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3.Simulation of Stochastic Differential Systems

Denis Talay

Abstract!

We present approximation methods for quantities related to solutions of stochas-
tic differential systems, based on the simulation of time-discrete Markov chains.
The motivations come from Random Mechanics and the numerical integration
of certain deterministic P.D.E.’s by probabilistic algorithms.

We state theoretical results concerning the rates of convergence of these meth-
ods. We give results of numerical tests, and we describe an application of this
approach to an engineering problem (the study of stability of the motion of a
helicopter blade).

1 Introduction

Let us consider a differential system in IR? excited by a r-dimensional multi-
plicative random noise (£(t,w)):

%X(Lw) =bo(X(t,w)) + o(X(t,w))E(t, w) (1)
where by(-) is an application from IR? to IR?, o(-) is an application from R? to
the space of d x r-matrices, and w denotes the random parameter (in the sequel,
we will omit it).

The characteristics of the random noise (bandwidth, energy, law, ...) depend
on the modelled physical problem.

Here we are essentially interested in the white-noise case, which is a limit case
of systems with “physically realizable” random perturbations (cf. Kushner [32]
e.g.); in the section devoted to the computation of Lyapunov exponents, we will
examine also systems with coloured noises.

The aim of this paper is to present efficient numerical methods to compute
certain quantities depending on the unknown process (X(t)), with algorithms
based on simulations on a computer of other processes.

We will try to justify this approach (at least, to explain why it may be in-
teresting), we also will underline its limitations; we will estimate the theoretical
errors of our approximations, and we will give the results of some illustrative
numerical experiments; we will describe an application to an engineering prob-
lem (a study of stability for the motion of a helicopter blade) and, finally, we
will describe PRESTO, a system of automatic generation of Fortran programs
corresponding to the different problems and methods presented here.

! Reprint of Chapter 3 in “PROBABILISTIC METHODS IN APPLIED PHYSICS?”,
P. Kree and W. Wedig (Eds), Lecture Notes in Physics 451, Springer-Verlag, 1995.
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Before going on, it must be emphasized that the numerical analysis of stochas-
tic differential systems is at its very beginning: at our knowledge, at the present
time only a few algorithms have been proposed (some of them irrealistic ...),
and only a few systematic numerical investigations have been pursued. Besides,
the theoretical results are not very numerous. Nevertheless, it already appears
that this field is not at all a direct continuation of what has been done for the
numerical solving of ordinary differential equations. For example, we will under-
line that it is often unuseful and even clumsy to try to approximate
the diffusion process on the space of trajectories, when one wants to
compute a quantity which depends on its law: approximate processes effi-
cient for simulations may not converge almost surely to the considered diffusion
process.

In any case, this paper treats a very few approximation problems, and we have
chosen to present only algorithms which have been studied from a theoretical
and numerical point of view. Therefore, this paper must be read as a subjective
description of the present state of a new art, and also as a hope that numerical
problems which can be efficiently solved by probabilistic algorithms will justify
and cause new developments; in particular, recent results related to Random
Mechanics (Arnold & Kloeden [4], Schenk [49] e.g.) or related to the numerical
integration of certain deterministic nonlinear P.D.E.’s by stochastic particles
methods (see Bossy & Talay ([10], [11]), Bossy [9], Bernard & Talay & Tubaro [7]
e.g.), show that the mathematical or numerical techniques developed to establish
some of the results stated below are useful in various contexts.

For complements and variations on the themes of this paper, one can also read
the contributions to the volume [14], and consult the extended list of references
in Kloeden & Platen’s book [30].

The book by Bouleau & Lepingle [13] presents the various mathematical tools
necessary to construct and analyse the numerical methods of approximation of
a wide class of stochastic processes.

2 Examples of applications and objectives

2.1 Preliminaries

For the theoretical prerequisites, we refer to the basic book of Arnold [1], or the
books of Tkeda & Watanabe [28] and Karatzas & Shreve [29] for example. Here
we will just briefly introduce some very elementary concepts, which explain the
construction of the discretization schemes.

From a mathematical point of view, one must first give a sense to the limit
system of systems of type (1) when (£(¢)) tends to a white noise. The answer
is provided by the stochastic calculus; the limit system (in a sense we do not
precise here) is a stochastic differential system in the Stratonovich sense (cf.
Kushner [32]).

Let us consider r independent Wiener processes, (W'(t)), i.e of Gaussian
processes with almost surely continuous trajectories, such that

E(W'() =0,
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E(W'(s)W(t)) = é;;inf(s,t) .
The limit system is written in the Stratonovich sense as follows:
dX (t) = bo(X(t))dt + o(X(t)) o dW(E) , (2)

equivalent to the “integral” formulation:

X(t):X(O)-l-'/n bn(X(s))dH/O o(X(s)) 0 AW (s) .

Almost surely, the trajectories of the Wiener process have unbounded vari-
ations on each finite time interval (this implies that they are nowhere differen-
tiable), therefore the integral fof a(X(s)) odW (s) cannot be defined as a Stieljes
integral. Let us give indications on its construction.

A process (Y (t)) is said adapted to the filtration generated by the Wiener pro-
cess (W (t)) (we will also simply say “adapted”) if, for each ¢, Y (¢) is measurable
w.r.t. the o-field generated by (W (s),s < t); in particular, Y (¢) is independent
of all the

(W(t1) = W(@t), W(ta) = W(t1),...,W(tn) = W(tn1)) ,

forany nand t < t; <ty <...< ty.

Let us consider a one-dimensional Wiener process (B(t)). For the class Q of
real continuous adapted (to the filtration generated by (B(¢))) processes (Y (t))
which can be represented as Y (t) = Y (0) + M(t) + A(t), where Y(0) is a r.v.,
(M(t)) is a continuous locally square integrable martingale relative to the previ-
ous filtration, and (A(t)) is a continuous adapted process of bounded variation
on every finite time interval, one can show that for any T' > 0, the following
limit in probability exists:

n

Y (t; i
() 4 V()
‘A‘—)U . 2

=1

(B(ti) — B(ti-1)) (3)

where A denotes a partition 0 =5 < t; < ... <t, =T, and |A| denotes
maxlggn(ti — ti,] )

This limit is called the Stratonovich integral of (Y (¢)) w.r.t. (B(t)) on [0,T]
and denoted fOT Y (s)odB(s). If (Y (t)) is a matrix-valued process, and the Wiener
process multi-dimensional, the integral is defined coordinate by coordinate.

If by and o are continuous functions such that each component is twice con-
tinuously differentiable with bounded derivatives of first and second orders, then
for each Borel probability measure y on IR?, there exists a process (X (t)) in Q,
satisfying (2) and such that the law of X(0) coincides with pu, unique in the
sense that, if (Y'(¢)) is another solution with Y (0) = X(0) a.s., then for each ¢,
X(t)=Y(t) as.

We will see that the discretization of a Stratonovich integral leads to some
difficulties, which do not exist for another stochastic integral, the Itd stochastic
integral.
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To simplify, we restrict ourselves to consider those of the previous processes
(Y'(t)) which also satisfy:

t
Vi>0 , E{/ Y(s)|2ds] <00 .
Jo

One can show that the following limit exists in the space of the square inte-
grable random variables:

n

lim > Y (t,)(B(t;) ~ Blti-1)) ,

|A]—0 4
=1

where A denotes a partition 0 =tg < t; < ... <t, =t, and |A| denotes
maxlgign(ti — tifl).

This limit is called the 1t6 integral of (Y (¢)) w.r.t. (B(t)), and is denoted
by fot Y (s)dB(s). Under our hypothesis on (Y (¢)), the process (fg Y (s)dB(s))
is a square integrable martingale, which is often used in the proofs of most
approximation theorems stated below.

