
Denis Talay 633.Simulation of Stochastic Di�erential SystemsDenis TalayAbstract1We present approximation methods for quantities related to solutions of stochas-tic di�erential systems, based on the simulation of time-discrete Markov chains.The motivations come from Random Mechanics and the numerical integrationof certain deterministic P.D.E.'s by probabilistic algorithms.We state theoretical results concerning the rates of convergence of these meth-ods. We give results of numerical tests, and we describe an application of thisapproach to an engineering problem (the study of stability of the motion of ahelicopter blade).1 IntroductionLet us consider a di�erential system in IRd excited by a r-dimensional multi-plicative random noise (�(t; !)):ddtX(t; !) = b0(X(t; !)) + �(X(t; !))�(t; !) (1)where b0(�) is an application from IRd to IRd, �(�) is an application from IRd tothe space of d� r-matrices, and ! denotes the random parameter (in the sequel,we will omit it).The characteristics of the random noise (bandwidth, energy, law, . . . ) dependon the modelled physical problem.Here we are essentially interested in the white-noise case, which is a limit caseof systems with �physically realizable� random perturbations (cf. Kushner [32]e.g.); in the section devoted to the computation of Lyapunov exponents, we willexamine also systems with coloured noises.The aim of this paper is to present e�cient numerical methods to computecertain quantities depending on the unknown process (X(t)), with algorithmsbased on simulations on a computer of other processes.We will try to justify this approach (at least, to explain why it may be in-teresting), we also will underline its limitations; we will estimate the theoreticalerrors of our approximations, and we will give the results of some illustrativenumerical experiments; we will describe an application to an engineering prob-lem (a study of stability for the motion of a helicopter blade) and, �nally, wewill describe PRESTO, a system of automatic generation of Fortran programscorresponding to the di�erent problems and methods presented here.1 Reprint of Chapter 3 in �PROBABILISTIC METHODS IN APPLIED PHYSICS�,P. Kree and W. Wedig (Eds), Lecture Notes in Physics 451, Springer-Verlag, 1995.



64 Before going on, it must be emphasized that the numerical analysis of stochas-tic di�erential systems is at its very beginning: at our knowledge, at the presenttime only a few algorithms have been proposed (some of them irrealistic . . . ),and only a few systematic numerical investigations have been pursued. Besides,the theoretical results are not very numerous. Nevertheless, it already appearsthat this �eld is not at all a direct continuation of what has been done for thenumerical solving of ordinary di�erential equations. For example, we will under-line that it is often unuseful and even clumsy to try to approximatethe di�usion process on the space of trajectories, when one wants tocompute a quantity which depends on its law: approximate processes e�-cient for simulations may not converge almost surely to the considered di�usionprocess.In any case, this paper treats a very few approximation problems, and we havechosen to present only algorithms which have been studied from a theoreticaland numerical point of view. Therefore, this paper must be read as a subjectivedescription of the present state of a new art, and also as a hope that numericalproblems which can be e�ciently solved by probabilistic algorithms will justifyand cause new developments; in particular, recent results related to RandomMechanics (Arnold & Kloeden [4], Schenk [49] e.g.) or related to the numericalintegration of certain deterministic nonlinear P.D.E.'s by stochastic particlesmethods (see Bossy & Talay ([10], [11]), Bossy [9], Bernard & Talay & Tubaro [7]e.g.), show that the mathematical or numerical techniques developed to establishsome of the results stated below are useful in various contexts.For complements and variations on the themes of this paper, one can also readthe contributions to the volume [14], and consult the extended list of referencesin Kloeden & Platen's book [30].The book by Bouleau & Lepingle [13] presents the various mathematical toolsnecessary to construct and analyse the numerical methods of approximation ofa wide class of stochastic processes.2 Examples of applications and objectives2.1 PreliminariesFor the theoretical prerequisites, we refer to the basic book of Arnold [1], or thebooks of Ikeda & Watanabe [28] and Karatzas & Shreve [29] for example. Herewe will just brie�y introduce some very elementary concepts, which explain theconstruction of the discretization schemes.From a mathematical point of view, one must �rst give a sense to the limitsystem of systems of type (1) when (�(t)) tends to a white noise. The answeris provided by the stochastic calculus; the limit system (in a sense we do notprecise here) is a stochastic di�erential system in the Stratonovich sense (cf.Kushner [32]).Let us consider r independent Wiener processes, (W i(t)), i.e of Gaussianprocesses with almost surely continuous trajectories, such thatE(W i(t)) = 0 ;



Denis Talay 65E(W i(s)W j(t)) = �ij inf(s; t) :The limit system is written in the Stratonovich sense as follows:dX(t) = b0(X(t))dt+ �(X(t)) � dW (t) ; (2)equivalent to the �integral� formulation:X(t) = X(0) + Z t0 b0(X(s))ds+ Z t0 �(X(s)) � dW (s) :Almost surely, the trajectories of the Wiener process have unbounded vari-ations on each �nite time interval (this implies that they are nowhere di�eren-tiable), therefore the integral R t0 �(X(s)) � dW (s) cannot be de�ned as a Stieljesintegral. Let us give indications on its construction.A process (Y (t)) is said adapted to the �ltration generated by the Wiener pro-cess (W (t)) (we will also simply say �adapted�) if, for each t, Y (t) is measurablew.r.t. the �-�eld generated by (W (s); s � t); in particular, Y (t) is independentof all the (W (t1)�W (t);W (t2)�W (t1); : : : ;W (tn)�W (tn�1)) ;for any n and t < t1 < t2 < : : : < tn.Let us consider a one-dimensional Wiener process (B(t)). For the class Q ofreal continuous adapted (to the �ltration generated by (B(t))) processes (Y (t))which can be represented as Y (t) = Y (0) +M(t) + A(t), where Y (0) is a r.v.,(M(t)) is a continuous locally square integrable martingale relative to the previ-ous �ltration, and (A(t)) is a continuous adapted process of bounded variationon every �nite time interval, one can show that for any T > 0, the followinglimit in probability exists:limj�j!0 nXi=1 Y (ti) + Y (ti�1)2 (B(ti)�B(ti�1)) ; (3)where � denotes a partition 0 = t0 < t1 < : : : < tn = T , and j�j denotesmax1�i�n(ti � ti�1).This limit is called the Stratonovich integral of (Y (t)) w.r.t. (B(t)) on [0; T ]and denoted R T0 Y (s)�dB(s). If (Y (t)) is a matrix-valued process, and the Wienerprocess multi-dimensional, the integral is de�ned coordinate by coordinate.If b0 and � are continuous functions such that each component is twice con-tinuously di�erentiable with bounded derivatives of �rst and second orders, thenfor each Borel probability measure � on IRd, there exists a process (X(t)) in Q,satisfying (2) and such that the law of X(0) coincides with �, unique in thesense that, if (Y (t)) is another solution with Y (0) = X(0) a:s:, then for each t,X(t) = Y (t) a:s:We will see that the discretization of a Stratonovich integral leads to somedi�culties, which do not exist for another stochastic integral, the Itô stochasticintegral.



66 To simplify, we restrict ourselves to consider those of the previous processes(Y (t)) which also satisfy:8t > 0 ; E �Z t0 jY (s)j2ds� <1 :One can show that the following limit exists in the space of the square inte-grable random variables:limj�j!0 nXi=1 Y (ti)(B(ti)�B(ti�1)) ;where � denotes a partition 0 = t0 < t1 < : : : < tn = t, and j�j denotesmax1�i�n(ti � ti�1).This limit is called the Itô integral of (Y (t)) w.r.t. (B(t)), and is denotedby R t0 Y (s)dB(s). Under our hypothesis on (Y (t)), the process (R t0 Y (s)dB(s))is a square integrable martingale, which is often used in the proofs of mostapproximation theorems stated below.Moreover, under the above assumptions on b0(�) and �(�), one can also showthat the solution of the Stratonovich system (2) is the unique solution of:X(t) = X(0) + Z t0 b(X(s))ds+ Z t0 �(X(s))dW (s)where, if �j denotes the jth column of � and @�j the matrix whose element ofthe ith row and kth column is @k�ij :b(�) = b0(�) + 12 rXj=1 @�j(�)�j (�) :In di�erential notations, the previous equation is written under the form ofan Itô stochastic di�erential system:dX(t) = b(X(t))dt+ �(X(t))dW (t) : (4)As a consequence of the de�nition of the Itô integral, it appears that thedi�erential chain rule is di�erent from the deterministic case: for any real functionof class C2, we have the following formula (the Itô formula):df(X(t)) = Lf(X(t))dt+ �(X(t))rf(X(t)) � dW (t) ; (5)where, if the matrix a is a = ���, L is the following di�erential operator:L = dXi=1 bi(x)@i + 12 dXi;j=1 aij(x)@ij : (6)Let us now brie�y present the situations that we will treat.



