. In addition,
for all integer m, there exist integers Km, km and a strictly positive real number
λm such that

Ex0,y0

{
|Xt|m + |Yt|m

}
≤ Km

(
1 + |x0|km exp(−λmt) + |y0|km exp(−λmt)

)
(2.8)

for all t > 0.

Proof. Let the function Γ be defined as in (2.1). Remember that Γ(Xt, Yt) has
finite moments of all order. We again use an induction to prove the following
inequality which implies (2.8):

∀m ∈ N, ∃Qm(x, y), ∃Cm > 0, ∃λm > 0,
Ex,y Γ(Xt, Yt)m ≤ Cm +Qm(x, y) exp(−λmt), (2.9)

where the Qm(x, y)’s are polynomial functions. For m = 1, Inequality (2.9)
readily follows from (2.3). Now suppose that (2.9) holds for all integer up to m.
From (2.4) it follows that

d

dt
E Γ(Xt, Yt)m+1 ≤ −δ(m+ 1)E Γ(Xt, Yt)m+1 + Cm(1 + E Γ(Xt, Yt)m)

for some integer Cm depending on m only. The desired result follows. 2

Lemma 2.4. The probability measure µ has finite moments of all order.
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Proof. Let K be a compact subset K of R2d. We deduce from (2.7) and
Lemma 2.3 that∫

K

(|x|m + |y|m)µ(dx, dy) = lim
t→+∞

1
t

t∫
0

E
[
(|Xs|m + |Ys|m)IK(Xs, Ys)

]
ds.

In view of Lemma 2.3, we then have∫
K

(|x|m + |y|m)µ(dx, dy) ≤ C,

for some real number C independent of the set K. The conclusion is obtained
by letting K increase to R2d and applying Fatou’s lemma. 2

3. Exponential decay in time of the solution of a degenerate parabolic
equation with non globally Lipschitz coefficients

We set

u(t, x, y) := Ex,y f(Xt, Yt)−
∫

R2d

f dµ. (3.1)

The objective of this section is to prove the following result which is inter-
esting in itself.

Theorem 3.1. Suppose that f is a smooth function, and that all its deriva-
tives have a polynomial growth at infinity.
Let Dmu(t) denote the vector of the derivatives of order m of the mapping

(x, y) 7→ u(t, x, y).

For any integer m there exist an integer s and strictly positive real numbers
C and γ such that

|Dmu(t)| ≤ C(1 + |x|s + |y|s) exp(−γt) (3.2)

for all t > 0 and (x, y) ∈ R2d.

The proof of Theorem 3.1 is long. One needs to carefully adapt the method
of proof of Talay [21], where the above hypotheses A–C (see the Introduction)
where used in force to get a similar statement.

We first need to prove that u(t, x, y) is a smooth function and that its growth
at infinity w.r.t. to the spatial variables is polynomial. This step may be
difficult for a general Hamiltonian system because the polynomial growth of the
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coefficients combined with the degeneracy of L does not allow the use of classical
results on parabolic partial differential equations. The Girsanov transformation
that we use here is one way to get rid of the difficulty.

Lemma 3.1. Suppose that f is a function of class C∞(R2d), and that all its
derivatives have a polynomial growth at infinity. Then u(t, x, y) is infinitely
differentiable with respect to (x, y). There exist strictly positive real numbers
C0 and γ0 and an integer s0 such that

|u(t, x, y)| ≤ C0(1 + |x|s0 exp(−γ0t) + |y|s0 exp(−γ0t)). (3.3)

In addition, for all integer m, there exists an integer sm such that

∀T > 0, ∃Cm(T ), |Dmu(t, x, y)| ≤ Cm(T )(1 + |x|sm + |y|sm) (3.4)

for all (x, y) ∈ R2d and t ∈ [0, T ].

Proof. Inequality (3.3) follows from Lemma 2.3 and the assumptions made on
f . In addition, one can permute expectation and differentiations with respect
to (x, y) in the right hand side of equality (2.5) with Ψ = f . Inequality (3.4)
follows readily. 2

The proof of Theorem 3.1 then proceeds as follows.

1. We first show that, for any ball B, there exist strictly positive real numbers
C and λ such that∫

B

|u(t)|2dµ ≤ C exp(−γt) for all t > 0. (3.5)

2. We then show that the preceding inequality also holds for any spatial
derivative of u(t) (possibly with different real numbers C and γ). As
µ has a smooth and strictly positive density with respect to Lebesgue’s
measure, we deduce from the Sobolev imbedding theorem that, for any
ball B in R2d, there exist strictly positive real numbers C and γ such that

∀(x, y) ∈ B, |u(t, x, y)| ≤ C exp(−γt) for all t > 0.

3. Then we show that there exists strictly positive real numbers C and γ
such that ∫

|u(t)|2πs(x, y) dx dy ≤ C exp(−γt) for all t > 0,

where the function πs is defined as

πs(x, y) =
1

Γ(x, y)s

for some integer s.
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4. Finally, we prove that the prededing inequality also holds for any spatial
derivative of u(t) (possibly with different real numbers s, C and γ), and
then we conclude by applying the Sobolev imbedding theorem again.

Remark 3.1. In all the computations thereafter, time integrations over finite in-
tervals of u(t) and of its spatial derivatives are allowed owing to inequality (3.4).

3.1. Estimates on u(t) and its first derivatives in L2(µ)

The aim of this subsection is to prove the following inequalities: there exists
a positive real number γ > 0 such that∫

|u(t)|2dµ ≤ C exp(−γt) for all t > 0, (3.6)∫ ∣∣∂xu(t)
∣∣2dµ ≤ C exp(−γt) for all t > 0, (3.7)∫ ∣∣∂yu(t)
∣∣2dµ ≤ C exp(−γt) for all t > 0. (3.8)

The degeneracy of the operator L (observe that, in its definition (1.14),
there is no second derivative with respect to x) induces a deep adaptation of
the method of proof introduced in Talay [21] for the case of uniform strictly
elliptic operators. The new tool is the Lemma 3.4 below: the specific structure
of the drift of the ergodic Hamiltonian system under consideration is used to
compensate the degeneracy of the generator L.