Moreover, under the above assumptions on bg(-) and o(-), one can also show
that the solution of the Stratonovich system (2) is the unique solution of:

X(t):X(O)+/0 b(X(s))ds+/0 o(X (s))dW ()

where, if o; denotes the j* column of ¢ and do; the matrix whose element of
the it" row and k** column is o’

B = o)+ 5 D0 00,()0 ()

In differential notations, the previous equation is written under the form of
an It6 stochastic differential system:

dX (t) = b(X (8))dt + o (X (£))dW (t) . (4)

As a consequence of the definition of the Ito6 integral, it appears that the
differential chain rule is different from the deterministic case: for any real function
of class C2, we have the following formula (the It6 formula):

df (X (1)) = Lf(X(8))dt + o (X (£))Vf(X(2)) - dW(2) , (5)

where, if the matrix a is a = 0o, L is the following differential operator:
d 1
L=3"b()d+ 5 > ai(2)di; (6)
i=1

Let us now briefly present the situations that we will treat.
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2.2 Simulation of trajectories

We are supposed to have at our disposal exact or approximate trajectories of
the Wiener process (W (¢)), and we want to “see” the corresponding approximate
trajectories of (X (¢)). As we will show later on, when the dimension of the noise
is larger than 1 and only approximate trajectories of (W (t)) are available, this
problem has a signification under a stringent condition which must be fulfilled by
o(-) and will be called in the sequel the “commutativity condition” (its precise
formulation will be given below).

Let us give 2 examples of situations where one may wish to get trajectories
of the solution of a S.D.E.

First, let us suppose that the process (X (¢)) depends on a parameter 6, that
one wants to estimate from a unique observation of (X (¢)) during a time interval
[0,7T].

In order to test the quality of different estimators, one may choose a particular
value for 6, simulate a few trajectories of the corresponding process (X (t)), and
then apply the estimators on these simulated trajectories. For applications to
financial models, see Fournié and Talay [23] and Fournié [22], e.g.

A less elementary example is a filtering situation, where (X(¢)) is a non
observed process solution of (2), whereas one observes realizations of a process
(Y(t)) satisfying:

dY (t) = g(X (£))dt + adW () + BAV (1) |

where (V(t)) is a Wiener process independent of (W(t)); one wants to get the
conditional law of (X (t)), given the observations (Y (s),0 < s < ¢). In the non-
linear case, under some regularity assumptions on the functions by, o, g, the
answer is given by the so-called Zakai equation satisfied by p(¢,x1,...,z4), the
unnormalized density of this conditional law:

dq(t) = Aq(t)dt + Boq(t)dt + Biq(t)dt + Coq(t) o dY (t) + Ciq(t) 0 dY(t) .

where A is a second-order operator, By and C; are first-order operators, By and
Cy are zero order operators.
The previous equation is a stochastic partial differential equation. To solve
it numerically, Florchinger and Le Gland [19] propose the following algorithm.
Let (t,) be a dicretization of the time interval [0,¢], and § be the approxi-
mate density. On each time interval, [t,,fp41], one first numerically solves the
deterministic P.D.E.

d
Eu(t) = Au(t) ,

“(tp) = q(tp) )
and then one considers the stochastic P.D.E.
dv(t) = Bov(t)dt + Bio(t)dt + Cov(t) o dY (t) + Cru(t) o dY (t)
v(tp) = “(tp+1) -



68

Let us write the operators By and C; under the form: By = b;(2)V and
C] = C1 (LU)V
Let (Z(t;s,z)) the flow associated to the stochastic differential equation:

dZ(t) = —bi (Z(t))dt — 1 (Z(1)) 0 dY () . (7)

Then one computes the value of v(¢,z) at points Z(#;%,, z) according to the
formula (d; and ds being appropriate functions):

t

v(t, Z(t;tp, 2)) = v(ty, 2) exp {/fld](Z(s;tp,z))ds + /,ldQ(Z(s;tp,z)) o dY(s)}

“p Lp

and g(t,+1) is given by g(tp41) = v(tpt1)-
This procedure requires to solve (7) in a pathwise sense: one wants to get the
path of (Z(t)) corresponding to the particular observed path of (Y (¢)).

2.3 Computation of statistics of (X (¢)) on a finite time interval

For example, one wants to compute the first moments of the response of the
dynamical system (X (t)), or, more generally, Ef(X(t)), f(-) being an explicitly
given function.

Another motivation is to construct Monte Carlo methods to solve parabolic

P.D.E.’s in R?
Lu(t,r) = Lu(t, x) ,
u(0,2) = f(z) ,

in some situations where deterministic methods are not efficient: the theoreti-
cal accuracy and the numerical behaviour of the probabilistic algorithms are not
affected by the possible non coercivity of the second-order elliptic differential op-
erator L, and the computational cost growths only linearly w.r.t. the dimension
d of the state space.

Therefore these methods and the stochastic particles methods (random vor-
tex methods for the integration of certain non-linear P.D.E.’s in Fluid Mechanics
e.g.) which also require the simulation of stochastic processes (see the references
given at the end of the Introduction) can be useful in degenerate situations or
when the state space has a large dimension; in Random Mechanics, often (X (t))
is a vector (position, speed), and therefore both degeneracy and a high dimen-
sional state space occur. Other examples are the situations where u(t, ) needs
to be computed only at a small number of points, for example in order to sep-
arate the integration space in subdomains where deterministic methods become
efficient.

To compute Ef(X(t)), if we could simulate the process (X (¢)) itself, we would
simulate several independent paths of (X (¢)), denoted by (X (¢t,w1), ..., X(t,wn))
and then we would compute the average

1 N
7 LX)
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Instead of (X (t)), we propose to simulate another process (X (¢)); as we are
interested in the approximation of the law of (X (t)), it is unnecessary that (X (t))
is a trajectorial approximation of (X (¢)), and the “commutativity condition” will
not be required (better, some efficient processes (X (¢)) in that context are not
at all approximations of (X (¢)) in the pathwise sense, and even do not converge

almost surely to (X (¢)).

2.4 Asymptotic behaviour of (X (t)), Lyapunov exponents

In the section 6.1, we present an industrial problem leading to the study of a
bilinear system for which it can be shown that, (X (¢,z)) denoting the solution
of (2) with initial condition z, the almost-sure limit

1
A= lim ?10g|X(t,x)\

t— 400 {

exists and is independent of x (it is the upper Lyapunov exponent of the system);
the problem is to determine the sign of that limit: if it is strictly negative,
almost surely (X (¢)) tends to 0 exponentially fast for any initial condition z, the
system (2) is then said to be stable.

The proposed algorithm consists in simulating one particular path of a pro-

cess (X (t)) over a long time [0,7] and in computing
X = 7 1og [X(T.0)
v =7 log &

We will classify different processes (X(t)) according to the following cri-
terium: how large is

A=A

where ) is the Lyapunov exponent of the process (X (t)), defined by

T—o0

1
lim ~ log [X (T
Jim - log | X(T, z)|

Remark: this criterium does not take into account the error due to the nec-
essary approximation of A by Az, which only depends on the choice of the inte-
gration time 7. We will see that, from a practical point of view, this choice may
be very difficult.

An extension of the method has been developed and analysed for nonlinear
systems.
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2.5 Computation of the stationary law

Under some conditions on the coefficients by () and o(+), one a priori knows that
the process (X (¢)) is ergodic. Let us denote by p its unique invariant probability
law.

One may be interested in computing [ f(z)du(z) for a given function f
(for example, in order to get the asymptotic value of Ef(X(¢)) when ¢ goes to
infinity, i.e to describe the stationary distribution of the response of the system,
which often is of prime importance in Random Mechanics). For reasons already
underlined, the numerical solving of the stationary Fokker-Planck equation may
be extremely difficult.

Here, we propose to choose T “large enough” and to compute

Y -
T/o f(X(s,x))ds .

2.6 Remark

As it has been mentioned above, it will appear that the choice of the convenient

process (X (t)) must be related to the final purpose of the simulation.
Our basic tool to construct this process is the time discretization of the
system (4).