Denis Talay 672.2 Simulation of trajectoriesWe are supposed to have at our disposal exact or approximate trajectories ofthe Wiener process (W (t)), and we want to �see� the corresponding approximatetrajectories of (X(t)). As we will show later on, when the dimension of the noiseis larger than 1 and only approximate trajectories of (W (t)) are available, thisproblem has a signi�cation under a stringent condition which must be ful�lled by�(�) and will be called in the sequel the �commutativity condition� (its preciseformulation will be given below).Let us give 2 examples of situations where one may wish to get trajectoriesof the solution of a S.D.E.First, let us suppose that the process (X(t)) depends on a parameter �, thatone wants to estimate from a unique observation of (X(t)) during a time interval[0; T ].In order to test the quality of di�erent estimators, one may choose a particularvalue for �, simulate a few trajectories of the corresponding process (X(t)), andthen apply the estimators on these simulated trajectories. For applications to�nancial models, see Fournié and Talay [23] and Fournié [22], e.g.A less elementary example is a �ltering situation, where (X(t)) is a nonobserved process solution of (2), whereas one observes realizations of a process(Y (t)) satisfying: dY (t) = g(X(t))dt+ �dW (t) + �dV (t) ;where (V (t)) is a Wiener process independent of (W (t)); one wants to get theconditional law of (X(t)), given the observations (Y (s); 0 � s � t). In the non-linear case, under some regularity assumptions on the functions b0, �, g, theanswer is given by the so-called Zakai equation satis�ed by p(t; x1; : : : ; xd), theunnormalized density of this conditional law:dq(t) = Aq(t)dt +B0q(t)dt+B1q(t)dt+ C0q(t) � dY (t) + C1q(t) � dY (t) ;where A is a second-order operator, B1 and C1 are �rst-order operators, B0 andC0 are zero order operators.The previous equation is a stochastic partial di�erential equation. To solveit numerically, Florchinger and Le Gland [19] propose the following algorithm.Let (tp) be a dicretization of the time interval [0; t], and q be the approxi-mate density. On each time interval, [tp; tp+1], one �rst numerically solves thedeterministic P.D.E. ddtu(t) = Au(t) ;u(tp) = q(tp) ;and then one considers the stochastic P.D.E.dv(t) = B0v(t)dt+B1v(t)dt+ C0v(t) � dY (t) + C1v(t) � dY (t) ;v(tp) = u(tp+1) :



68 Let us write the operators B1 and C1 under the form: B1 = b1(x)r andC1 = c1(x)r.Let (Z(t; s; x)) the �ow associated to the stochastic di�erential equation:dZ(t) = �b1(Z(t))dt� c1(Z(t)) � dY (t) : (7)Then one computes the value of v(t; x) at points Z(t; tp; z) according to theformula (d1 and d2 being appropriate functions):v(t; Z(t; tp; z)) = v(tp; z) exp(Z ttp d1(Z(s; tp; z))ds+ Z ttp d2(Z(s; tp; z)) � dY (s)) ;and q(tp+1) is given by q(tp+1) = v(tp+1).This procedure requires to solve (7) in a pathwise sense: one wants to get thepath of (Z(t)) corresponding to the particular observed path of (Y (t)).2.3 Computation of statistics of (X(t)) on a �nite time intervalFor example, one wants to compute the �rst moments of the response of thedynamical system (X(t)), or, more generally, Ef(X(t)), f(�) being an explicitlygiven function.Another motivation is to construct Monte Carlo methods to solve parabolicP.D.E.'s in IRd � ddtu(t; x) = Lu(t; x) ;u(0; x) = f(x) ;in some situations where deterministic methods are not e�cient: the theoreti-cal accuracy and the numerical behaviour of the probabilistic algorithms are nota�ected by the possible non coercivity of the second-order elliptic di�erential op-erator L, and the computational cost growths only linearly w.r.t. the dimensiond of the state space.Therefore these methods and the stochastic particles methods (random vor-tex methods for the integration of certain non-linear P.D.E.'s in Fluid Mechanicse.g.) which also require the simulation of stochastic processes (see the referencesgiven at the end of the Introduction) can be useful in degenerate situations orwhen the state space has a large dimension; in Random Mechanics, often (X(t))is a vector (position, speed), and therefore both degeneracy and a high dimen-sional state space occur. Other examples are the situations where u(t; x) needsto be computed only at a small number of points, for example in order to sep-arate the integration space in subdomains where deterministic methods becomee�cient.To computeEf(X(t)), if we could simulate the process (X(t)) itself, we wouldsimulate several independent paths of (X(t)), denoted by (X(t; !1); : : : ; X(t; !N))and then we would compute the average1N NXi=1 f(X(t; !i)) :



Denis Talay 69Instead of (X(t)), we propose to simulate another process (X(t)); as we areinterested in the approximation of the law of (X(t)), it is unnecessary that (X(t))is a trajectorial approximation of (X(t)), and the �commutativity condition� willnot be required (better, some e�cient processes (X(t)) in that context are notat all approximations of (X(t)) in the pathwise sense, and even do not convergealmost surely to (X(t)).2.4 Asymptotic behaviour of (X(t)), Lyapunov exponentsIn the section 6.1, we present an industrial problem leading to the study of abilinear system for which it can be shown that, (X(t; x)) denoting the solutionof (2) with initial condition x, the almost-sure limit� = limt�!+1 1t log jX(t; x)jexists and is independent of x (it is the upper Lyapunov exponent of the system);the problem is to determine the sign of that limit: if it is strictly negative,almost surely (X(t)) tends to 0 exponentially fast for any initial condition x, thesystem (2) is then said to be stable.The proposed algorithm consists in simulating one particular path of a pro-cess (X(t)) over a long time [0; T ] and in computing�T = 1T log jX(T; x)j :We will classify di�erent processes (X(t)) according to the following cri-terium: how large is j�� �jwhere � is the Lyapunov exponent of the process (X(t)), de�ned by� = limT!1�T= limT!1 1T log jX(T; x)j :Remark: this criterium does not take into account the error due to the nec-essary approximation of � by �T , which only depends on the choice of the inte-gration time T . We will see that, from a practical point of view, this choice maybe very di�cult.An extension of the method has been developed and analysed for nonlinearsystems.



702.5 Computation of the stationary lawUnder some conditions on the coe�cients b0(�) and �(�), one a priori knows thatthe process (X(t)) is ergodic. Let us denote by � its unique invariant probabilitylaw.One may be interested in computing R f(x)d�(x) for a given function f(for example, in order to get the asymptotic value of Ef(X(t)) when t goes toin�nity, i.e to describe the stationary distribution of the response of the system,which often is of prime importance in Random Mechanics). For reasons alreadyunderlined, the numerical solving of the stationary Fokker-Planck equation maybe extremely di�cult.Here, we propose to choose T �large enough� and to compute1T Z T0 f(X(s; x))ds :2.6 RemarkAs it has been mentioned above, it will appear that the choice of the convenientprocess (X(t)) must be related to the �nal purpose of the simulation.Our basic tool to construct this process is the time discretization of thesystem (4).3 Discretization methods3.1 Introduction to the Milshtein schemeLet us consider the expressionX(t) = X(0) + Z t0 b0(X(s))ds+ Z t0 �(X(s)) � dW (s) :From the de�nition (3) of the Stratonovich integral, for small t the integralR t0 �(X(s)) � dW (s) can be approximated by12(�(X(t)) + �(X(0)))(W (t) �W (0)) ;and therefore this procedure would lead to an implicit discretization scheme.According to the de�nition of an Itô integral, a rough approximation of (X(t))(for a small t) can be:X(t) ' X(0) + b(X(0))t+ �(X(0))(W (t) �W (0)) :Let h be a discretization step.The above remark justi�es the Euler scheme for (4):Xhp+1 = Xhp + b(Xhp)h+ �(Xhp)(W ((p+ 1)h)�W (ph)) : (8)