In view of Lemma 3.1, Itô’s formula and standard calculation show that
u(t, x, y) satisfies

∂u

∂t
(t, x, y) = Lu(t, x, y) for all t > 0 and (x, y) ∈ R2d,

u(0, x, y) = f(x, y)−
∫

R2d

f dµ.
(3.9)

Lemma 3.2. There exist strictly positive real numbers γ0 and C such that∫
|u(t)|2dµ ≤ C exp(−γ0t) for all t ≥ 0. (3.10)

In addition, for all positive polynomial function P , there exist strictly positive
real numbers γP

0 and C such that∫
P |u(t)|2 dµ ≤ C exp(−γP

0 t) for all t ≥ 0. (3.11)
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Proof. We first observe that, in view of Lemma 3.1, inequality (3.10) and
Cauchy – Schwarz inequality imply inequality (3.11). We thus have now to
prove (3.10) only.

From equality (1.16) one has

d

dt
|u(t)|2 − L(|u(t)|2) = −|∂yu(t)|2, (3.12)

so that, in view of (1.3), one has

d

dt

∫
|u(t)|2dµ ≤ 0.

Therefore it is sufficient to prove (3.10) for all t = nρ for some strictly positive
real number ρ.

We now proceed as in Section 6.1.1 of Talay [21]. Consider the ergodic
Markov chain (Xnρ, Ynρ). In view of (1.17) and (1.20), for ρ small enough we
easily obtain that

∃α > 0, ∃R > 0, (3.13)
sup

|(x,y)|≥R

E
[
(1 + αρ)Γ(X(n+1)ρ, Y(n+1)ρ)− Γ(x, y)

∣∣ (Xnρ, Ynρ) = (x, y)
]

< 0.

Therefore (see, e.g., Nummelin [14, Chap.5,6]) the chain is geometrically recur-
rent, so that (see, e.g., Meyn and Tweedie [11]) there exist strictly positive real
numbers C and γ such that, for all integer n,∫ ∣∣∣Ex,y f(Xnρ, Ynρ)−

∫
fdµ

∣∣∣µ(dx, dy) ≤ C exp(−γnρ).

In view of inequality (3.3), one therefore has∫
|u(nρ)|2dµ ≤C0C exp(−γnρ)

+ C0

∫ {
|x|k0 + |y|k0

}
exp(−γ0nρ)u(nρ) dµ,

from which, using (3.3) again and Lemma 2.4, we deduce

∀n ∈ N,
∫
|u(nρ)|2dµ ≤ C exp(−γnρ) (3.14)

for some new strictly positive real numbers C and γ. That ends the proof of
inequality (3.10). 2

We are now going to prove that inequalities similar to (3.10) hold for the
first order spatial derivatives of u(t, x, y). To this end, we need two preliminary
lemmas.
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Lemma 3.3. There exist strictly positive real numbers C and γ1 < γ0 such
that

exp(γ1T )
∫ ∣∣u(T )

∣∣2dµ+

T∫
0

exp(γ1t)
∫ ∣∣∂yu(t)

∣∣2 dµ dt ≤ C (3.15)

for all T > 0. Let P (x, y) be a positive polynomial function. There exist strictly
positive real numbers CP and γP

1 such that

exp(γP
1 T )

∫
P u(T )2dµ+

T∫
0

exp(γP
1 t)

∫
P

∣∣∂yu(t)
∣∣2dµ dt ≤ CP (3.16)

for all T > 0.

Proof. We fix γ1 < γ0, where γ0 is as in Lemma 3.2. Using (1.16) we get

d

dt

[
exp(γ1t) |u(t)|2

]
= γ1 exp(γ1t) |u(t)|2 + exp(γ1t)L

(
|u(t)|2

)
− exp(γ1t) |∂yu(t)|2,

from which, integrating with respect to t,

exp(γ1T )u(T )2 − |u(0)|2 = γ1

T∫
0

exp(γ1t)|u(t)|2dt+

T∫
0

exp(γ1t)L
(
|u(t)|2

)
dt

−
T∫

0

exp(γ1t)|∂yu(t)|2 dt.

We now integrate with respect to µ. We use inequality (3.10) and the fact that
µ solves equation (1.3). Choose γ1 ≤ γ0. It comes:

exp(γ1T )
∫
u(T )2dµ+

T∫
0

exp(γ1t)
∫ ∣∣∂yu(t)

∣∣2dµ dt
≤

∫
|u(0)|2dµ+ γ1

T∫
0

exp(γ1t)
∫
|u(t)|2dµ dt ≤ C.

Similarly, for γP
1 < min(γ0, γ1), successively using equality (1.15) with φ =

|u(t)|2 and ψ = P and equality (1.3), one gets
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exp(γP
1 T )

∫
P u(T )2dµ+

T∫
0

exp(γP
1 t)

∫
P

∣∣∂yu(t)
∣∣2dµ dt

=
∫
P |u(0)|2dµ+ γP

1

T∫
0

exp(γP
1 t)

∫
P |u(t)|2dµ dt

−
T∫

0

exp(γP
1 t)

∫
LP |u(t)|2dµ dt

− 2

T∫
0

exp(γP
1 t)

∫
u(t) ∂yu(t) ∂yP dµdt

=:
∫
P |u(0)|2dµ+A1 +A2 +A3.