3 Discretization methods

3.1 Introduction to the Milshtein scheme

Let us consider the expression

X (1) :X(O)+/0/bg(X(s))ds+/0,a(X(s))odW(s) .

From the definition (3) of the Stratonovich integral, for small # the integral
f[;’ (X (s)) o dW(s) can be approximated by
1
(X (@) + (X)W (t) -W(0) ,
and therefore this procedure would lead to an implicit discretization scheme.
According to the definition of an It6 integral, a rough approximation of (X (¢))
(for a small ¢) can be:

X(t) ~ X(0) 4+ b(X(0))t + o (X(0)(W(t) — W(0)) .
Let h be a discretization step.
The above remark justifies the Euler scheme for (4):

X =X +b(X)h+a(X0)(W((p+1)h) — W(ph)) . (8)
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This scheme can easily be simulated on a computer: at each step p, one has
just to simulate the vector W((p + 1)h) — W (ph), whose law is Gaussian.

As we will see, nevertheless this scheme may be unsatisfying: for example, it
is divergent for the pathwise approximation of (X (#)).

Let us introduce a new scheme, and first consider the case d = r = 1.

If we perform a Taylor expansion of o(X(t)), we easily get:

X(t) ~ X(0) +b(X(0)t+ o(X(0)(W(t) — W(0))
+ o (XO) (X)) [ (W) - W)aw(s)

At a first glance, the situation is more complex than previously, because
of the presence of the stochastic integral fJ(W(s) — W (0))dW (s). But the Ito
formula shows:

|07 = wonawes) = 3ove? - .

Then, again only Gaussian laws are involved in the previous scheme, due to
Milshtein [37] who introcuded it in 1974 for the mean-square approximation of

(X(#))-

3.2 The multi-dimensional Milshtein scheme

Let us now examine the general case.
Let us introduce the notation

AP W= W((p+1)h) — W(ph) .

The same procedure as before leads to the multi-dimensional Milshtein scheme:

—h —nh - —h : ——h
X =X, + > 0i(X,) AL W +b(X,)h
j=1

r — —p [tDh _
+ 3 om (T [ V) - WE)aw ) (9
j.k=1 vP

Now, the situation is really complex, because of the presence of the multiple

stochastic integrals fp(:H)h'(Wk(s) —W*(ph))dW?7(s): these integrals do not de-
pend continuously on the trajectories of (W (¢)) (therefore are annoying for the
trajectorial approximation), and the joint law of these integrals and the incre-
ments AZH W seems difficult to simulate: in particular, it cannot be seen as the
law of a simple transformation of a Gaussian vector (see the work by Gaines &
Lyons [25]).

How to get rid of this difficulty is one of the main features of the numerical
analysis of stochastic differential systems.
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3.3 Mean-square approximation and Taylor formula
Milshtein [37] proved the following result:

Theorem 1. Let us suppose that the functions b and o are of class C%, with
bounded derivatives of first and second orders.

Then the Euler scheme satisfies: for any integration time T, there exists a
positive constant C(T') such that, for any step-size h of type %, n € IN:

n

[E|X(T) 77"')\2}5 <omWh .

For the Milshtein scheme, we can substitute the following bound for the error:
1
[BIxX(T) - X1 <cmn

It can be shown that the Milshtein scheme is not “asymptotically efficient” in
the sense that the leading coefficient in the expansion of the mean square error
as power series in h is not the smallest possible. Clark [17] and Newton ([40],
[41] and [42]) have introduced new schemes which are asymptotically efficient;
these schemes may be seen as versions of the Milshtein scheme with additional
terms of order hA2, W and (A%, W)? (when the Wiener process is scalar).
In the two last references, efficient schemes based upon first passage times of
the Wiener samples through given points, and efficient Runge-Kutta schemes
are presented. Another very interesting approach can be found in Castell &
Gaines [16], based upon the representation of diffusion processes in terms of the
solutions of ordinary differential equations.

Let us now examine the question of the order of convergence.

Let us say that a random variable is of order k if its variance is upper bounded
by Constant x h?*.

The Milshtein scheme involves only random variables of order less than 1.

To get a better rate of convergence in the mean-square sense than this scheme,
one must involve multiple stochastic integrals of order strictly larger than 1, for
example:

(p+1)h )
/ ) - W)W ()~ W k)W ()

(p+1)h _ (p+1)h
[7 i) [t - s
ph J/ ph

in order to get an error of order h.

The coeflicients of these integrals in the schemes are given by a Taylor formula
(see Platen & Wagner [47]).

Of course, most of these integrals, as those involved in the multi-dimensional
Milshtein scheme, have probability laws difficult to simulate (see Gaines [24]).
Therefore, in the general case, the Euler scheme is the only efficient scheme for
the mean-square approximation.

Nevertheless, there exists a situation where the multi-dimensional Milshtein
scheme involves only the increments of the Wiener process A';HW.
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3.4 The commutativity condition
Suppose that the column vectors of the matrix o satisfy the following condition:
Vi VE i 90;(-)ok() = dow()a;(-) - (10)

That condition means that the vector fields defined by the column vectors of o
commute. It is obviously satisfied when the noise is one-dimensional, or when
the function ¢ is constant.

The Tt6 formula and this hypothesis imply:

(p+1)h _
d01()05() / ) - W) ()
(p+1)h ) )
+00;()oi () / ) - W) o)

= 001 ()a; (Y WE((p + D)h) = WE(ph)) (W ((p + 1)h) — W (ph)) . (11)

and therefore the Milshtein scheme can be rewritten:

—h —nh - —h ; ——h
X =X, + > 0i(X,)AL W +b(X,)h
j=1

" —h, —h . L
+) > 00,(X ) o (X,) AL, WAL W

k=2 <k
1 o —h.  —h .

+§Zaaj(x’;)aj()(2)[(A;HWJ)Z—h] . (12)
j=1

A very nice result due to Clark & Cameron [18] shows that, under the com-
mutativity condition, the Milshtein scheme leads to the best possible rate of
convergence for the mean-square approximation (i.e k) among all the discretiza-

tion schemes involving only values of the process (W (¢)) at times (ph,0 < p <

n=x).

4 Almost sure and pathwise approximation

4.1 Statement of the problems

First, let us suppose that we observe or simulate increments of the Wiener process
during time intervals of length h; then we construct a continous time process
(X (t)) by using the Euler scheme and by interpolating linearly between the times
ph. Does this process converge almost surely to (X(¢)) on finite time intervals
when h goes to 0 ?

Second, let us now suppose that we dispose of a deterministic function ¢t —
u(t) which approximates a given trajectory of (W (¢)) in the sense of the topology
of uniform convergence on the space of continuous functions on [0, T'.
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We hope to get an approximation of the trajectory of (X (t)) on [0,T] corre-
sponding to this particular trajectory of (W (t)).

To give a sense to this new problem, a natural condition is that
there exists a continuous mapping F from R?xCy(R;R") ? to C(IR,;R")
such that X (¢) = F(X(0),W)(t), a.s.

A result due to McShane [36], Doss [20] and Sussman [51] shows that this
mapping exists if the above “commutativity condition” is satisfied.

Now, the problem is to build a scheme defined by functionals gzﬁz on the space

R? x C([0, ph]):

XoY=X(0) , X0

—h,u
p+1 = ¢Z(Xp 7(71‘(t)70 S t S ph’))

such that: for any entry (u(t)) belonging to a large set of functions (including
the trajectories of (W (t)) and their reasonable approximations), if x,(¢) denotes

F(X(0),u)(t), and if t — YZ(t) is the function defined by

X" :7};’“ , ph<t<(p+1)h ,
then
lim sup |z,(t) *Yﬁ(m =0.
h—0 0<t<T

When this property is fulfilled, the scheme is robust w.r.t. small pertubations
of the trajectory u(-); we say that the scheme converges in the pathwise (or
trajectorial) sense.