Denis Talay 71This scheme can easily be simulated on a computer: at each step p, one hasjust to simulate the vector W ((p+ 1)h)�W (ph), whose law is Gaussian.As we will see, nevertheless this scheme may be unsatisfying: for example, itis divergent for the pathwise approximation of (X(t)).Let us introduce a new scheme, and �rst consider the case d = r = 1.If we perform a Taylor expansion of �(X(t)), we easily get:X(t) ' X(0) + b(X(0))t+ �(X(0))(W (t) �W (0))+ �(X(0))�0(X(0)) Z t0 (W (s)�W (0))dW (s) :At a �rst glance, the situation is more complex than previously, becauseof the presence of the stochastic integral R t0 (W (s) �W (0))dW (s). But the Itôformula shows: Z t0 (W (s)�W (0))dW (s) = 12(W (t)2 � t) :Then, again only Gaussian laws are involved in the previous scheme, due toMilshtein [37] who introcuded it in 1974 for the mean-square approximation of(X(t)).3.2 The multi-dimensional Milshtein schemeLet us now examine the general case.Let us introduce the notation�hp+1W :=W ((p+ 1)h)�W (ph) :The same procedure as before leads to the multi-dimensional Milshtein scheme:Xhp+1 = Xhp + rXj=1 �j(Xhp)�hp+1W j + b(Xhp)h+ rXj;k=1 @�j(Xhp)�k(Xhp) Z (p+1)hph (W k(s)�W k(ph))dW j(s) : (9)Now, the situation is really complex, because of the presence of the multiplestochastic integrals R (p+1)hph (W k(s)�W k(ph))dW j(s): these integrals do not de-pend continuously on the trajectories of (W (t)) (therefore are annoying for thetrajectorial approximation), and the joint law of these integrals and the incre-ments �hp+1W seems di�cult to simulate: in particular, it cannot be seen as thelaw of a simple transformation of a Gaussian vector (see the work by Gaines &Lyons [25]).How to get rid of this di�culty is one of the main features of the numericalanalysis of stochastic di�erential systems.



723.3 Mean-square approximation and Taylor formulaMilshtein [37] proved the following result:Theorem1. Let us suppose that the functions b and � are of class C2, withbounded derivatives of �rst and second orders.Then the Euler scheme satis�es: for any integration time T , there exists apositive constant C(T ) such that, for any step-size h of type Tn , n 2 IN:hEjX(T )�Xhn)j2i 12 � C(T )ph :For the Milshtein scheme, we can substitute the following bound for the error:hEjX(T )�Xhn)j2i 12 � C(T )h :It can be shown that the Milshtein scheme is not �asymptotically e�cient� inthe sense that the leading coe�cient in the expansion of the mean square erroras power series in h is not the smallest possible. Clark [17] and Newton ([40],[41] and [42]) have introduced new schemes which are asymptotically e�cient;these schemes may be seen as versions of the Milshtein scheme with additionalterms of order h�hp+1W and (�hp+1W )3 (when the Wiener process is scalar).In the two last references, e�cient schemes based upon �rst passage times ofthe Wiener samples through given points, and e�cient Runge-Kutta schemesare presented. Another very interesting approach can be found in Castell &Gaines [16], based upon the representation of di�usion processes in terms of thesolutions of ordinary di�erential equations.Let us now examine the question of the order of convergence.Let us say that a random variable is of order k if its variance is upper boundedby Constant� h2k.The Milshtein scheme involves only random variables of order less than 1.To get a better rate of convergence in the mean-square sense than this scheme,one must involve multiple stochastic integrals of order strictly larger than 1, forexample: Z (p+1)hph (W k(s)�W k(ph))(W l(s)�W l(ph))dW j(s) ;Z (p+1)hph (s� ph)dW j(s) ; Z (p+1)hph (W k(s)�W k(ph))ds ;in order to get an error of order h 32 .The coe�cients of these integrals in the schemes are given by a Taylor formula(see Platen & Wagner [47]).Of course, most of these integrals, as those involved in the multi-dimensionalMilshtein scheme, have probability laws di�cult to simulate (see Gaines [24]).Therefore, in the general case, the Euler scheme is the only e�cient scheme forthe mean-square approximation.Nevertheless, there exists a situation where the multi-dimensional Milshteinscheme involves only the increments of the Wiener process �hp+1W .



Denis Talay 733.4 The commutativity conditionSuppose that the column vectors of the matrix � satisfy the following condition:8j;8k : @�j(�)�k(�) = @�k(�)�j(�) : (10)That condition means that the vector �elds de�ned by the column vectors of �commute. It is obviously satis�ed when the noise is one-dimensional, or whenthe function � is constant.The Itô formula and this hypothesis imply:@�k(�)�j(�) Z (p+1)hph (W k(s)�W k(ph))dW j(s)+@�j(�)�k(�) Z (p+1)hph (W j(s)�W j(ph))dW k(s)= @�k(�)�j(�)(W k((p+ 1)h)�W k(ph))(W j((p+ 1)h)�W j(ph)) ; (11)and therefore the Milshtein scheme can be rewritten:Xhp+1 = Xhp + rXj=1 �j(Xhp)�hp+1W j + b(Xhp)h+ rXk=2Xj<k @�j(Xhp)�k(Xhp)�hp+1W j�hp+1W k+ 12 rXj=1 @�j(Xhp)�j(Xhp) h��hp+1W j�2 � hi : (12)A very nice result due to Clark & Cameron [18] shows that, under the com-mutativity condition, the Milshtein scheme leads to the best possible rate ofconvergence for the mean-square approximation (i.e h) among all the discretiza-tion schemes involving only values of the process (W (t)) at times (ph; 0 � p �n = Th ).4 Almost sure and pathwise approximation4.1 Statement of the problemsFirst, let us suppose that we observe or simulate increments of the Wiener processduring time intervals of length h; then we construct a continous time process(X(t)) by using the Euler scheme and by interpolating linearly between the timesph. Does this process converge almost surely to (X(t)) on �nite time intervalswhen h goes to 0 ?Second, let us now suppose that we dispose of a deterministic function t !u(t) which approximates a given trajectory of (W (t)) in the sense of the topologyof uniform convergence on the space of continuous functions on [0; T ].



74 We hope to get an approximation of the trajectory of (X(t)) on [0; T ] corre-sponding to this particular trajectory of (W (t)).To give a sense to this new problem, a natural condition is thatthere exists a continuous mapping F from IRd�C0(IR+; IRr) 2 to C(IR+; IRr)such that X(t) = F (X(0);W )(t), a.s.A result due to McShane [36], Doss [20] and Sussman [51] shows that thismapping exists if the above �commutativity condition� is satis�ed.Now, the problem is to build a scheme de�ned by functionals �hp on the spaceIRd � C([0; ph]):Xh;u0 = X(0) ; Xh;up+1 = �hp (Xh;up ; (u(t); 0 � t � ph))such that: for any entry (u(t)) belonging to a large set of functions (includingthe trajectories of (W (t)) and their reasonable approximations), if xu(t) denotesF (X(0); u)(t), and if t! Xhu(t) is the function de�ned byXhu(t) = Xh;up ; ph � t < (p+ 1)h ;then limh!0 sup0�t�T jxu(t)�Xhu(t)j = 0 :When this property is ful�lled, the scheme is robust w.r.t. small pertubationsof the trajectory u(�); we say that the scheme converges in the pathwise (ortrajectorial) sense.4.2 ExampleLet (B(t)) be a one-dimensional Wiener process. From the Itô formula (5), theprocess X(t) = exp(t+B(t))solves the one-dimensional stochastic di�erential system:dX(t) = 32X(t)dt+X(t)dB(t) :It is easy to see that the Euler scheme (8) converges almost surely, and con-verges in the above pathwise sense only if the function (u(t)) has the samequadratic variation as the trajectories of the Wiener process.The situation is di�erent with the Milshtein scheme.2 C0(IR+; IRr) denotes the set of continuous functions f from IR+ to IRd such thatf(0) = 0.



Denis Talay 754.3 Main resultsFor the almost sure convergence problem of the Euler problem, a �rst result ap-pears in Newton ([40] and [42]). More precise statements appear in Faure ([21]),for example:Theorem2. Let us suppose that the coe�cients b(�) and �(�) are Lipschitz.(i) If for some integer K > 1 the initial condition X0 satis�es EjX0j2K <1, then the interpolated Euler scheme with step-size Tn , (Xh(t)), convergesalmost surely to (X(t)) on [0; T ] when n goes to in�nity.(ii) If the initial condition has moments of any order, then the order of conver-gence is given by8� < 12 ; n� supt2[0;T ] jX(t)�X(t)j n!+1�! 0 ; a:s:Let us now turn to the trajectorial problem.In the multidimensional case, the remarkable point is that the commutativitycondition, which is necessary to have a well-posed problem, is also su�cientto make the Milshtein scheme (9) depend only on the values of (W (t)) at thediscretization points (formula (11)). This leads us to introduce the trajectorialMilshtein scheme de�ned byXh;up+1 = Xh;up + rXj=1 �j(Xh;up )�hp+1uj + b(Xh;up )h+ rXk=2Xj<k @�j(Xh;up )�k(Xh;up )�hp+1uk�hp+1uj+ 12 rXj=1 @�j(Xh;up )�k(Xh;up ) h��hp+1uj�2 � hi : (13)In Talay [52] the following result is proven:Theorem3. Let us suppose that b and � are bounded, of class C3 with boundedderivatives up to the order 3, and that the function (u(t)) satis�es:limj�j!0Xi ju(ti)� u(ti�1)j3 = 0 ; (14)where � denotes a partition 0 = t0 < t1 < : : : < tm = t, and j�j denotesmax1�i�m(ti � ti�1).Then,if (Xhu(t)) is de�ned as in the previous section, under the commutativitycondition: limh!0 sup0�t�T jxu(t)�Xhu(t)j = 0 : (15)