We use inequality (3.11) to bound A1 and A2 from above uniformly in T . In
addition, we observe that

|A3| ≤
T∫

0

exp(γP
1 t)

{∣∣∂yP
∣∣2|u(t)|2 +

∣∣∂yu(t)
∣∣2}dµ dt,

and we use (3.11) and (3.15), from which (3.16) follows. 2

Lemma 3.4. There exist strictly positive real numbers C and γ2 such that

T∫
0

exp(γ2t)
∫
|∂yu(t)− ∂xu(t)|2 dµ dt

+

T∫
0

exp(γ2t)
∫ ∣∣∂y(∂yiu(t)− ∂xiu(t))

∣∣2 dµ dt ≤ C (3.17)

for all T > 0.

Proof. In the calculation which follows, we take advantage of the inequality
(3.16) and of the assumption (1.22) to substitute (∂yi

u(t)− ∂xi
u(t)) (∂xj

u(t)−
∂yj

u(t)) to (∂yi
u(t)− ∂xi

u(t)) ∂xj
u(t).
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One has1

d

dt
|∂yi

u(t)− ∂xi
u(t)|2

= 2(∂yiu(t)− ∂xiu(t))L(∂yiu(t)− ∂xiu(t))

+ 2(∂yi
u(t)− ∂xi

u(t))
(
∂yiyj

H ∂xj
u(t)− ∂yi

(∂xj
H + F ∂yj

H) ∂yj
u(t)

)
− 2(∂yiu(t)− ∂xiu(t))

(
∂xiyjH ∂xju(t)− ∂xi(∂xjH + F ∂yjH) ∂yju(t)

)
= L

(∣∣∂yi
u(t)− ∂xi

u(t)
∣∣2)− ∣∣∂y(∂yi

u(t)− ∂xi
u(t))

∣∣2
− 2(∂yi

u(t)− ∂xi
u(t)) (∂yj

u(t)− ∂xj
u(t)) ∂yiyj

H

+ 2(∂yiu(t)− ∂xiu(t)) ∂yju(t) ∂yiyjH

− 2(∂yi
u(t)− ∂xi

u(t)) ∂yi
(∂xj

H + F ∂yj
H) ∂yj

u(t)

+ 2(∂yi
u(t)− ∂xi

u(t)) (∂yj
u(t)− ∂xj

u(t)) ∂xiyj
H

− 2(∂yiu(t)− ∂xiu(t)) ∂yju(t) ∂xiyjH

+ 2(∂yi
u(t)− ∂xi

u(t)) ∂xi
(∂xj

H + F ∂yj
H) ∂yj

u(t).

All the terms of the type

|(∂yi
u(t)− ∂xi

u(t)) ∂yj
u(t) H|

(where H is a function depending on the derivatives of H only) are bound from
above by

ε
∣∣∂yu(t)− ∂xu(t)

∣∣2 +
1
ε
P |∂yu(t)|2,

where P is an appropriate positive polynomial function and ε is a positive real
number. One then uses the assumption (1.22). For some positive constant ρ
independent from ε and new polynomial function P one has

exp(γ2T )
∫
|∂yu(T )− ∂xu(T )|2 dµ+

T∫
0

exp(γ2t)
∫ ∣∣∂y(∂yi

u(t)− ∂xi
u(t))

∣∣2 dµ dt
≤

∫
|∂yu(0)− ∂xu(0)|2dµ+

1
ε

T∫
0

exp(γ2t)
∫
P |∂yu(t)|2 dµ dt

+ (γ2 + ρ ε− 2ν)

T∫
0

exp(γ2t)
∫
|∂yu(t)− ∂xu(t)|2 dµ dt.

1In the right hand side of the next equalities we do not explicitly write the summation over
the index j.
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One then chooses ε = ν/ρ and γ2 < min(ν, γ1). The conclusion follows from
Lemma 3.3. 2

Lemma 3.5. There exist strictly positive real numbers C and γ3 < γ2 such
that ∫ ∣∣∂yu(T )

∣∣2dµ ≤ C exp(−γ3T ) for all T > 0. (3.18)

Proof. One has

d

dt

(∣∣∂yiu(t)
∣∣2) = L

(∣∣∂yiu(t)
∣∣2)− |∂y(∂yiu(t))|2 + 2

d∑
j=1

∂yiyjH ∂xju(t) ∂yiu(t)

− 2
d∑

j=1

∂yi
(∂xj

H + F ∂yj
H) ∂yi

u(t) ∂yj
u(t).

Notice that

|∂xj
u(t) ∂yi

u(t)| ≤ |∂xj
u(t)− ∂yj

u(t)|2 + |∂yu(t)|2.

Differentiate exp(γ3t)
∣∣∂yi

u(t)
∣∣2, and then integrate with respect to µ and t

successively. Choose γ3 small enough and then use (3.17). The conclusion
follows. 2

Lemma 3.6. There exist strictly positive real numbers C and γ4 < γ3 such
that ∫ ∣∣∂xu(T )

∣∣2dµ ≤ C exp(−γ4T ) for all T > 0. (3.19)

Proof. Similar computations as before lead to

d

dt
|∂xiu(t)|2 = L

(
|∂xiu(t)|2

)
− |∂y(∂xiu(t))|2 + 2

d∑
j=1

∂xiyjH ∂xju(t) ∂xiu(t)

− 2
d∑

j=1

∂xi
(∂xj

H + F ∂yj
H) ∂yj

u(t) ∂xi
u(t).

Use:∣∣∂xiu(t) ∂yju(t) ∂xi(∂xjH + F ∂yjH)
∣∣ ≤ C

∣∣∂xiu(t)− ∂yiu(t)
∣∣2 + P

∣∣∂yu(t)
∣∣2

for some polynomial function P and real number C, and

|∂xi
u(t) ∂xj

u(t)| ≤ C|∂xu(t)|2 ≤ C
∣∣∂xu(t)− ∂yu(t)

∣∣2 + C|∂yu(t)|2.
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It comes:

exp(γ5T )
∫
|∂xi

u(T )|2 dµ

≤
∫
|∂xiu(0)|2 dµ+ Cγ5

T∫
0

exp(γ5t)
∫
|∂xu(t)− ∂yu(t)|2 dµ dt

+

T∫
0

∫
P |∂yu(t)|2 dµ dt.