4.2 Example

Let (B(t)) be a one-dimensional Wiener process. From the 1t6 formula (5), the
process

X (t) = exp(t + B(t))

solves the one-dimensional stochastic differential system:

AX (1) = 2X()dt + X(DdB(E) .

It is easy to see that the Euler scheme (8) converges almost surely, and con-
verges in the above pathwise sense only if the function (u(t)) has the same
quadratic variation as the trajectories of the Wiener process.

The situation is different with the Milshtein scheme.

2 Co(IR+;IR™) denotes the set of continuous functions f from IRy to IR? such that

£(0) = 0.
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4.3 Main results

For the almost sure convergence problem of the Euler problem, a first result ap-
pears in Newton ([40] and [42]). More precise statements appear in Faure (|21]),
for example:

Theorem 2. Let us suppose that the coefficients b(-) and o(-) are Lipschitz.

(i) If for some integer K > 1 the initial condition X, satisfies E|Xo|*" <

—h
oo, then the interpolated Euler scheme with step-size %, (X (), converges

almost surely to (X (t)) on [0,T] when n goes to infinity.
(ii) If the initial condition has moments of any order, then the order of conver-
gence is given by

1 = n—-+0oc
Ya< = , n% sup |X(t) — X(t)] =0, as.
2 te[0,T)

Let us now turn to the trajectorial problem.

In the multidimensional case, the remarkable point is that the commutativity
condition, which is necessary to have a well-posed problem, is also sufficient
to make the Milshtein scheme (9) depend only on the values of (W (t)) at the
discretization points (formula (11)). This leads us to introduce the trajectorial
Milshtein scheme defined by

—h,u

—h,u r —h,u . —h,u
X, =X, 4 o, (X, Ak 0! +b(X,)h
j=1

- —h,u —h,u :
+ ZZBUJ-(XP Jor(X, )AZHUICAZHU]
k=2 j<k

1 : —h,u —h,u :
+ 3 Z do; (XZ )k (XZ ) {(AZHH,])Q - h} . (13)
j=1

In Talay [52] the following result is proven:

Theorem 3. Let us suppose that b and o are bounded, of class C3 with bounded
derivatives up to the order 8, and that the function (u(t)) satisfies:

lim Z\u(ti) —u(ti_))P =0, (14)

where A denotes a partition 0 =ty < t; < ... < t,, =t, and |A| denotes
maxlggm(ti — ti,] )
—h
Then,if (X ,(t)) is defined as in the previous section, under the commutativity

condition:
lim sup |za(t) — X.(£)] =0 . (15)
h—>OUStST
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Remarks

— The condition (14) is satisfied by the paths of the Wiener process, but also
by a much larger class of functions (for example, the differentiable functions).

— The proof of the theorem (3) is based on an analytical expression of the
mapping F'.

— It is also shown that the Milshtein scheme has the best possible rate of
convergence for the criterium (15).

— The commutativity condition is a strong limitation to the trajectorial ap-
proximation of the solution of an It6 differential system. But, in some sense,
this problem forgets the fact that (X (¢)) is a stochastic process, whose statis-
tics may be more interesting than some particular paths. We will not need
this condition to approximate quantities depending on the law of (X (¢)).

— The asymptotic distribution of the normalized Euler scheme error is analysed
in Kurtz & Protter [31].

4.4 Numerical example
The following numerical test illustrates the divergent behaviour of the Euler
scheme for the pathwise approximation.
Let (X (t)) the 2-dimensional process defined by
X(t) = (sin(W(t)), cos(W (1)) ,

where (W (t)) is a one-dimensional Wiener process.
This process solves a system with the function b(z,z2) defined by

bt = -5
and the matrix ¢ is defined by

o1 = a?

o9 = —x'

We have simulated a trajectory of (W (t)), and a perturbation of it: we have
simulated a second Brownian trajectory (denoted by ¢t — V(t)), and, for each ¢,
we have added V' (t) to W ().

The figure 1 shows the “exact” path of (X (¢)) corresponding to the simulated
path of (W (t)). The figure 2 compares the evolution in time of the errors (in the
trajectorial sense) due to the Milshtein scheme (thick line) and the Euler scheme
(thin line), corresponding to ¢ = 0.001 and h = 0.01.
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Fig. 1. Exact path.
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Fig. 2. Milshtein and Euler schemes.
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5 Computation of Ef(X(t))

5.1 Methodology

Now, we are interested in the approximation of Ef(X(¢)) on a fixed finite time
interval [0, T'.

Suppose that the coefficients b and ¢ are smooth enough, and that the oper-
ator L defined in (6) is hypoelliptic; if the law of the initial condition X (0) has
a density po(-), then for any ¢ > 0 the law of X (¢) has a density p(t, -) solution
of the Fokker-Planck equation:

{ p(t,w) = L'p(t,x)
p(0,2) = polx)

where L* is the adjoint of the differential operator L (see [28] e.g.).

Thus a first method to compute E f(X (¢)) consists in integrating the previous
P.D.E. But the numerical solving of this P.D.E. can be difficult, for example when
the dimension d of the process (X(#)) is very large, or when the differential
operator L is degenerate (it very often is the case in problems coming from
Mechanics, in particular each time (X (t)) is a vector (position,velocity)).

A second method consists in using a Monte Carlo method. Let us begin by
choosing the Euler scheme (8), and let us simulate (if possible, in parallel) a large
number NV of independent realizations of the Gaussian sequence (AZ+1 W,p e IN).

Then, for each discretization step, we get N independent realizations of YZ,
—h
denoted by X (w;), and we can compute
1Y h
~ 2 F(X (@) - (16)
i=1
By the strong law of large numbers, this gives us an approximate value of
—h
Ef(X,). The quality of this approximation depends only on the choice of N.
—h
It remains to estimate the error |E f(X (ph))—Ef(X,)|. It can be shown that,
under some smoothness assumptions on b, o, if the law of X (0) has moments of

any order, then, for any time 7', there exists a positive constant C(7') such that,
for any discretization step h of type h = %, n € IN:

|Ef(X(T)) = Ef(X)| < C(T)h .

It can be also shown that, even under the commutativity condition, the Mil-
shtein scheme has the same rate of convergence.

This is illustrated by the following example: choose d = r = 1, b(z) = iz,
o(z) = x and f(x) = z*. Then, for the Euler or Milshtein scheme, there exist

constants Cp, Cs such that:

Ef(X(T)) — Ef(X")| = CiT exp(CoT)h + O(h?) .
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Therefore, the Milshtein scheme which is “optimal” in the mean-square sense
and in the trajectorial sense is so poor as the Euler scheme for an approximation
of the law of (X (¢)).

The technique introduced in Talay [53] or [54], Milshtein [38] permits to anal-
yse the error on E f(X(T')) without using estimates in L? of X (T') —72. It also
permits to construct second-order schemes. A refinement of the analysis leads to
a very efficient procedure (see the section 5.6 below).

5.2 Second-order schemes

Let P be the set of numerical functions of R?, of class C%, such that f and its
partial derivatives up to order 6 have a growth at most polynomial at infinity.

A scheme is said of second-order if it satisfies for any system whose coefficients
b, o are smooth and have bounded derivatives of any order: for any function f
in P, for any time T, there exists a positive constant C(T') such that, for any
discretization step h of type h ==, n € I\N:

|Ef(X(T)) - Ef(YZ)\ <o(mn® . (17)

Let F, be the o-algebra generated by (737 e 772).