76Remarks� The condition (14) is satis�ed by the paths of the Wiener process, but alsoby a much larger class of functions (for example, the di�erentiable functions).� The proof of the theorem (3) is based on an analytical expression of themapping F .� It is also shown that the Milshtein scheme has the best possible rate ofconvergence for the criterium (15).� The commutativity condition is a strong limitation to the trajectorial ap-proximation of the solution of an Itô di�erential system. But, in some sense,this problem forgets the fact that (X(t)) is a stochastic process, whose statis-tics may be more interesting than some particular paths. We will not needthis condition to approximate quantities depending on the law of (X(t)).� The asymptotic distribution of the normalized Euler scheme error is analysedin Kurtz & Protter [31].4.4 Numerical exampleThe following numerical test illustrates the divergent behaviour of the Eulerscheme for the pathwise approximation.Let (X(t)) the 2-dimensional process de�ned byX(t) = (sin(W (t)); cos(W (t))) ;where (W (t)) is a one-dimensional Wiener process.This process solves a system with the function b(x1; x2) de�ned byb1 = �x12 ;b2 = �x22 ;and the matrix � is de�ned by �11 = x2 ;�21 = �x1 :We have simulated a trajectory of (W (t)), and a perturbation of it: we havesimulated a second Brownian trajectory (denoted by t! V (t)), and, for each t,we have added "V (t) to W (t).The �gure 1 shows the �exact� path of (X(t)) corresponding to the simulatedpath of (W (t)). The �gure 2 compares the evolution in time of the errors (in thetrajectorial sense) due to the Milshtein scheme (thick line) and the Euler scheme(thin line), corresponding to " = 0:001 and h = 0:01.
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Fig. 1. Exact path.
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Fig. 2. Milshtein and Euler schemes.



785 Computation of Ef(X(t))5.1 MethodologyNow, we are interested in the approximation of Ef(X(t)) on a �xed �nite timeinterval [0; T ].Suppose that the coe�cients b and � are smooth enough, and that the oper-ator L de�ned in (6) is hypoelliptic; if the law of the initial condition X(0) hasa density p0(�), then for any t > 0 the law of X(t) has a density p(t; �) solutionof the Fokker-Planck equation:� ddtp(t; x) = L�p(t; x) ;p(0; x) = p0(x) ;where L� is the adjoint of the di�erential operator L (see [28] e.g.).Thus a �rst method to compute Ef(X(t)) consists in integrating the previousP.D.E. But the numerical solving of this P.D.E. can be di�cult, for example whenthe dimension d of the process (X(t)) is very large, or when the di�erentialoperator L is degenerate (it very often is the case in problems coming fromMechanics, in particular each time (X(t)) is a vector (position,velocity)).A second method consists in using a Monte Carlo method. Let us begin bychoosing the Euler scheme (8), and let us simulate (if possible, in parallel) a largenumberN of independent realizations of the Gaussian sequence (�hp+1W; p 2 IN).Then, for each discretization step, we get N independent realizations of Xhp ,denoted by Xhp(!i), and we can compute1N NXi=1 f(Xhp(!i)) : (16)By the strong law of large numbers, this gives us an approximate value ofEf(Xhp). The quality of this approximation depends only on the choice of N .It remains to estimate the error jEf(X(ph))�Ef(Xhp)j. It can be shown that,under some smoothness assumptions on b, �, if the law of X(0) has moments ofany order, then, for any time T , there exists a positive constant C(T ) such that,for any discretization step h of type h = Tn , n 2 IN:jEf(X(T ))�Ef(Xhn)j � C(T )h :It can be also shown that, even under the commutativity condition, the Mil-shtein scheme has the same rate of convergence.This is illustrated by the following example: choose d = r = 1, b(x) = 12x,�(x) = x and f(x) = x4. Then, for the Euler or Milshtein scheme, there existconstants C1, C2 such that:jEf(X(T ))�Ef(Xhn)j = C1T exp(C2T )h+O(h2) :



Denis Talay 79Therefore, the Milshtein scheme which is �optimal� in the mean-square senseand in the trajectorial sense is so poor as the Euler scheme for an approximationof the law of (X(t)).The technique introduced in Talay [53] or [54], Milshtein [38] permits to anal-yse the error on Ef(X(T )) without using estimates in Lp of X(T )�Xhn. It alsopermits to construct second-order schemes. A re�nement of the analysis leads toa very e�cient procedure (see the section 5.6 below).5.2 Second-order schemesLet P be the set of numerical functions of IRd, of class C6, such that f and itspartial derivatives up to order 6 have a growth at most polynomial at in�nity.A scheme is said of second-order if it satis�es for any system whose coe�cientsb, � are smooth and have bounded derivatives of any order: for any function fin P , for any time T , there exists a positive constant C(T ) such that, for anydiscretization step h of type h = Tn , n 2 IN:jEf(X(T ))�Ef(Xhn)j � C(T )h2 : (17)Let Fp be the �-algebra generated by (Xh0 ; : : : ; Xhp).In Talay [54], it is shown that a su�cient condition for a scheme to satisfy (17)is the set of hypotheses (C1), (C2), (C3):(C1) Xh0 = X(0) ;(C2) 8n 2 IN ; 8N 2 IN ; 9C > 0 ; 8p � N ; EjXhp jn � C ;(C3) the following properties are satis�ed for all p 2 IN, where all the right-sideterms of the equalities must be understood evaluated at Xhp :E ��hp+1XjFp� = bh+ 12(Lb)h2 + �p+1 ; Ej�p+1j � Ch3 ;E �(�hp+1X)i1(�hp+1X)i2 jFp� = �i1j �i2j h+ (bi1bi2 + 12@k1�i1j @k2�i2j �k1l �k2l+ 12@kbi2�i1j �kj + 12@kbi1�i2j �kj+ 12�i1j @k�i2j bk + 12�i2j @k�i1j bk+ 14�i1j @kl�i2j �kn�ln + 14�i2j @kl�i1j �kn�ln)h2+ �i1i2p+1 ; Ej�i1i2p+1j � Ch3 ;E �(�hp+1X)i1 : : : (�hp+1X)i3 jFp� = (bi1�i2j �i3j + bi2�i3j �i1j + bi3�i1j �i2j+ 12�i2l @k�i3l �i1j �kj + 12�i3l @k�i2l �i1j �kj+ 12�i3l @k�i1l �i2j �kj + 12�i1l @k�i3l �i2j �kj



80 + 12�i1l @k�i2l �i3j �kj + 12�i2l @k�i1l �i3j �kj )h2+ �i1i2i3p+1 ; Ej�i1i2i3p+1 j � Ch3 ;E �(�hp+1X)i1 : : : (�hp+1X)i4 jFp� = (�i1j �i2j �i3l �i4l + �i1j �i3j �i2l �i4l+ �i1j �i4j �i2l �i3l )h2 + �i1:::i4p+1 ;Ej�i1 :::i4p+1 j � Ch3 ;E �(�hp+1X)i1 : : : (�hp+1X)i5 jFp� = �i1:::i5p+1 ; Ej�i1:::i5p+1 j � Ch3 ;E �(�hp+1X)i1 : : : (�hp+1X)i6 jFp� = �i1:::i6p+1 ; Ej�i1:::i6p+1 j � Ch3 :An interesting fact happens.To satisfy the condition (C3), a scheme does not need to involve any stochas-tic integral (even �hp+1W = R (p+1)hph dW (s)!). Very simple random variables maybe used, the only requirement is that the law of these random variables must havethe same small number of statistics (for example, the same expectation vector,the same correlation matrix, and so on) as a certain �nite family of stochasticintegrals. Let us see 2 examples.5.3 Two examples of e�cient second-order schemesLet us introduce the random variables that will be involved in our schemes.� The sequence (U jp+1; ~Ukjp+1; j; k = 1; : : : ; r; p 2 IN)is a family of independent random variables; the (U jp+1) are i.i.d. and satisfythe following conditions:E[U jp+1] = E[U jp+1]3 = E[U jp+1]5 = 0 ; (18)E[U jp+1]2 = 1 ; (19)E[U jp+1]4 = 3 ; (20)E[U jp+1]6 < +1 ; (21)the ( ~Ukjp+1) are i.i.d., their common law being de�ned byP ( ~Ukjp = 12) = P ( ~Ukjp = �12) = 12 :For example, one can chooseU jp+1 = 1ph�hp+1W jand as well one can choose for U jp+1 the discrete law of mass 23 at 0 and ofmass 16 at the points +p3 and �p3;