We now choose γ5 small enough and use (3.16), (3.17). The conclusion follows.
2

3.2. Estimates on all order derivatives of u(t) in L2(µ)

Our objective now is to extend Lemma 3.2, 3.5 and 3.6: we want to show
that for all integer m there exist strictly positive real numbers Cm and γm such
that ∫ ∣∣Dmu(T )

∣∣2dµ ≤ Cm exp(−γmT ) for all T > 0, (3.20)

where Dmu(T ) denotes the vector of all the spatial derivatives of u(T ) of order
m. We proceed by induction on the order m. We suppose that inequality (3.20)
holds up to m and we want to obtain it for m+1. To this end, we have to prove
several estimates (Lemmas 3.7–3.10 below) whose proofs are only sketched since
they closely follow those of Lemmas 3.3–3.6.

Lemma 3.7. Suppose that the induction hypothesis (3.20) holds. Let

∂yD
mu(t)

denote the vector whose coordinates are the derivatives in all the y directions
of all the coordinates of Dm. There exist strictly positive real numbers C and
γ such that

exp(γT )
∫
|Dmu(T )|2dµ+

T∫
0

exp(γt)
∫ ∣∣∂yD

mu(t)
∣∣2dµ dt ≤ C (3.21)

for all T > 0. Let P (x, y) be a positive polynomial function. There exist strictly
positive real numbers CP and γP such that

exp(γPT )
∫
P |Dmu(T )|2dµ+

T∫
0

exp(γP t)
∫
P

∣∣∂yD
mu(t)

∣∣2dµ dt ≤ CP (3.22)

for all T > 0.
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Proof. In view of equality (1.16), we have

d

dt

[
exp(γt)

∣∣Dmu(t)
∣∣2]

= γ exp(γt)
∣∣Dmu(t)

∣∣2 + exp(γt)L
(∣∣Dmu(t)

∣∣2)− exp(γt)
∣∣∂yD

mu(t)
∣∣2.

We then proceed as in the proof of Lemma 3.3: we first integrate with respect to
t, and then with respect to µ. Finally, we use the induction hypothesis (3.20).

2

The next lemma is analogous to Lemma 3.4.

Lemma 3.8. Suppose that the induction hypothesis (3.20) holds. Let Dm
x u(t)

denote an arbitrary partial derivative of u(t) of the type ∂xi1
. . . ∂xim

. There
exist strictly positive real numbers λ, γ and C depending on m such that

T∫
0

exp(γt)
∫ ∣∣λ ∂y(Dm

x u(t))− ∂x(Dm
x u(t))

∣∣2 dµ dt ≤ C for all T > 0. (3.23)

Proof. Denote by Dm
x/xk

any differential operator of order m− 1 such that Dm
x

can be written under the form ∂xk
Dm

x/xk
.

The guideline of the calculation below is as follows: the terms which in-
clude derivatives of order m + 2 and m + 3 of u(t) are gathered to provide
L(λ ∂yi

(Dm
x u(t)) − ∂xi

(Dm
x u(t))); the terms which include derivatives of order

m+1 in x directions only are explicited and gathered in order to take advantage
of the assumptions (1.22) and (1.23); all the other therms include, either deriva-
tives of order m+ 1 with one derivative in a y direction, or derivatives of order
at most m: we respectively use Lemma 3.7 and the induction hypothesis (3.20).
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For all λ we have2

d

dt

∣∣λ ∂yi
(Dm

x u(t))− ∂xi
(Dm

x u(t))
∣∣2

= 2
(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
×

(
λ ∂yi(D

m
x Lu(t))− ∂xi(D

m
x Lu(t))

)
= 2

(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

){
L(λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))) + λ ∂yiyj

H ∂xj
(Dm

x u(t))

− ∂xiyjH ∂xj (D
m
x u(t))− ∂xkyjH ∂xi(D

m
x/xk

(∂xju(t)))
}

+ 2
(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
× terms including derivatives of order at most m of u(t)

+ 2
(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
× terms including derivatives of order m+ 1 of u(t)

with one derivative in a y direction. (3.24)

Notice that(
λ ∂yi(D

m
x u(t))− ∂xi(D

m
x u(t))

)
×

(
λ ∂yiyj

H ∂xj
(Dm

x u(t))− ∂xiyj
H ∂xj

(Dm
x u(t))

)
= − λ

(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
×∂yiyj

H (λ ∂yj
(Dm

x u(t))− ∂xj
(Dm

x u(t)))

+ λ2
(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
∂yiyj

H ∂yj
(Dm

x u(t))

+ λ
(
λ ∂yi(D

m
x u(t))− ∂xi(D

m
x u(t))

)
×∂xiyj

H
(
λ ∂yj

(Dm
x u(t))− ∂xj

(Dm
x u(t))

)
− λ

(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
∂xiyj

H ∂yj
(Dm

x u(t)).

For each Dm
x sum over i, and use (1.22). In addition, proceed as in the proof of

Lemma 3.4 to treat the second and last terms of the right hand side. It comes:(
λ ∂yi

(Dm
x u(t))− ∂xi

(Dm
x u(t))

)
×

(
λ ∂yiyjH ∂xj (D

m
x u(t))− ∂xiyjH ∂xj (D

m
x u(t))

)
≤ (ε− (λ− 1) ν)

∣∣λ ∂y(Dm
x u(t))− ∂x(Dm

x u(t))
∣∣2 +

1
ε
P |∂y(Dm

x u(t))|2

for all ε small enough and some positive polynomial function P . We now choose
λ positive and large enough to take advantage of (1.23).

2In the left and right hand sides of the next equalities we do not explicitly write the
summation over the indices i, j and k, over all the differential operators Dm

x of the type
∂xi1

. . . ∂xim
, and over the families of operators Dm

x/xk
.
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We now have to consider the sum of all the terms of the type(
λ ∂yi(D

m
x u(t))− ∂xi(D

m
x u(t))

)
∂xkyjH ∂xi(D

m
x/xk

(∂xju(t))).