In Talay [54], it is shown that a sufficient condition for a scheme to satisfy (17)
is the set of hypotheses (C1), (C2), (C3):

(C1) Xg = X(0) ;
(C2) VneN,YNEIN,3C>0,Vp<N , EX,|"<C ;
(C3) the following properties are satisfied for all p € IN, where all the right-side

—h
terms of the equalities must be understood evaluated at X

E (Ap 1 X|Fy) = bh+ 5 (Lb)h2+€p+1 . Elgpn| < CR |

E((Ap X)) (450 X)"

p) = 0o h+ (b1b" + iaklff;lakaff o/to)
T Loubatok + Loybigi gt
9 k005 0; 2 kD040
+l ila Zgbk+l iza ilbk
20]- kU]- 20']- kO']-

1 1 :
+4U;181\[0'120'k0l + 40228k10”01‘02)h2
+E Bl <CR

)h‘]:p) (bl]oﬂo 13+bzgo_13 11 -I—b”O' 0,]“

E ((Ar

p+]y) (Ah

p+1

1
0’1381\ U“U“ JI‘

+1 20p00l of +
U[ kO, U 5 j

2

1 1
+ 20128;\01”0’20 + 20118;\0”01201‘
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1 1,
1 ia i3 _k 29 11 13 _k 2
+ 57 oo oo + Xl ooy ool )h

+£111013 7 E|£111213| S Ch3 ,

p+1 p+1
E ((AZ’HY)i1 (Ah+1X)l4|f) = (0] 0}”0, U, -l-rrli1 0230;20f4

+ 0} 0’140'1120[ )h? +€p+]
El&yi| < Chfg
((Ah+1X) (Ah+1X) |Fp) = p+i E|E)

((Ah+1X) (Ah+1X)lG|‘7:) p+'1'i6 . Bl

)

p+1

i) < Ch3

An interesting fact happens.

To satisty the condition (C3), a scheme does not need to involve any stochas-
tic integral (even A W = fp(,er])h' dW (s)!). Very simple random variables may
be used, the only requirement is that the law of these random variables must have
the same small number of statistics (for example, the same expectation vector,
the same correlation matrix, and so on) as a certain finite family of stochastic
integrals. Let us see 2 examples.

5.3 Two examples of efficient second-order schemes

Let us introduce the random variables that will be involved in our schemes.

— The sequence
(U;+]7Up+]7] k=1,....,mpeN)

is a family of independent random variables; the (U;H) are i.i.d. and satisfy
the following conditions:

E[U;,,)] = E[U),.)° = ElUJ,.,)° = (18)
ElUI =1, (19)
E[U;])' =3, (20)
E[UI 1% < 400 ; (21)

the (U l]) are i.i.d., their common law being defined by

o1 o 1 1
PUM = )=P(UMN =—=) ==
(O = 5) = PO} = —5) = 5
For example, one can choose
I AhHVW

p+1 \/E
2

and as well one can choose for UZ+1 the discrete law of mass $ at 0 and of
mass % at the points +v/3 and —/3;



Denis Talay 81

— the family (Z}7) is defined by

kj k k .
Zpi] = 2Up+1U]+1 + UpJ]rl k<j,
kj k j Frik .
Zyiy = 2Up+1Up+1 —Upis k>7

1 .
Zi =5 (0507 1)

Now, a being a = g0*, we define the vectors A; by
1<
— k .
A; = 3 E a; oo .

k=1

We recall that we denote by L the infinitesimal generator of the process

(X(#)):

We cousider the scheme defined by

X=X +Za] UL VR4 b(X)h + Z 90,(X,)ow(X,) 25 1
7,k=1
—h., ~h —h i 3
+2 Z{ab X) + 00, (X)b(Xp) + 4;(X;) } Uy b
+§Lb(7p)h2 : (22)

It has been shown that this scheme is of second order (see Talay [53] or [54],
Milshtein [38]). The Taylor formula given in Platen & Wagner [47] helps to un-
derstand how it has been constructed.

Another example of second-order scheme is the following “MCRK”scheme of
Talay [54], which is of Runge-Kutta type, and therefore may be more interesting
than the previous scheme from a numerical point of view, since most derivatives
of the coefficients are avoided.

We define the new family

(v

it p+1’7 k=1,....,mp€eN)

so that the family
] ] Frkl mn
(U;+1 ) V,;7+17 Up+17 Vp+1)7,k,l,m,n,p

is a sequence of independent variables, the 1% 541 8 having the same distribution
as the U o418, and the Vp’iq’s having the same distribution as the U*! i1 S
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Now we define (S%7), (T'}7) and (Z}7) by

1

Spi] :Z(Up+1Ulj)+l+Upi]) i k<] ”

kj Lok 5k .
Spi] :Z(UerlU;gH _U;+]) sy k>g

iy 1 ,
Sp = 3 (W =1)

kj 1 j ~ kj .
Tpi] = Z(Vpilvﬁq] + Vpi]) ’ k < J

_ 1 . o
kj k : gk .
Tp-|7-1 = Z(Vp+]vp7+1 - Vp7+1) c k>g
1

o .
T =4 ((Vp7+1) - 1)
. y y 1 .
k k k .
Zyh =S+ T + §U§+1V737+1 s k#FT
- 1 . o
Z;il =2 ((U;H + V;;7+1) - 2)

The MCRK scheme proceeds in 2 steps.
—h
From X, one first computes:

h —h V2 —h 1. —n
piy =X +70—(XP)U;+1\/E+§b(XP)h

. —h —h i
+ Y 90,(X,)ou(X,) S0 b

p+1
Jk=1

Then the new value YZH is obtained according to the formula:

—h —h —h —h 1 —n
Xpos = X, 4 o001 4 0 (K)o 50 (XU + Vi) | VR

——h —~h ~ki ——h —h ki
+ > 200X (X)S5L ik + 2005 (K,4)0k (K4 )T B
j, k=1

—h —h o 5
~00;(X,)ou(X,)Z5h| . (23)

Other examples of Runge-Kutta schemes are studied for the quadratic mean
error, in Rumelin [48] and in Newton [42].

5.4 Remarks

— The law of the family (\/EUZH, hSk hTX hZE) can be chosen in various
ways. A precise formulation of families such that the above schemes are of sec-
ond order is given by the notion of “Monte Carlo equivalence” in Talay [54].
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The idea is that the law of the family must only have a small number of
properties; in particular, these properties imply that the expectation vector
and the correlation matrix of

(VAU ., hS}%1)
and

h e k k j
A [ )~ W h)aw (o

differ only by terms of order h3.

— As already mentioned, the above schemes may diverge for the almost sure
and pathwise approximations (even under the commutativity condition), in
particular if one chooses for the U, ,’s a discrete law.

— The choice of the number of the independent realizations to simulate in order
to perform the Monte Carlo computation depends on the wished accuracy.
In practice, one may first roughly estimate the maximal value of the variance

~h . . . . .
of f(Xp) on the considered time interval, by simulating a small number N,

—h
of sample paths of (X ); then, one chooses N according to the central-limit
theorem, and finally one simulates N — Ny other samples to approximate

E[f(y};)] with a better accuracy.

Of course, this is the critical point of the procedure: the Monte Carlo algo-
rithms converge slowly, and in practice N must be large, especially when the
variance of f(X(t)) increases with ¢. If a particular discretization method
permits to obtain a variance reduction is an extremely difficult question,
deeply examined in a recent work by N. Newton [43], based on Haussmann’s
integral representation for functional of Ité processes (see also, for a different
approach, Wagner [59]).

5.5 Numerical experiments

We now show that the numerical performances of the above different schemes
may be extremely surprizing: the Euler scheme may be more efficient than
second-order schemes (as for the ordinary differential equations, this will be ex-
plained by an expansion of the discretization error as a power series with respect
to the discretization step).

First, let us consider an example where the second-order schemes are much
better than the Euler and Milshtein schemes.

The processes (X (t)) and (W (t)) are one-dimensional, and X (¢) = atan(Z(t)),
where (Z(t)) is a stationary A(0,1) Ornstein-Uhlenbeck process solution of

dZ(t) = = Z(t)dt + V2dW (t)

so that (X (¢)) solves a stochastic differential equation whose coefficients are:

b(z) = —i sin(4z) — sin(2z) ., o(x) = V2cos?(x) .
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We compute E(cosh(1.3X(¢) + 2)) ~ 5.36168895.