Denis Talay 81� the family (Zkjp ) is de�ned byZkjp+1 = 12Ukp+1U jp+1 + ~Ukjp+1 ; k < j ;Zkjp+1 = 12Ukp+1U jp+1 � ~U jkp+1 ; k > j ;Zjjp+1 = 12 �(U jp+1)2 � 1� :Now, a being a = ���, we de�ne the vectors Aj byAj = 12 dXk;l=1 akl @kl�j :We recall that we denote by L the in�nitesimal generator of the process(X(t)): L = dXi=1 bi(x)@i + 12 dXi;j=1 aij(x)@ij :We consider the scheme de�ned byXhp+1 = Xhp + rXj=1 �j(Xhp)U jp+1ph+ b(Xhp)h+ rXj;k=1 @�j(Xhp)�k(Xhp)Zkjp+1h+ 12 rXj=1 n@b(Xhp)�j(Xhp) + @�j(Xhp)b(Xhp) +Aj(Xhp)oU jp+1h 32+ 12Lb(Xhp)h2 : (22)It has been shown that this scheme is of second order (see Talay [53] or [54],Milshtein [38]). The Taylor formula given in Platen & Wagner [47] helps to un-derstand how it has been constructed.Another example of second-order scheme is the following �MCRK�scheme ofTalay [54], which is of Runge-Kutta type, and therefore may be more interestingthan the previous scheme from a numerical point of view, since most derivativesof the coe�cients are avoided.We de�ne the new family(V jp+1; ~V kjp+1; j; k = 1; : : : ; r; p 2 IN)so that the family (U jp+1; V jp+1; ~Uklp+1; ~V mnp+1)j;k;l;m;n;pis a sequence of independent variables, the V jp+1's having the same distributionas the U jp+1's, and the ~V mnp+1's having the same distribution as the ~Uklp+1's.



82 Now we de�ne (Skjp ), (T kjp ) and (Zkjp ) bySkjp+1 = 14(Ukp+1U jp+1 + ~Ukjp+1) ; k < j ;Skjp+1 = 14(Ukp+1U jp+1 � ~U jkp+1) ; k > j ;Sjjp+1 = 14 �(U jp+1)2 � 1� ;T kjp+1 = 14(V kp+1V jp+1 + ~V kjp+1) ; k < j ;T kjp+1 = 14(V kp+1V jp+1 � ~V jkp+1) ; k > j ;T jjp+1 = 14 �(V jp+1)2 � 1� ;Zkjp+1 = Skjp+1 + T kjp+1 + 12Ukp+1V jp+1 ; k 6= j ;Zjjp+1 = 14 �(U jp+1 + V jp+1)2 � 2� :The MCRK scheme proceeds in 2 steps.From Xhp , one �rst computes:Xhp+ 12 = Xhp + p22 �(Xhp)U jp+1ph+ 12b(Xhp)h+ rXj;k=1 @�j(Xhp)�k(Xhp)Skjp+1h :Then the new value Xhp+1 is obtained according to the formula:Xhp+1 = Xhp + ��(Xhp)Up+1 + �(Xhp+ 12 )Vp+1 � 12�(Xhp)(Up+1 + Vp+1)�p2h+ b(Xhp+ 12 )h+ rXj;k=1 h2@�j(Xhp)�k(Xhp)Skjp+1h+ 2@�j(Xhp+ 12 )�k(Xhp+ 12 )T kjp+1h�@�j(Xhp)�k(Xhp)Zkjp+1hi : (23)Other examples of Runge-Kutta schemes are studied for the quadratic meanerror, in Rumelin [48] and in Newton [42].5.4 Remarks� The law of the family (phU jp+1; hSkjp ; hT kjp ; hZklp ) can be chosen in variousways. A precise formulation of families such that the above schemes are of sec-ond order is given by the notion of �Monte Carlo equivalence� in Talay [54].



Denis Talay 83The idea is that the law of the family must only have a small number ofproperties; in particular, these properties imply that the expectation vectorand the correlation matrix of(phU jp+1; hSkjp+1)and  �hp+1W j ; Z (p+1)hph (W k(s)�W k(ph))dW j(s)!di�er only by terms of order h3.� As already mentioned, the above schemes may diverge for the almost sureand pathwise approximations (even under the commutativity condition), inparticular if one chooses for the U jp+1's a discrete law.� The choice of the number of the independent realizations to simulate in orderto perform the Monte Carlo computation depends on the wished accuracy.In practice, one may �rst roughly estimate the maximal value of the varianceof f(Xhp) on the considered time interval, by simulating a small number N0of sample paths of (Xhp); then, one chooses N according to the central-limittheorem, and �nally one simulates N � N0 other samples to approximateE[f(Xhp)] with a better accuracy.Of course, this is the critical point of the procedure: the Monte Carlo algo-rithms converge slowly, and in practice N must be large, especially when thevariance of f(X(t)) increases with t. If a particular discretization methodpermits to obtain a variance reduction is an extremely di�cult question,deeply examined in a recent work by N. Newton [43], based on Haussmann'sintegral representation for functional of Itô processes (see also, for a di�erentapproach, Wagner [59]).5.5 Numerical experimentsWe now show that the numerical performances of the above di�erent schemesmay be extremely surprizing: the Euler scheme may be more e�cient thansecond-order schemes (as for the ordinary di�erential equations, this will be ex-plained by an expansion of the discretization error as a power series with respectto the discretization step).First, let us consider an example where the second-order schemes are muchbetter than the Euler and Milshtein schemes.The processes (X(t)) and (W (t)) are one-dimensional, andX(t) = atan(Z(t)),where (Z(t)) is a stationary N (0; 1) Ornstein-Uhlenbeck process solution ofdZ(t) = �Z(t)dt+p2dW (t)so that (X(t)) solves a stochastic di�erential equation whose coe�cients are:b(x) = �14 sin(4x)� sin(2x) ; �(x) = p2 cos2(x) :



84 We compute E(cosh(1:3X(t) + 2)) � 5:36168895.The �gure 3 compares the evolution in time of the errors due to the Eulerscheme (thin line) and the second-order scheme (22) (thick line). The �gure 4compares the evolution in time of the errors due to the Milshtein scheme (thinline) and the second-order scheme (22) (thick line).
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Fig. 3. Euler and second-order schemes.But, in the next example, a strange fact occurs: the Euler scheme gives asgood results as the second-order schemes, whereas the Milshtein scheme maygive very bad results.The function b(�) is de�ned byb1 = (3p2x1 + 6p2x2 � 2 sin(
t)
x1 � 12x1 � 6x2)=(4(cos(
t) + 2)) ;b2 = (3p2x2 + 6p2x1 � 2 sin(
t)
x2 � 12x2 � 6x1)=(4(cos(
t) + 2)) ;and the matrix � is de�ned by�11 = sin �� �x1 + x2�� ;�21 = cos �� �x1 + x2�� ;�12 = sin�� + 3�x1 + 3�x23 � ;�22 = cos�� + 3�x1 + 3�x23 � :
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Fig. 4. Milshtein and second-order schemes.One can check that, if the initial law is Gaussian with zero mean and acovariance matrix equal to C = � 1 p2=2p2=2 1 �then the law of X(t) is also Gaussian with zero mean and a covariance matrixequal to 2+cos(
t)3 C.Let us �x � = 2, 
 = 5, and the number of simulations N = 10; 000.The �gure 5 shows the time evolution of the true value (thick line) of EjX1(t)j2and of the approximate value corresponding to the Euler scheme (thin line): theapproximation error is weak.The �gure 6 compares the time evolution of the errors due to the Eulerscheme (thin line) and the second-order scheme (22) (thick line): these errorsare similar.The �gure 7 compares the time evolution of the errors due to the Eulerscheme (thin line) and the Milshtein scheme (thick line). These two schemeshave identical theoretical convergence rates, but, in that particular situation,the Milshtein scheme leads to absurd results.Numerical experiments have shown that this bad behaviour of the Milshteinscheme is not avoided by an (even large) increase of the number of simulations.The only remedy is a choice of a smaller discretization step. One also observesthat the Milshtein scheme has a better behaviour for small �. Let us explainwhy, and present a new algorithm.
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Fig. 5. Exact value and Euler scheme.
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Fig. 6. Second-order and Euler schemes.
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EFXT:3/nu= 2.000/omega= 5.000/h= 0.100/ 1000 simulations/MILSHTEIN ,EULER
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Fig. 7. Milshtein and Euler schemes.5.6 Expansion of the errorThe following theorem (Talay & Tubaro [58]) explains the numerical results ofthe previous section.Theorem4. Let us suppose that the functions b(�), �(�) and f(�) are C1; thederivatives of all orders of b and � are supposed bounded, those of f are supposedto have a growth at most polynomial at in�nity3. Then, for any step-size h ofthe form Tn :(i) For the Euler scheme, the error at time T is given byErre(T; h) = Ef(X(T ))�Ef �Xhn� = �h Z T0 E e(s;Xs)ds+O(h2) ;(24)where, if u(t; x) := Ef(X(t; x)): e(t; x) = 12 dXi;j=1 bi(t; x)bj(t; x)@iju(t; x)+12 dXi;j;k=1 bi(t; x)ajk(t; x)@ijku(t; x)3 See the remark thereafter for a generalization of the result when f is not a smoothfunction.