We use∣∣λ ∂yi(D
m
x u(t)) ∂xkyjH ∂xi(D

m
x/xk

(∂xju(t)))
∣∣

≤ ε
∣∣∂y(Dm

x u(t))− ∂x(Dm
x u(t))

∣∣2 + C
∣∣∂y(Dm

x u(t))
∣∣2,

so that it remains to consider the sums of terms of the type

∂xi(D
m
x u(t)) ∂xkyjH ∂xi(D

m
x/xk

(∂xju(t))).

One can show that this sum is equal to the sum over i and all the differential
operators Dm−1

x of the type ∂xi1
. . . ∂xim−1

of quantities such as

d∑
j,k=1

∂xkyjH ∂xk
(∂xi(D

m−1
x u(t))) ∂xj (∂xi(D

m−1
x u(t))).

One then uses (1.22) and proceed as above.
We then proceed as at the end of the proof of Lemma 3.4, applying the

induction hypothesis (3.20) and Lemma 3.7. 2

We now are in a position to prove that the induction hypothesis is also true
for the derivatives of order (m + 1). We first prove a statement analogous to
Lemma 3.4.

Lemma 3.9. Suppose that the induction hypothesis (3.20) holds. Let ∂mu(t)
denote an arbitrary partial derivative of u(t) ot order m. There exist strictly
positive real numbers C and γ such that∫ ∣∣∂y∂

mu(T )
∣∣2dµ ≤ C exp(−γT ) for all T > 0. (3.25)

Proof. We have

d

dt

∣∣∂yi(∂
mu(t))

∣∣2
= 2

(
∂yi

(∂mu(t))
) (
∂yi

(∂mLu(t))
)

= 2∂yi
(∂mu(t))

{
L(∂yi

(∂mu(t))) + ∂yiyj
H ∂xj

(∂mu(t))
}

+ 2∂yi
(∂mu(t))

× terms including derivatives of order at most m of u(t)
+ 2∂yi

(∂mu(t))
× terms including derivatives of order m+ 1 of u(t)

with one derivative in a y direction.
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We then proceed as in the proof of Lemma 3.5, applying the induction hypoth-
esis (3.20), Lemma 3.7 and distinguishing two cases: if ∂m contains at least
one derivation in a y direction, we use the conclusion of the Lemma 3.7; if ∂m

contains derivatives in x directions only, we bound from above∣∣∂yi
(∂mu(t)) ∂yiyj

H ∂xj
(∂mu(t))

∣∣
by

C
∣∣∂xj (∂

mu(t))− λ ∂yj (∂
mu(t))

∣∣2 + C
∣∣∂yj (∂

mu(t))
∣∣2,

and then use (3.23). 2

Lemma 3.10. Suppose that the induction hypothesis (3.20) holds. Let ∂mu(t)
denote an arbitrary partial derivative of u(t) of order m. There exist strictly
positive real numbers C and γ such that∫ ∣∣∂x∂

mu(T )
∣∣2dµ ≤ C exp(−γT ) for all T > 0. (3.26)

Proof. If ∂m contains at least one derivative in a y direction one can apply
Lemma 3.9. If not, consider (3.24) with λ = 0. We thus explicitly get

d

dt

∣∣∂x∂
mu(t)

∣∣2.
The calculation then follows the same guidelines as in the proofs of the Lem-
mas 3.6 and 3.8. We omit the details. 2

Remark 3.2. From the inequality (3.20) one could prove that, for all integer m,
there exist strictly positive real numbers C and γ such that

|Dmu(t, x, y)| ≤ C

p(x, y)
exp(−γt)

for all t > 0 and (x, y) ∈ R2d. Such an estimate is too rough to analyze the
convergence rate of the implicit Euler scheme: in Section 5 we will need that
|Dmu(t)| is bounded from above by a function of the type exp(−γt) g(x, y) where
g is such that E g(Xh

(p+1)h, Y
h
(p+1)h) is finite. The objective of Subsections 3.3

and 3.4 is to prove that g can actually be chosen as a polynomial function.

3.3. Pointwise estimates on u(t) in a ball

Lemma 3.11. For any ball B in R2d, there exist strictly positive real numbers
CB and γB such that

|u(t, x, y)| ≤ CB exp(−γBt) (3.27)

for all t > 0 and (x, y) ∈ B.
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Proof. Since the density p(x, y) of µ is everywhere strictly positive (see Lem-
ma 2.2) and continous (indeed, in view of (2.5) one can easily prove that the
density transition p(t, x, y, α, β) of (Xt, Yt) issued from (x, y) is a continuous
function of (x, y, α, β), from which one can conclude that p(x, y) is continuous
since p(x, y) is left invariant by the integration with respect to the transition
density), there exists a positive real number C such that, for all integer m, for
all time t, ∫

B

|Dmu(t)|2dx dy ≤ C

∫
B

|Dmu(t)|2 p(x, y) dx dy

≤ C

∫
R2d

|Dmu(t)|2 dµ.
(3.28)

We apply estimate (3.20). It comes:∫
B

|Dmu(t)|2dx dy ≤ C exp(−γmt),

for some new positive real number C. We conclude by choosing m large enough
and using the Sobolev imbedding theorem. 2

3.4. Estimates on u(t) and its derivatives in L2(πs)

Let the weight function πs be defined as

πs(x, y) =
1

Γ(x, y)s
, (3.29)

for some integer s that we choose as follows. Easy computations lead to3

L∗(πs) = −s LΓ
Γ(x, y)s+1

+ ∂yi
(F ∂yi

H) πs +
s(s+ 1)

2
(∂yΓ)2

Γs+2
− s

∂yiyj Γ
Γs+1

.