The figure 3 compares the evolution in time of the errors due to the Euler
scheme (thin line) and the second-order scheme (22) (thick line). The figure 4

compares the evolution in time of the errors due to the Milshtein scheme (thin
line) and the second-order scheme (22) (thick line).

EFXT:2/h= 0.070/10000 simulations MONTECARL O,EULER

04
03 |

02

o MMAAMA MN\MW\/
EAY FEAVA S IV I 8

g v i

Fig. 3. Euler and second-order schemes.

But, in the next example, a strange fact occurs: the Euler scheme gives as
good results as the second-order schemes, whereas the Milshtein scheme may
give very bad results.

The function b(-) is defined by

b = (3v2z! + 6v2x% — 2sin(02t) Q2 — 1221 — 622)/(4(cos(2t) +2)) |
b? = (3v222 + 6v22! — 2sin(02t) 2% — 1222 — 621)/(4(cos(2t) +2))

and the matrix ¢ is defined by

0} = sin (1/ (.7:] + Tz)) ,
af = cos (1/ (.7:] +.7:2)) ,
] ) <7r+31/x] +3ux2>
oy =Sn| ————— |
3
<7r+31/x] +3vx2>
05 = Cos 3
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EFXT:2/h= 0.070/10000 simulationss MONTECARLO,MILSHTEIN
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Fig. 4. Milshtein and second-order schemes.

One can check that, if the initial law is Gaussian with zero mean and a
covariance matrix equal to

o= [yt

then the law of X () is also Gaussian with zero mean and a covariance matrix
equal to H%MC.

Let us fix v = 2, 2 = 5, and the number of simulations N = 10, 000.

The figure 5 shows the time evolution of the true value (thick line) of E|X!(t)|?
and of the approximate value corresponding to the Euler scheme (thin line): the
approximation error is weak.

The figure 6 compares the time evolution of the errors due to the Euler
scheme (thin line) and the second-order scheme (22) (thick line): these errors
are similar.

The figure 7 compares the time evolution of the errors due to the Euler
scheme (thin line) and the Milshtein scheme (thick line). These two schemes
have identical theoretical convergence rates, but, in that particular situation,
the Milshtein scheme leads to absurd results.

Numerical experiments have shown that this bad behaviour of the Milshtein
scheme is not avoided by an (even large) increase of the number of simulations.
The only remedy is a choice of a smaller discretization step. One also observes
that the Milshtein scheme has a better behaviour for small v. Let us explain
why, and present a new algorithm.
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EFXT:3/nu= 2.000/omega= 5.000/h= 0.100/ 100Q simulations’ EULER
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Fig. 5. Exact value and Fuler scheme.
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Fig. 6. Second-order and Euler schemes.



Denis Talay 87

EFXT:3/nu= 2.000/omega= 5.000/h= 0.100/ 1000 s mulationss MILSHTEIN ,EULER
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Fig. 7. Milshtein and Euler schemes.

5.6 Expansion of the error

The following theorem (Talay & Tubaro [58]) explains the numerical results of
the previous section.

Theorem 4. Let us suppose that the functions b(-), o(-) and f(-) are C>; the
derivatives of all orders of b and o are supposed bounded, those of f are supposed
to have a growth at most polynomial at infinity®. Then, for any step-size h of
the form %

(i) For the Euler scheme, the error at time T is given by

Err (T, h) = Ef(X(T)) — Ef (Yﬁ) - —h/OT B (s, X,)ds + O(h2)

(24)
where, if u(t,x) = Ef(X(t,x)):
1A
velt.7) = 5 > bt )V (¢, 2)0;u(t, x)
¢
+§ Z b'(t, x)aj (t, )0k u(t, x)
igk=1

? See the remark thereafter for a generalization of the result when f is not a smooth
function.
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! d 10°
g Z a (t,x)ay (t, )0 u(t, z) + §wu(t x)
2,7,k l=1
I~ .0
+Zb’ (t,x) 811 (t,z)+ = 5 Z a}(t.,m)aai]-u(t.,m) . (25)
ij=1

(ii) The same result extends to the Milshtein scheme:
T
Err,(T,h) = —h / Bt (s, X, )ds + O(h?)
Jo
where P, (+) is defined by

z/»m(m:):we(t.,mi S a0} (1, 0)0kor (12000 (1,2

i1,12,5,k,1

+ > o 2(t,2)0k (£, 2)0,0% (8, 2)0;, iyiy ult, ). (26)
?7'11 771]?2 j 13

(iii) The same result also extends to the schemes (22) and MCRK; besides, for
these 2 schemes, as well as for the Fuler and Milshtein schemes, an expan-
sion of the error as power series in h exists: for any integer n, there exist
constants Cy, ..., C, independent of h (but depending on the scheme) such
that:

Ef(X(T)) - Ef (Yﬁ) = Cih+ Coh? + ..+ Cuh™ + O(h™)

Remarks. In the preceding statement, f is supposed smooth. In Bally & Ta-
lay [5], this hypothesis is relaxed (f is only supposed measurable with a poly-
nomial growth at infinity) under a condition on L which is slightly more than
hypoellipticity; the technique of the proof uses the Malliavin calculus.

For the example illustrated by the figure 7, tedious computations show (cf [58])
that the difference between the Euler and Milshtein schemes errors behaves (for
large T') like

2

v
7(2 + cos(2T))h .

5.7 Romberg extrapolations

An interesting consequence of the previous theorem is the justification of a

Romberg extrapolation between values corresponding to two different step-sizes.
More precisely, let us consider a scheme such that (h = %)

Err(T,h) = Ef(X(T)) — Ef (Yf;) = e1(T)h + O(h?)
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and consider the following new approximation (the Romberg extrapolation):
PN _
7} = 2Bf(X3%) = Ef(XD) (27)

then:
Ef(X7) — Zg = O(h?)

That is, it is possible to get a result of precision of order h? from results given
by a first-order scheme.

This procedure seems to be very robust w.r.t the choice of the discretization
step. Let us give an illustration of this remark: let us compare the time evolution
of the errors due to the extrapolation based on the Milshtein scheme with the 2
step-sizes h = 0.05 and h = 0.1 (thick line), and to the Milshtein scheme itself
with the step-size h = 0.05 (thin line): the extrapolation has extremely improved
the accuracy (see figure 8).

Y AP:Va= 1.000/b=-2.000/sigma= 3.500/h= 0.017/MONTECARLO,MILSHTEIN

0.6
04
02
o 100 200 300 400 500 600 700 800
*10
0.2
-0.4 R s e s s s e e

Fig. 8. Romberg extrapolation.

5.8 High order schemes

Of course, from a theoretical point of view it is possible to construct schemes with
a convergence rate of an arbitrary order, or to get a precision of an arbitrary order
by linearly combining results corresponding to a given scheme (Euler, MCRK,
etc) and an appropriate number of different step-sizes.

We are not sure that high order procedures can be useful. Generally, it is
impossible to choose a step-size too large without losing too much information
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on the law of the increments of (X (¢)). For small values of h (0.05 for example), it
is difficult to see the gain in accuracy due to a 3rd order method, compared to a
2nd order one: the error due to the approximation of Ef(72) by the average (16)
cannot be reduced enough (one cannot choose N so large as we would like!).
Besides, the coefficients C; in the expansion of the error depend on the successive
derivatives of b(+), o(-) and f(-). Often, C; is rapidly increasing w.r.t. i.

6 Computation of Lyapunov exponents, study of stability

A summary of the theory of Lyapunov exponents of dynamical stochastic systems
can be found in Arnold [2]; for bilinear systems, complements can be found in
Pardoux & Talay [45].

To compute the upper Lyapunov exponent of 2-dimensional bilinear systems,
W. Wedig [60] proposes an ingenious deterministic algorithm.