88 +18 dXi;j;k;l=1 aij(t; x)akl (t; x)@ijklu(t; x) + 12 @2@t2u(t; x)+ dXi=1 bi(t; x) @@t@iu(t; x) + 12 dXi;j=1 aij(t; x) @@t@iju(t; x) : (25)(ii) The same result extends to the Milshtein scheme:Errm(T; h) = �h Z T0 E m(s;Xs)ds+O(h2)where  m(�) is de�ned by m(t; x) =  e(t; x) + 14 Xi1;i2;j;k;l alk(t; x)@l�i1j (t; x)@k�i2j (t; x)@i1i2u(t; x)+12 Xi1;i2;i3j1;j2;k �i1j1 (t; x)�i2j2 (t; x)�kj1 (t; x)@k�i3j2 (t; x)@i1i2i3u(t; x):(26)(iii) The same result also extends to the schemes (22) and MCRK; besides, forthese 2 schemes, as well as for the Euler and Milshtein schemes, an expan-sion of the error as power series in h exists: for any integer n, there existconstants C1; : : : ; Cn independent of h (but depending on the scheme) suchthat: Ef(X(T ))�Ef �Xhn� = C1h+ C2h2 + : : :+ Cnhn +O(hn+1) :Remarks. In the preceding statement, f is supposed smooth. In Bally & Ta-lay [5], this hypothesis is relaxed (f is only supposed measurable with a poly-nomial growth at in�nity) under a condition on L which is slightly more thanhypoellipticity; the technique of the proof uses the Malliavin calculus.For the example illustrated by the �gure 7, tedious computations show (cf [58])that the di�erence between the Euler and Milshtein schemes errors behaves (forlarge T ) like �22 (2 + cos(
T ))h :5.7 Romberg extrapolationsAn interesting consequence of the previous theorem is the justi�cation of aRomberg extrapolation between values corresponding to two di�erent step-sizes.More precisely, let us consider a scheme such that (h = Tn ):Err(T; h) = Ef(X(T ))�Ef �Xhn� = e1(T )h+O(h2) ;



Denis Talay 89and consider the following new approximation (the Romberg extrapolation):ZhT = 2Ef( �Xh=22n )�Ef( �Xhn) ; (27)then: Ef(XT )� ZhT = O(h2) :That is, it is possible to get a result of precision of order h2 from results givenby a �rst-order scheme.This procedure seems to be very robust w.r.t the choice of the discretizationstep. Let us give an illustration of this remark: let us compare the time evolutionof the errors due to the extrapolation based on the Milshtein scheme with the 2step-sizes h = 0:05 and h = 0:1 (thick line), and to the Milshtein scheme itselfwith the step-size h = 0:05 (thin line): the extrapolation has extremely improvedthe accuracy (see �gure 8).
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Fig. 8. Romberg extrapolation.5.8 High order schemesOf course, from a theoretical point of view it is possible to construct schemes witha convergence rate of an arbitrary order, or to get a precision of an arbitrary orderby linearly combining results corresponding to a given scheme (Euler, MCRK,etc) and an appropriate number of di�erent step-sizes.We are not sure that high order procedures can be useful. Generally, it isimpossible to choose a step-size too large without losing too much information



90on the law of the increments of (X(t)). For small values of h (0:05 for example), itis di�cult to see the gain in accuracy due to a 3rd order method, compared to a2nd order one: the error due to the approximation of Ef(Xhp) by the average (16)cannot be reduced enough (one cannot choose N so large as we would like!).Besides, the coe�cients Ci in the expansion of the error depend on the successivederivatives of b(�), �(�) and f(�). Often, Ci is rapidly increasing w.r.t. i.6 Computation of Lyapunov exponents, study of stabilityA summary of the theory of Lyapunov exponents of dynamical stochastic systemscan be found in Arnold [2]; for bilinear systems, complements can be found inPardoux & Talay [45].To compute the upper Lyapunov exponent of 2-dimensional bilinear systems,W. Wedig [60] proposes an ingenious deterministic algorithm.This section is a summary of results concerning the approximation of Lya-punov exponents of (non necessarily 2-dimensional) bilinear stochastic di�eren-tial systems and the application to a helicopter blade problem, based on simu-lations and presented in Talay [56].To be complete, we mention that an algorithm of computation of the Lya-punov spectrum for nonlinear systems in IRd or on compact manifolds has beendeveloped, and its convergence rate given (see Grorud & Talay [27]).6.1 An engineering stability problemLet us study the stability of the motion of the movement of a rotor blade with2 freedom degrees in terms of various physical parameters: velocity of the he-licopter, geometric characteristics of the blade, statistical characteristics of theprocess modelizing the turbulency around the blade.In �rst approximation, the stability of the movement of the blade is equivalentto the stability of the solution of a linearized ordinary di�erential equation inIR4 dX(t)dt = A(t)X(t) + F (t) ;where the matrix-valued function A(t) and the vector-valued function F (t) areperiodic of same period (the period of rotation of the blade).When one takes into account the turbulent �ow around the blade, one mayconsider the following linearized modeldX(t)dt = A(t)X(t) + F (t) + [B(t)X(t) +G(t)]�(t)�"(t) ; (28)where b(t) (resp. G(t)) has the same property as A(t) (resp. F (t)), and (�"(t))is a one-dimensional noise. The intensity of the noise, �(t) is also a periodicfunction of the azimuth angle 
t, where 
 is the angular velocity of the blade.All the coe�cients A(t), b(t), F (t), G(t) are explicitly known in terms ofdi�erent physical parameters of the blade.



Denis Talay 91Here the �stability� we are interested in, is the following: the system is stablewhen it admits a unique periodic in law solution (Y (t)) and when, for each initialdeterministic condition, the corresponding process (X(t)) satis�es:limt!+1 jY (t)�X(t)j = 0 a:s: (29)First we will consider the white-noise case. The system (28) becomes:dX(t) = [A(t)X(t) + F (t)]dt+ [B(t)X(t) +G(t)]�(t) � dW (t) ; (30)where (W (t)) is a standard one-dimensional Wiener process.One can show (cf Pardoux[44]):Theorem5. Let us suppose there exists �0 < 0 such that the solution of thesystem dX(t) = A(t)X(t)dt+B(t)X(t)�(t) � dW (t) (31)satis�es, for any deterministic initial condition x :lim supt!+1 1t log jX(t)j � �0 a:s: (32)Then the system (30) is stable in the sense (29).In her thesis, M. Pignol ([46]) has proven the existence of the Lyapunovexponent limt!+1 1t log jX(t)j for the blade system. Let us see how we cancompute it (in order to know its sign!).6.2 Numerical testsLet us consider an example of Baxendale for which there exists an explicitformula giving the Lyapunov exponent. More precisely, let us consider a one-dimensional Wiener process (W (t) and the system:dX(t) = AX(t)dt+ �BX(t) � dW (t) ; (33)with A = �a 00 b � ; B = �0 �11 0 � :Then: � = 12(a+ b) + 12(a� b)R 2�0 cos(2�) exp(a�b2�2 cos(2�))d�R 2�0 exp(a�b2�2 cos(2�))d� :We discretize (33). For each Markov chain de�ned by one of our schemes,and for any h small enough, one can show that there exists �h such that, for anydeterministic initial condition:�h = a:s limp!+1 1ph log jXhp j :