Therefore, in view of (1.20) one has

L∗(πs) ≤ −δ
2
s πs + φs πs (3.30)

for some integer s chosen large enough and for some function φs which tends to
0 at infinity. For each integer n we define an integer sn by possibly increasing
the value of s in order that∫

R2d

|Dku(t)πsn |2dx dy <∞ for all 0 ≤ k ≤ n, (3.31)

which is possible in view of Lemmas 3.1 and 2.3.
3Again we do not explicitly write the summation over i and j.
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Remark 3.3. The following observation is intensively used in the calculations of
the rest of this subsection. For all multi-index J and integer s, there exists a
smooth function ψJ,s(x, y) such that

∂Jπs(x, y) = ψJ,s(x, y)πs(x, y) (3.32)

with
ψJ,s(x, y) −−−−−−−→

|(x,y)|→∞
0. (3.33)

Thus, inequality (3.31) implies that it is possible to choose a new integer still
denoted by sn such that one also has∫

R2d

|Dk(u(t)πs)|2 dx dy <∞ (3.34)

for all t > 0, s ≥ sn and k ≤ n.

We now prove a statement which relies on and improves Lemma 3.2.

Lemma 3.12. There exist strictly positive real numbers s, C and λ such that∫
|u(t)|2πs(x, y) dx dy ≤ C exp(−λt) for all t > 0. (3.35)

Proof. Let s be an integer larger than s1. We thus have that D(u(t)πs) belongs
to L2(R2d). Moreover, observe that

L∗(u(t)πs) = L∗(πs) u(t) +
1
2
∂yiyiu(t) πs + ∂yiu(t) ∂yiπs

− ∂yiH ∂xiu(t) πs + ∂xiyiH u(t) πs + ∂xiH ∂yiu(t) πs

+ ∂yi(F∂yiH) u(t) πs + F ∂yiH ∂yiu(t) πs.

Therefore, in view of (3.30) and (3.32), as the derivatives of F and ∂yH are
bounded, after having integrated by parts

∫
∂yi

H ∂xi
u(t) πs dx dy one has∫

u(t) Lu(t) πs(x, y) dx dy

≤ −
∫
|u(t)|2πs(x, y) dx dy +

∫
|u(t)|2 |φs(x, y)| πs(x, y) dx dy

for s large enough and some function φs(x, y) which tends to 0 at infinity in
view of (3.33). We now choose a ball B in R2d large enough to have

|φs(x, y)| ≤
1
2

for all (x, y) ∈ R2d −B.
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Then∫
u(t)Lu(t)πs(x, y) dx dy

≤ −1
2

∫
|u(t)|2πs(x, y) dx dy +

∫
B

|u(t)|2 |φs(x, y)| πs(x, y) dx dy.

From Lemma 3.11 we then deduce

d

dt

∫
|u(t)|2πs(x, y) dx dy ≤ −1

2

∫
|u(t)|2πs(x, y) dx dy + C exp(−γBt),

from which we readily get (3.35) by differentiating in time

exp(λt)
∫
|u(t)|2πs(x, y) dx dy

and then choosing λ small enough. 2

Lemma 3.13. For all integer m, there exist strictly positive real numbers Cm

and λm such that∫
|Dmu(t)|2πs(x, y) dx dy ≤ Cm exp(−λmt) for all t > 0. (3.36)

Proof. The lemma is proven by induction on m and by combining arguments
used in the proofs of the lemmas in Subsection 3.2 and of Lemma 3.12. We omit
the details. 2

3.5. Proof of Lemma 3.1

We are now in a position to prove the pointwise estimate (3.2) on u(t) and
its derivatives. They are obtained owing to the Sobolev imbedding theorem and
the preceding estimates in L2(πs) which imply: there exist strictly positive real
numbers Cm and λm such that∫ ∣∣Dm

(
u(t)πsm

)∣∣2dx dy ≤ Cm exp(−λmt) for all t > 0. (3.37)

4. Moments and ergodicity of the implicit Euler scheme

The explicit Euler scheme (1.7) is unsatisfying when applied to systems with
non globally Lipschitz coefficients. For example, consider the one dimensional
equation

ξt = −
t∫

0

ξ3sds+Wt. (4.1)
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In Talay [23] and Mattingly, Stuart and Higham [10] one proves that

E |ξt|2 ≤
3
2

for all t ≥ 0, (4.2)

whereas any moment of the ordinary Euler scheme

ξ̃h
(p+1)h = ξ̃h

ph − (ξ̃h
ph)3h+ ∆h

p+1W (4.3)

tends to infinity with p for all step-size h large enough, and any moment of the
implicit Euler scheme

ξh
(p+1)h = ξh

ph − (ξh
(p+1)h)3h+ ∆h

p+1W (4.4)

is uniformly bounded with respect to p for all step-size h.
The preceding consideration suggests to use the implicit Euler scheme to

discretize systems of the type (1.1) when the coefficients are not globally Lips-
chitz:

Xh
(p+1)h = Xh

ph + ∂yH(X(p+1)h, Y(p+1)h) h,

Y h
(p+1)h = Y h

ph − ∂xH(X(p+1)h, Y(p+1)h) h

− F (X(p+1)h, Y(p+1)h) ∂yH(X(p+1)h, Y(p+1)h) h+ ∆h
p+1W.

(4.5)
Our error analysis of the implicit Euler scheme requires the set of hypothe-

ses (1.1) and the supplementary following assumptions:

Hypothesis 4.1. The Hessian matrix of Γ is positive semidefinite.
In addition, for all h small enough, the determinant of the matrix(

IdRd h ∂yyH(x, y)
−h ∂xxH(x, y) IdRd

)
(4.6)

is bounded from below by a strictly positive constant uniform with respect to
h.

Remark 4.1. In view of Hypothesis 4.1 it is easy to check by induction that, for
all step-size h, (Xh

ph, Y
h
ph) is well defined for all p.