This section is a summary of results concerning the approximation of Lya-
punov exponents of (non necessarily 2-dimensional) bilinear stochastic differen-
tial systems and the application to a helicopter blade problem, based on simu-
lations and presented in Talay [56].

To be complete, we mention that an algorithm of computation of the Lya-
punov spectrum for nonlinear systems in IR? or on compact manifolds has been
developed, and its convergence rate given (see Grorud & Talay [27]).

6.1 An engineering stability problem

Let us study the stability of the motion of the movement of a rotor blade with
2 freedom degrees in terms of various physical parameters: velocity of the he-
licopter, geometric characteristics of the blade, statistical characteristics of the
process modelizing the turbulency around the blade.

In first approximation, the stability of the movement of the blade is equivalent
to the stability of the solution of a linearized ordinary differential equation in
R*

dX(t)
dt

where the matrix-valued function A(t) and the vector-valued function F(t) are
periodic of same period (the period of rotation of the blade).

When one takes into account the turbulent flow around the blade, one may
consider the following linearized model

dX (t)
dt

where b(t) (resp. G(t)) has the same property as A(t) (resp. F(¢)), and (£°(t))
is a one-dimensional noise. The intensity of the noise, o(t) is also a periodic
function of the azimuth angle ¢, where (2 is the angular velocity of the blade.

All the coefficients A(t), b(t), F(t), G(t) are explicitly known in terms of
different physical parameters of the blade.

— AWDX () + F(t) |

= A()X () + F(t) + [BO)X(t) + G()]o ()& (1) (28)
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Here the “stability” we are interested in, is the following: the system is stable
when it admits a unique periodic in law solution (Y (¢)) and when, for each initial
deterministic condition, the corresponding process (X (¢)) satisfies:

Jim V() = X(8)] =0 a.s. (29)

First we will consider the white-noise case. The system (28) becomes:
dX(t) =[A@)X(t) + F(t)|dt + [B(t) X (t) + G(t)]o(t) o dW(2) (30)

where (W (t)) is a standard one-dimensional Wiener process.
One can show (cf Pardoux[44]):

Theorem 5. Let us suppose there exists \g < 0 such that the solution of the
system

dX(t) = A(t)X (t)dt + B(t) X (t)o(t) o dW(2) (31)
satisfies, for any deterministic initial condition x :
1
lim sup n log | X (t)] < Ao a.s. (32)
t——+oc U

Then the system (30) is stable in the sense (29).

In her thesis, M. Pignol ([46]) has proven the existence of the Lyapunov
exponent lim;_ ;o +log|X(t)| for the blade system. Let us see how we can
compute it (in order to know its sign!).

6.2 Numerical tests

Let us consider an example of Baxendale for which there exists an explicit
formula giving the Lyapunov exponent. More precisely, let us consider a one-
dimensional Wiener process (W (¢) and the system:

dX(t) = AX(t)dt + o BX(t) o dW (t) | (33)
with
a0 0-1
A= [0 b] , B= {1 0 ]
Then:
27 a—b
1 1 cos(26) ex 5 cos(26))d6
/\:—(a,+b)+—(a,fb)f0 277( ) p:% (26))
’ 2 [ exp(352 cos(20))dd

We discretize (33). For each Markov chain defined by one of our schemes,
~h
and for any h small enough, one can show that there exists A such that, for any
deterministic initial condition:
~h 1

~h
A =as li log|X | .
asp—}Tooph 08| X
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—h
We want to compare A and A.

- ~h ~h, .
It is important to note that we cannot use the formula A* ~ pih log | X, | in

practice, because it leads to numerical instabilities, the process (\Y};\) decreasing
to 0 or increasing to infinity exponentially fast. This is avoided by a projection
at each step technique, described in the next section.

We have tested the Milshtein method and the second-order method (22).

By example, let us choose a = 1,b = —2, ¢ = 3.5. Then an accurate numerical
computation gives A = —0.4. In this example, the second-order schemes are
extremely accurate, whereas the Euler scheme and the Milshtein scheme lead to
completely wrong results, as illustrated by the 2 figures below, which represent

~h
the evolution (in terms of time ph) of our estimator of .

First, we compare the scheme (22) (thick line) and the Euler scheme (thin
line): figure 9.

LYAP:1/a= 1.000/b=-2.000/sigma= 3.500/h= 0.017/MONTECARLO,EULER
-0.2 L

-0.3

-0.4 AV e NS

05 -

-0.6 -

-0.7 -

-0.8

-0.9

*10 *

Fig. 9. Euler and second-order schemes.

Next, we compare the scheme (22) (thick line) and the Milshtein scheme (thin
line): figure 10.

6.3 Algorithm for the helicopter problem

In the deterministic case (corresponding to o(t) = 0), only the Runge-Kutta
methods of order larger than 4 have given good results (because of the numerical
instability of the system, due to the large coefficients of the matrix A(t) and their
very short period).
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Fig. 10. Milshtein and second-order schemes.

Moreover, the discretization step had to be choosen smaller than 1074,

For the stochastic case, the use of a second-order scheme has also been nec-
essary. We have observed the need of a large final integration time, therefore too
small steps would have led to too large CPU times. Morevover, the second-order
schemes have been less sensitive than the first-order ones to the above underlined
strong instability of the system.

Besides, the above study of the deterministic case shows the necessity to
improve the scheme (22), in order that it reduces to the Runge-Kutta scheme of
order 4 when the intensity of the noise is nought.

Finally, our algorithm has been the following;:

1. One chooses an initial condition on the unit sphere S3;
2. At step (p+ 1), one proceeds in two stages:
— One applies to a single step the Runge-Kutta method of order 4 in order
to integrate the system

(the presence of A=A+ %BZ is due to the discretization of the system
written in the It6 sense);
— Then one computes:

—h

, 1 A
X, =yh)+ {a(ph)BA';+1W + 5a(ph)ZBZ’((AQHW)Z’ —h)
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+ %(a(ph,)(fiB +BA+B')

4

—h
+0'(ph)B)hAL, W} X, (34)

where we have used the following notation:
(AP W) := sequence of mutually independent Gaussian random
variables A(0, Vh);
B’ : derivative of the matrix B(-);
all the matrices are computed at time t = ph;
3. One computes the new approximate value A\,y; from the previous one, A,

by
—h
1 log(| X ,41])
A [1— + L ; 35
p( p+1> (p+1)h (35)

. <h .
4. One projects X, ; on the unit sphere.

The theorem 8 below shows that this algorithm is of second order, in the
sense that, for any deterministic initial condition z:

1
A lim —

—h
log | X (z)|| = O(h?) .
i og X ()| = O(47)

For the given models of blades, the deterministic system was extremely stable
for admissible velocities.

Let us suppose that o(t) is a constant function o(t) = oy (i.e the effects of
the turbulency are independent of the azimuth angle).

For a velocity equal to 100m/s, we obtain the figure 11.

The destabilization of the system could occur only for intensities of the noise
larger than 0.3; such intensities are not realistic for the turbulent winds around
the blade.

Moreover, let us consider a more precise modelization of the noise. We sup-
pose that its intensity is a periodic function of the azimuth angle ¥ = ¢,
reaching its maximum for ¥ = 37”, and defined by the function:

o0 exp(6(cos(0.75m — 0.502t)* — 1)) .

We have observed a strong dependency of the Lyapunov exponent upon 8
but in that case also the instability could not appear for realistic intensities of
the noise.

6.4 Choice of the integration time

This choice is much more complex that the choice of the number of simulations
to perform a Monte Carlo approximation: the error due to the fact that one
integrates during a finite time asymptotically has a Gaussian law, but the vari-
ance of this law is given by the solution of a P.D.E., and moreover this P.D.E.
depends on the Lyapunov exponent that one wants to compute!
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Fig. 11. Variations of the Lyapunov exponent in terms of og.