92We want to compare �h and �.It is important to note that we cannot use the formula �h � 1ph log jXhp j inpractice, because it leads to numerical instabilities, the process (jXhp j) decreasingto 0 or increasing to in�nity exponentially fast. This is avoided by a projectionat each step technique, described in the next section.We have tested the Milshtein method and the second-order method (22).By example, let us choose a = 1, b = �2, � = 3:5. Then an accurate numericalcomputation gives � = �0:4. In this example, the second-order schemes areextremely accurate, whereas the Euler scheme and the Milshtein scheme lead tocompletely wrong results, as illustrated by the 2 �gures below, which representthe evolution (in terms of time ph) of our estimator of �h.First, we compare the scheme (22) (thick line) and the Euler scheme (thinline): �gure 9.
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Fig. 9. Euler and second-order schemes.Next, we compare the scheme (22) (thick line) and the Milshtein scheme (thinline): �gure 10.6.3 Algorithm for the helicopter problemIn the deterministic case (corresponding to �(t) � 0), only the Runge-Kuttamethods of order larger than 4 have given good results (because of the numericalinstability of the system, due to the large coe�cients of the matrix A(t) and theirvery short period).
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Fig. 10. Milshtein and second-order schemes.Moreover, the discretization step had to be choosen smaller than 10�4.For the stochastic case, the use of a second-order scheme has also been nec-essary. We have observed the need of a large �nal integration time, therefore toosmall steps would have led to too large CPU times. Morevover, the second-orderschemes have been less sensitive than the �rst-order ones to the above underlinedstrong instability of the system.Besides, the above study of the deterministic case shows the necessity toimprove the scheme (22), in order that it reduces to the Runge-Kutta scheme oforder 4 when the intensity of the noise is nought.Finally, our algorithm has been the following:1. One chooses an initial condition on the unit sphere S3;2. At step (p+ 1), one proceeds in two stages:� One applies to a single step the Runge-Kutta method of order 4 in orderto integrate the system y(0) = Xhp_y(t) = ~A(ph+ t)y(t)(the presence of ~A = A+ 12B2 is due to the discretization of the systemwritten in the Itô sense);� Then one computes:Xhp+1 = y(h) +��(ph)B�hp+1W + 12�(ph)2B2((�hp+1W )2 � h)



94 + 12(�(ph)( ~AB + B ~A+B0)+�0(ph)B)h�hp+1W	Xhp ; (34)where we have used the following notation:(�hp+1W ) := sequence of mutually independent Gaussian randomvariables N (0;ph);B0 : derivative of the matrix B(�);all the matrices are computed at time t = ph;3. One computes the new approximate value �p+1 from the previous one, �pby �p �1� 1p+ 1�+ log(jXhp+1j)(p+ 1)h ; (35)4. One projects Xhp+1 on the unit sphere.The theorem 8 below shows that this algorithm is of second order, in thesense that, for any deterministic initial condition x:������ limp�!+1 1ph log jXhp(x)j���� = O(h2) :For the given models of blades, the deterministic system was extremely stablefor admissible velocities.Let us suppose that �(t) is a constant function �(t) � �0 (i.e the e�ects ofthe turbulency are independent of the azimuth angle).For a velocity equal to 100m=s, we obtain the �gure 11.The destabilization of the system could occur only for intensities of the noiselarger than 0.3; such intensities are not realistic for the turbulent winds aroundthe blade.Moreover, let us consider a more precise modelization of the noise. We sup-pose that its intensity is a periodic function of the azimuth angle 	 = 
t,reaching its maximum for 	 = 3�4 , and de�ned by the function:�0 exp(�(cos(0:75� � 0:5
t)2 � 1)) :We have observed a strong dependency of the Lyapunov exponent upon �but in that case also the instability could not appear for realistic intensities ofthe noise.6.4 Choice of the integration timeThis choice is much more complex that the choice of the number of simulationsto perform a Monte Carlo approximation: the error due to the fact that oneintegrates during a �nite time asymptotically has a Gaussian law, but the vari-ance of this law is given by the solution of a P.D.E., and moreover this P.D.E.depends on the Lyapunov exponent that one wants to compute!
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Fig. 11. Variations of the Lyapunov exponent in terms of �0.More precisely, considering again the case of matricesA and B independent oft for the sake of simplicity, let L de�ne the in�nitesimal generator of the process(s(t)) de�ned by s(t) = X(t)jX(t)j ; under technical assumptions on the matrices Aand B (satis�ed by the blade system and described below), this process has aunique invariant probability measure � on the projective space P d�1 (i.e the setobtained by identifying s and �s on the sphere).We have the following central-limit theorem (Bhattacharya [8]):Theorem6. Let the function Q be de�ned byQ(s) := (As; s) + 12 �(B2s; s) + jBsj2 � 2(Bs; s)2� :For t tending to +1 :1pt Z t0 (Q(s(�)) � �)d� ! N (0; �2) in distribution ;where the constant �2 depends only on the coe�cients of the system and is givenby (< �; � > denoting the inner product in L2(P d�1; �)):�2 = �2 < Q� �;L�1(Q� �) > :An estimation of the integration time can be got by a �rst estimation of �,and by a numerical resolution of the Poisson P.D.E. on the projective spaceLu = Q� � :Of course, this phase of the algorithm is very critical. Further researches in thatdirection are necessary.



966.5 Algorithm for the wideband noise caseLet us consider the systemdX(t)dt = A(t)X(t) +B(t)X(t)�(t)�"(t) ; (36)with a wide-band noise of the form�"(t) = 1p"Z( t") ;where (Z(t)) is a stationaryN (0; 1) Ornstein-Uhlenbeck process.The above system is an ordinary di�erential system, so that the pathwisesimulation of the solution can be achieved using, by example, the Euler scheme:Xhp+1 = Xhp + (A(ph)Xhp + �(ph)B(ph)�"(ph))Xhph :Pardoux [44] and Kushner [33] have shown that the Lyapunov exponent of (36)converges to the Lyapunov exponent of (31).But it appears that, even for small h, the Lyapunov exponent of that dicrete-time process de�ned by the Euler scheme does not converge, when " goes to 0,towards the Lyapunov exponent of the system (31).One reason is that the process f�"(ph)g does not converge in law, so that thescheme must rather involve the sequence�hp+1� = Z (p+1)hph �"(s)dswhich converges in law to the sequence (�hp+1W ).But one has to be careful: the new schemeXhp+1 = Xhp + (A(ph)h+ �(ph)B(ph)�hp+1�)Xhpdoes not converge to a discretization scheme of (31) (A 6= ~A).Finally, we introduce a convenient second-order scheme, similar to (34).First, one applies to a single step the Runge-Kutta method of order 4 in orderto integrate the system y(0) = Xhp_y(t) = A(ph+ t)y(t)and thenXhp+1 = y(h) +��(ph)B�hp+1� + 12�(ph)2B2(�hp+1�)2+ 12(�(ph)(AB +BA+B0) + �0(ph)B)h�hp+1��Xhp : (37)It is interesting to note that the limit of the above scheme when " goes to0 is not the scheme (34), the di�erence including only terms of order h�hp+1W



Denis Talay 97and h2. We have not succeeded to build a second-order scheme of the widebandsystem converging to a second-order scheme of the white noise system.Let us describe our simulation of the integrals �hp+1�.Let (V (t)) is a Wiener process independent of (W (t)) such that:dZ(t) = �Z(t)dt+p2dV (t) :Then we have the formula:Z (p+1)hph �"(s)ds = p""1� e� 2h"2 �"(ph) +� 1"p+1V � e� 2(p+1)h" Z (p+1)hph e2sdVs# :Therefore, it is possible to simulate the vector(�"(ph); �hp+1�)by the simulation of the Gaussian vector(� 1"p+1V; Z (p+1)hph esdVs; Z (p+1)hph e2sdVs) :For our models, we have observed that the coloration of the noise tended tostabilize the system (the limit case being the case of very large ", equivalent tothe deterministic case).6.6 RemarksThe models for the blade and the noise were simpli�ed; in particular, only phys-ical experiments during a �ight could permit to improve the modelling of thenoise, and overall a more realistic model should be nonlinear.In this simpli�ed context, the conclusion is that the turbulency around theblade has small e�ects on the stability of the blade.6.7 Convergence rateLet us consider a bilinear systemdX(t) = AX(t)dt+ rXi=1 BiX(t) � dWi(t) : (38)Let (s(t)) be the process on the projective space of IRd, P d�1, de�ned asthe equivalence class of X(t)jX(t)j with respect to the equivalence relation: x � y i�x = �y or x = y.The process (s(t)) is the solution of the following Stratonovich stochasticdi�erential equation, describing a di�usion process in P d�1:ds(t) = g(A; s(t))dt + rXi=1 g(Bi; s(t)) � dWi(t) ; (39)