Example 4.1. In the case of Example 1.2, the Hypothesis 4.1 is satisfied when
the second derivatives of V are bounded functions.

Lemma 4.1. Suppose that the sets of Hypotheses 1.1 and 4.1 hold. The im-
plicit Euler scheme (4.5) with all step-size h small enough satisfies:

(i) For all integer m there exist integers Km and km such that

Ex,y

{
|Xh

ph|m + |Y h
ph|m

}
≤ Km(1 + |x|km + |y|km) for all p ∈ N. (4.7)
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(ii) This implicit Euler scheme has a unique invariant probability measure µh.
In addition, for all integer m there exists a positive real number Cm such
that ∫

R2d

(|x|m + |y|m)µh(dx, dy) < Cm. (4.8)

Proof. Notice that we can derive estimate (4.8) from (4.7) by using the Markov
property of the chain (Xh

ph, Y
h
ph) and the invariance of µh.

We start by proving estimate (4.7). One obviously has

Xh
ph = Xh

(p+1)h − ∂yH(X(p+1)h, Y(p+1)h) h,

Y h
ph + ∆h

p+1W = Y h
(p+1)h + ∂xH(X(p+1)h, Y(p+1)h) h

+ F (X(p+1)h, Y(p+1)h) ∂yH(X(p+1)h, Y(p+1)h) h.

Apply the function Γ to the left and right hand sides of the preceding equalities.
A Taylor expansion up to the second order and our hypothesis on the Hessian
matrix of Γ imply that

(1 + λh) Γ(Xh
(p+1)h, Y

h
(p+1)h) ≤ Γ(Xh

ph, Y
h
ph + ∆h

p+1W ) + C h

for some deterministic positive real numbers C and λ uniform with respect to
h and p. The estimate (4.7) readily follows.

We now prove the existence and uniqueness of the invaraint measure µh.
The inequality (4.7) implies the existence of an invariant probability measure.
To prove the uniqueness, we will use standard techniques for Markov chains
(see, e.g., Meyn and Tweedie [11], Shardlow and Stuart [18], Mattingly, Stuart
and Higham [10]).

Our objective is to apply the following result stated in Meyn and Tweedie [11,
Theorem 13.0.1]: we get the uniqueness of the invariant probability µh if we can
prove that the chain (Xh

ph, Y
h
ph) is positive Harris recurrent, which means that

(a) The chain is ψ-irreducible for some measure ψ, in the sense that there
exists a measure ψ such that, for all Borel subset A of R2d,

ψ(A) > 0

=⇒ P
{

min{p ≥ 1 : (Xh
ph, Y

h
ph) ∈ A} <∞

∣∣ (Xh
0 , Y

h
0 ) = (x, y)

}
> 0

for all (x, y) ∈ R2d.

(b) Every Borel set A of strictly positive ψ-measure is Harris recurrent, i.e,

P
{
(Xh

ph, Y
h
ph) ∈ A for an infinite number of p

∣∣ (Xh
0 , Y

h
0 ) = (x, y)

}
> 0

for all (x, y) ∈ R2.
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(c) The chain is positive, i.e., it admits an invariant probability measure.

For this definition, we refer to [11, p. 200, 230–231].
To prove (a), we apply Theorems 7.2.5 and 7.2.6 in [11]: it is enough to prove

that the chain is forward accessible and a globally attracting state exists. We do
not rewrite here the definition of the forward accessibility (see [11, p. 151]) since
we use a sufficient condition. As shown in [11, Proposition 7.1.4], the forward
accessibility is a consequence of the following fact: Gu denoting the function

(x, y) −→ Gu(x, y) :=
(

x+ h ∂yH(x, y)
y − h (∂xH(x, y) + F (x, y) ∂yH(x, y)) + u

)
which, for all h small enough, is one–to–one in view of our assumption on the
matrix (4.6), the matrix [

∇x,yG
−1
u · ∂G

−1
u

∂u
,
∂G−1

u

∂u

]
has full rank for all (x, y). Moreover, the existence of a globally attracting state
(in the sense of [11, p. 160]) is also obvious: using our Lyapunov function Γ it
is easy to check that 0 is attracting for the chain defined by substituting 0 to
the increments of (Wt).

We now prove (b) and (c). In view of [11, Theorem 11.3.4], a sufficient
condition is as follows (it involves the notion of petite sets as defined in [11,
p. 121] which we do not recall here since, as we will show, we are here allowed
to substitute ‘compact set’ to ‘petite set’ in the statement): there exists a petite
set C in R2d, a real number b > 0 and a real valued function V such that

Ex,y

[
V (Xh

h , Y
h
h )

]
− V (x, y) ≤ −1 + b IC(x, y) for all (x, y) ∈ R2d. (4.9)

Admit for a while that the closure of every ball B(0, R), R > 0, is petite.
Then it is clear that the function V (x, y) := C Γ(x, y) with C large enough is
a good candidate. It thus remains to prove that every compact set is petite.
The forward accessibility and the fact that the law of ∆h

p+1W is supported by
the whole space imply that the chain (Xh

ph, Y
h
ph) is a T-chain (see [11, p. 127]

for the definition of T-chains, and [11, Proposition 7.1.5] for the claim). For a
ψ-irreducible T-chain every compact set is petite (see [11, Proposition 6.2.5]).
That ends the proof. 2

Remark 4.2. The conclusions of Lemma 4.1 imply that

1
N

N∑
p=1

f(Xph, Yph) −−−−→
N→∞

∫
f(x, y)µh(dx, dy) P−a.s., (4.10)

and
1
N

N∑
p=1

E f(Xph, Yph) −−−−→
N→∞

∫
f(x, y)µh(dx, dy), (4.11)
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for all function f with polynomial growth at infinity.