98where g(C; s) := Cs� (Cs; s)s :Now, let us introduce the Lie algebra � = L:A:fg(A; �); g(B1; �); : : : ; g(Bk; �)g,i.e. the smallest vector space of di�erential operators containing the operatorsXi gi(A; �)@i ; Xi gi(Bj ; �)@i (j = 1; : : : r)and closed under the brackett operation [P1; P2] = P1 � P2 � P2 � P1.For s in the projective space P d�1, �(s) denotes the space obtained by con-sidering all the elements of � with all the coe�cients of the operators frozen attheir value in s.In Arnold, Oeljeklaus and Pardoux [3] is proven the following theorem:Theorem7. Let us suppose:(H) dim�(s) = d� 1 ; 8s 2 P d�1 .Then the process (s(t)) on P d�1 has a unique invariant probability measure�, and there exists a real number � such that, for any x in IRd � f0g:� = limt�!+1 1t log jX(t; x)j ; a:s:In Talay [56], is proven theTheorem8. Let us suppose that the system (39) satis�es the hypothesis:(H0) The in�nitesimal generator L of the process (s(t)) on Sd�1 is uniformlyelliptic, i.e there exists a strictly positive constant � such that, for any x inSd�1 and any vector � in the tangent space TSd�1(x):rXi=1(h(Bi; x); �)2 � �j�j2 :(HU) (i) The (U jp+1)'s are i.i.d., and the following conditions on the momentsare ful�lled:E[U jp+1] = E[U jp+1]3 = E[U jp+1]5 = 0 ;E[U jp+1]2 = 1 ;E[U jp+1]4 = 3 ;E[U jp+1]n < +1 ; 8n > 5 : (40)(ii) The common law of the (U jp+1)'s has a continuous density w.r.t. theLebesgue measure; the support of this density contains an open intervalincluding 0 and is compact.



Denis Talay 99Let (Xhp ; p 2 IN) be de�ned by the Euler scheme, the Milshtein scheme or thescheme (22).Then, if � is the upper Lyapunov exponent of (38):(i) for (Xhp) de�ned by the Euler or Milshtein scheme, j�� �hj = O(h);(ii) for (Xhp) de�ned by the scheme (22), j�� �hj = O(h2).Remark: the hypothesis (HU) is not limitative from a practical point of view,but (ii) was unnecessary to obtain the results concerning the Monte Carlo typeapproximation.7 Computation of the invariant law7.1 Position of the problemWe again consider the general system (4).Under the hypotheses below, the system has a unique invariant measure �,which has a smooth density, p. One way to compute R f(x)d�(x) for a givenfunction f is to solve the stationary Fokker-Plank equation L�p = 0, where L�is the adjoint of the in�nitesimal generator of the process (X(t)).This stationary Fokker-Plank equation is a P.D.E., and its numerical resolu-tion could be extremely di�cult or impossible, especially when the dimension ofthe state-space, d, is large, or when L is degenerate (remember the Remark ofthe section 5.1).In [26], Gerardi, Marchetti & Rosa propose to approximate (X(t)) by a se-quence of ergodic pure jump processes which converges in law.Since for any �-integrable function f we have:Z f(x)d�(x) = limt!+1 1t Z t0 f(X(s))ds ;we propose to simulate one long trajectory of a process (Xhp), and to approximateR f(x)d�(x) by 1N NXp=1 f(Xhp) :As in the preceding section, the critical point is the choice of N : again therandom variable 1pt Z t0 [f(X(s))� Z f(�)d�(�)]dsis asymptotically Gaussian, but the variance of the limit law depends on thesolution of a P.D.E. which itself depends on the unknown R f(x)d�(x).At the present time, we do not know what could be a good procedure toestimate this variance.



1007.2 Second-order schemesAs for the approximation of Lyapunov exponents, these schemes seem to have abetter long-time behaviour than simpler ones.For example, one can show (cf Talay [55]):Theorem9. Suppose that the hypotheses (H1), (H2), (H3) hold:(H1) the functions b, � are of class C1 with bounded derivatives of any order;the function � is bounded;(H2) the operator L is uniformly elliptic: there exists a positive constant � suchthat 8x; � 2 IRd ; Xi;j aij(�)xixj � �jxj2 ;(H3) there exists a strictly positive constant � and a compact set K such that:8x 2 IRd �K ; x � b(x) � ��jxj2 :Consider the scheme (22) and the MCRK scheme (23), with the law of theinvolved random variables de�ned as in the section (5.3), with the additionalhypothesis: the law of the U jp+1's and of the U jp+1's has a continuous densityw.r.t. the Lebesgue measure.The schemes (22) and MCRK de�ne ergodic Markov chains and for any func-tion f of IRd of class C1, having the property that f , as well as all its derivatives,have an at most polynomial growth at in�nity:8x 2 IRd : limN!1 1N NXp=1 f(Xhp(x)) = Z f(�)d�(�) +O(h2) ; a:s:For the Euler and the Milshtein schemes, the convergence rate is of order h.We underline that now we do not require anymore that the law of the U jp+1'shas a compact support, therefore the Gaussian law of the increments of theWiener process is allowed.Again, another good (and probably usually better) algorithm is to performa Romberg extrapolation (see the subsection 5.7); indeed, as for the problem ofcomputation of Ef(X(t)) on a �nite time interval, the errors due to the di�erentschemes introduced above can be expanded as power series in the discretizationstep h (see Talay & Tubaro [58]):Theorem10. Suppose that the hypotheses of the preceding theorem hold. Let  eand  m be de�ned by (25) and (26) respectively and set�e := Z +10 ZIRd �e(t; y)�(dy)dt ;�m := Z +10 ZIRd �m(t; y)�(dy)dt :



Denis Talay 101Then the Euler scheme error satis�es: for any deterministic initial condition� = Xh0 , Z f(y)�(dy)� a:s: limN!+1 1N NXp=1 f(Xhp(�)) = ��eh+O(h2) : (41)For the Milshtein scheme, an analogous result can be written, substituting �mto �e.7.3 Numerical experimentsThe example is the same as in the section (5.5), with 
 = 0, so that the invariantlaw is Gaussian of zero mean and of covariance matrix C.We have observed a strong numerical instability of all the schemes (the resultsare very di�erent when h = 0:01 and h = 0:015), but the second-order schemeslead to good results.Below (�gure 12), we compare 1N PNp=1 f(Xhp(x)) for the Milshtein scheme(thin line) and the scheme (22) (thick line), forf(x1; x2) = jx1j4(the correct value is 3.0; in x-axis : Nh).
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Fig. 12. Milshtein and second-order schemes.Remark : for the two schemes, 1N PNp=1 f(Xhp(x)) converges to R f(�)d�h(�),where �h is the invariant law of the Markov chain (Xhp).



1028 PRESTO : a generator of Fortran programsPRESTO is a system which generates Fortran programs solving Stochastic Dif-ferential Systems.The user describes his problem using a bitmap environment; then PRESTOtreats the data, performs the transformation Stratonovich/Itô of the system ifnecessary, uses its knowledge base in order to decide what particular schemecan be used in the context described by the user, what random variables mustbe involved and how they must be simulated, and �nally writes a commentedcomplete Fortran program ready to be run.Internally, the analytical expressions of the coe�cients of the Itô systemand of the chosen scheme are computed by procedures written in a ComputerAlgebra Programming System Language (Reduce in the �rst version, Maple inthe current one).A complete description can be found in Talay [57].9 ConclusionWe have proposed some discretization methods of stochastic di�erential sys-tems, which seem e�cient when one wants to simulate trajectories of di�usionprocesses, or when one wants to compute certain quantities depending on thelaw of a di�usion process, by techniques involving simulations.A lot of open problems still remain, some of them are being studied: as ex-amples, we could quote the discretization of re�ected di�usions processes (whichare studied in extremely recent interesting papers, see e.g Calzolari & Costan-tini & Marchetti [15] on the simulation of obliquely re�ecting Brownian motions,Liu [35] who uses a penalization technique, Lépingle [34] for re�ections at theboundary of a half�space or an orthant, and in a more abstract way Slomin-ski [50]), the approximation of stopped di�usions and the numerical approxima-tion of elliptic P.D.E.'s in bounded domains (see Milshtein [39]), the estimationof the necessary simulation time corresponding to a given accuracy for ergodiccomputations (computation of the stationary law, Lyapunov exponents, . . . ),etc.From the numerical implementation point of view, Bouleau [12] and BenAlaya [6] have just opened new perspectives by the use of the shift method togenerate Brownian paths with few calls to a random number generator, and bytheir mathematical analysis of their algorithm (which is a nice application of theergodic theory) in particular when the objective is to compute expectations offunctionals of di�usion processes.All these works show that the numerical analysis of di�usion processes is a�eld which is developing so fast that a new review paper will be necessary in anext future.
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