5. Expansion of the discretization error of the implicit Euler scheme

We aim to prove

Theorem 5.1. Suppose that the sets of hypotheses (1.1) and (4.1) hold. Sup-
pose that f is a smooth function, and that all its derivatives have a polynomial
growth at infinity. The discretization error of the implicit Euler scheme applied
to equation (1.1) with any step-size small enough satisfies∫

f dµ−
∫
f dµh = C1h+ · · ·+ CKh

K +O
(
hK+1

)
(5.1)

for all K in N− {0}, where the real numbers Ck are uniform in h.

For the sake of simplicity we limit ourselves to K = 1. The proof is the same
as for the explicit Euler scheme in Talay and Tubaro [22]. We write it here for

the reader’s convenience. We first introduce the following notation: X
E= Y

stands for EX = EY .
Set

Zh
ph := (Xh

(p+1)h, Y
h
(p+1)h)

A Taylor expansion and tedious computations lead to

u(jh, Zh
(p+1)h) E= u(jh, Zh

ph) + Lu(jh, Zh
ph)h+ C0(jh, Zh

ph)h2 + rh
j,p+1h

3, (5.2)

for all integers j and p. The function C0(t, y) is a sum of terms of the type
φ(x, y)∂Ju(t, x, y), where φ is a function with polynomial growth at infinity and
J a multi-index. The remainder term rh

j,p+1 is a sum of terms of the type

E
[
P (Zh

ph)∂Ju(jh, Zh
ph + θ(Zh

(p+1)h − Zh
ph))

]
,

where P (y) is a a function with polynomial growth at infinity and θ is a random
variable taking values in (0, 1). In view of the estimates of Proposition 3.1 and
of Lemma 4.1, it holds that

+∞∑
j=0

|rh
j,p+1| ≤

C0

1− exp(−γh)
E(1 + |Zh

ph|s + |Zh
(p+1)h|

s),

for some integer s and some strictly positive real numbers C0, γ. Therefore,

+∞∑
j=0

|rh
j,p+1| ≤

C

h
(1 + E |Zh

0 |s),
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for some strictly positive real number C.
Observe that, from equation (3.9), one has

u((j+1)h, Zh
ph) E= u(jh, Zh

ph)+Lu(jh, Zh
ph)h+

1
2
L2u(jh, Zh

ph)h2+r̃h
j,p+1h

3 (5.3)

for some remainder r̃h
j,p+1 of the same type as rh

j,p+1.
Therefore, if we set

Rh
j,p+1 := rh

j,p+1 − r̃h
j,p+1,

Equalities (5.2) and (5.3) lead to

u(jh, Zh
(p+1)h) E= u((j + 1)h, Zh

ph) + C(jh, Zh
ph)h2 +Rh

j,p+1h
3 (5.4)

for some function C of the same type as C0. In addition, one has

+∞∑
j=0

|Rh
j,p+1| ≤

C

h
(1 + E |Zh

0 |s) (5.5)

for some real number C independent of h. Observe that

1
N

N∑
p=1

f(Zh
ph) =

1
N

N∑
p=1

u(0, Zh
ph) +

∫
R2

f dµ.

With successive uses of (5.4), one obtains

1
N

N∑
p=1

f(Zh
ph) E=

∫
R2

f dµ+
1
N

N∑
p=1

u(ph, Z0) +
1
N

N∑
p=1

p−1∑
j=0

C(jh, Zh
ph)h2

+
1
N

N∑
p=1

p−1∑
j=0

Rh
j,ph

3. (5.6)

We now make N tend to infinity in both sides of the preceding equality. As
(Xt) is an ergodic process, in view of equality (3.1), one has

lim
N→∞

1
N

N∑
p=1

Eu(ph, Z0) = 0.

In addition, in view of Remark 4.2, we have

lim
N→∞

E f(Zh
ph) =

∫
R2

f dµh.
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Moreover, from the construction of C(t, y) it results that

h lim
N→∞

1
N

N∑
p=1

p−1∑
j=0

E C(jh, Zh
ph) =

∞∫
0

∫
R2

C(t, x, y)µ(dx, dy) dt+O (h) .

We finally use inequality (5.5). That ends the proof.

6. Conclusion

We have proven that the function Ex,y f(Xt, Yt)−
∫
f dµ and all its deriva-

tives tend to 0 exponentially fast when t goes to infinity. This has allowed us
to get an optimal estimate on the convergence rate of the implicit Euler scheme
for the approximation of

∫
f dµ.

In this paper we limited ourselves to systems (1.1) with a constant diffusion
matrix. Our analysis extends to systems of the type

Xt = X0 +

t∫
0

∂yH(Xs, Ys) ds,

Yt = Y0 −
t∫

0

∂xH(Xs, Ys) ds−
t∫

0

F (Xs, Ys) ∂yH(Xs, Ys) ds

+

t∫
0

σ(Xs, Ys) dWs

where σ satisfies smoothness and boundedness conditions as well as the uniform
ellipticity condition

0 < ν |ζ|2 ≤
d∑

i,j=1

(
σ(x, y) σ(x, y)∗

)i

j
ζi ζj for all x, y, ζ ∈ Rd.

To deal with such systems one needs to increase the complexity of several proofs
of the present paper. The two main changes are: first, the smoothness and
strict positivity of the transition density require Malliavin calculus techniques
involving clever localization arguments in order to handle with the possible
unboundness of the first derivatives of ∂xH(x, y); second, the calculations of
Section 3 involve additional terms depending on the derivatives of σ; these
terms make expressions such as those of Section 3 still more lengthy (and almost
unreadable), and need to be controlled carefully in order to obtain estimates
such as (3.17), (3.26), etc. Of course, the set of our assumptions needs to be
properly modified.
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Our last comment concerns the Hypothesis 1.1. It does not seem to us too
stringent. However it is not necessary at all. It seems possible to construct
particular functions H which do not satisfy all our requirements and for which
all the statements of Section 3 nevertheless hold true. This means that our
methodology can be applied to various families of Hamiltonian systems.
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