More precisely, considering again the case of matrices A and B independent of

t for the sake of simplicity, let £ define the infinitesimal generator of the process
(s(t)) defined by s(t) = é—g:;‘; under technical assumptions on the matrices A
and B (satisfied by the blade system and described below), this process has a
unique invariant probability measure z on the projective space P! (i.e the set
obtained by identifying s and —s on the sphere).

We have the following central-limit theorem (Bhattacharya [8]):
Theorem 6. Let the function Q be defined by

Qs) = (As, s) +

For t tending to +oo :

[(B”s,s) + |Bs|> — 2(Bs, s)’]

N | =

1 t
— / (Q(s(8)) — N\)dd — N(0,v%) in distribution ,
Vit Jo
where the constant v depends only on the coefficients of the system and is given
by (< -,- > denoting the inner product in L2(P*~', u)):
VP=-2<Q-NLTHQ -\ >

An estimation of the integration time can be got by a first estimation of A,
and by a numerical resolution of the Poisson P.D.E. on the projective space

Lu=Q -\ .

Of course, this phase of the algorithm is very critical. Further researches in that
direction are necessary.
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6.5 Algorithm for the wideband noise case

Let us consider the system

O _ Awx ) + BOX oW | (36)
with a wide-band noise of the form
et = —z2(%y |

Ve e

where (Z(t)) is a stationary (0, 1) Ornstein-Uhlenbeck process.
The above system is an ordinary differential system, so that the pathwise
simulation of the solution can be achieved using, by example, the Euler scheme:

Z+1 = 7'; + (A(ph)Y'; + o(ph)B(ph)gf(ph))Y’;h .

X

Pardoux [44] and Kushner [33] have shown that the Lyapunov exponent of (36)
converges to the Lyapunov exponent of (31).

But it appears that, even for small h, the Lyapunov exponent of that dicrete-
time process defined by the Euler scheme does not converge, when ¢ goes to 0,
towards the Lyapunov exponent of the system (31).

One reason is that the process {{*(ph)} does not converge in law, so that the
scheme must rather involve the sequence

(p+1)h

Apae= [ s

h

which converges in law to the sequence (A%, W).
But one has to be careful: the new scheme

—h —h —h
Xp+1 = Xp + (A(ph)h + U(ph)B(ph)AZ+]£)Xp

does not converge to a discretization scheme of (31) (4 # A).
Finally, we introduce a convenient second-order scheme, similar to (34).
First, one applies to a single step the Runge-Kutta method of order 4 in order
to integrate the system

and then

—h

Xper = u(h) + {olph) BAL L€+ o (o) B4}, 67

1 —h
+ E(a(ph,)(AB +BA+ B') + 0'(ph)B)h,AZ+1£} X, . (37
It is interesting to note that the limit of the above scheme when & goes to

0 is not the scheme (34), the difference including only terms of order hA", | W



Denis Talay 97

and h2. We have not succeeded to build a second-order scheme of the wideband
system converging to a second-order scheme of the white noise system.

Let us describe our simulation of the integrals ;}Hg

Let (V(t)) is a Wiener process independent of (W (¢#)) such that:

dZ(t) = —Z(t)dt + 24V (t) .

Then we have the formula:

2h

(p+1)h 1 _ e 2t pirnyn  [(PTDR
/ o s =VE [%5 (ph) + AL,V — e 5 / 2V,
P = P

h

Therefore, it is possible to simulate the vector

(€5 (ph), A6

by the simulation of the Gaussian vector

(p+1)h (p+1)h
(A;_H / €Sst-, / 625(1‘/5) .
Jph Jph

For our models, we have observed that the coloration of the noise tended to
stabilize the system (the limit case being the case of very large ¢, equivalent to
the deterministic case).

6.6 Remarks

The models for the blade and the noise were simplified; in particular, only phys-
ical experiments during a flight could permit to improve the modelling of the
noise, and overall a more realistic model should be nonlinear.

In this simplified context, the conclusion is that the turbulency around the
blade has small effects on the stability of the blade.

6.7 Convergence rate

Let us consider a bilinear system

dX(t) = AX (t)dt + Z BiX(t) o dW;(t) . (38)

=1

Let (s(t)) be the process on the projective space of R?, P4~', defined as
the equivalence class of
T=-—yorx=y.

The process (s(t)) is the solution of the following Stratonovich stochastic
differential equation, describing a diffusion process in P4~':

\XE ;‘ with respect to the equivalence relation: z ~ y iff

ds(t) = g(A, s(t) df+z s(t)) o dWi(t) | (39)
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where
g(C s) :=Cs — (Cs,s)s .
Now, let us introduce the Lie algebra A = L.A.{g(4,-),9(B1,"),.-.,9(Bk,)},
i.e. the smallest vector space of differential operators containing the operators

Zgi(A-,')ai-, Zgi(Bj.,-)Bi (j=1,...7)

and closed under the brackett operation [Py, Py] = Py o Py, — Py o Py.

For s in the projective space P¥~1, A(s) denotes the space obtained by con-
sidering all the elements of A with all the coefficients of the operators frozen at
their value in s.

In Arnold, Oeljeklaus and Pardoux [3] is proven the following theorem:

Theorem 7. Let us suppose:
(H) dimA(s)=d—1 , Vs € Pi!

Then the process (s(t)) on P! has a unique invariant probability measure
w, and there exists a real number \ such that, for any z in R? — {0}:

1
A= lim Zlog\X(t,mﬂ ., a.s.

t— 4 o0
In Talay [56], is proven the
Theorem 8. Let us suppose that the system (39) satisfies the hypothesis:

(HO) The infinitesimal generator L of the process (s(t)) on S~ is uniformly
elliptic, i.e there exists a strictly positive constant a such that, for any x in
Se=1 and any vector & in the tangent space Tga—1(x):

T

Z(h(Bl/T)/£)2 2 a|£‘2 :

=1

(HU) (i) The (U’;H) s are i.i.d., and the following conditions on the moments

are fulfilled:
E[UZH] = E[UZH]S = E[Ug+1]5 =0,
E[UZ+1]2 =1 3
BlUJ " =3,
ElU " <+00 , ¥n>5 . (40)

(i) The common law of the (UZ+1)’S has a continuous density w.r.t. the

Lebesgue measure; the support of this density contains an open interval
including 0 and is compact.
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Let (Y};,p € IN) be defined by the Euler scheme, the Milshtein scheme or the
scheme (22).

Then, if A is the upper Lyapunov exponent of (38):

(i) for (7};) defined by the Euler or Milshtein scheme, |\ — Xh'\ = O(h);
(ii) for (7};) defined by the scheme (22), | X — Xh| = O(h?).

Remark: the hypothesis (HU) is not limitative from a practical point of view,
but (i7) was unnecessary to obtain the results concerning the Monte Carlo type
approximation.

7 Computation of the invariant law

7.1 Position of the problem

We again consider the general system (4).

Under the hypotheses below, the system has a unique invariant measure p,
which has a smooth density, p. One way to compute [ f(z)du(z) for a given
function f is to solve the stationary Fokker-Plank equation L*p = 0, where L*
is the adjoint of the infinitesimal generator of the process (X (¢)).

This stationary Fokker-Plank equation is a P.D.E., and its numerical resolu-
tion could be extremely difficult or impossible, especially when the dimension of
the state-space, d, is large, or when L is degenerate (remember the Remark of
the section 5.1).

In [26], Gerardi, Marchetti & Rosa propose to approximate (X(t)) by a se-
quence of ergodic pure jump processes which converges in law.

Since for any p-integrable function f we have:

[ f@dnte) = 1 / CFx(s))ds |

t——+oo t

we propose to simulate one long trajectory of a process (X, ), and to approximate
[ #()du(z) by

1<
p=1

As in the preceding section, the critical point is the choice of N: again the
random variable

= [ = [ s

is asymptotically Gaussian, but the variance of the limit law depends on the
solution of a P.D.E. which itself depends on the unknown [ f(z)du(z).

At the present time, we do not know what could be a good procedure to
estimate this variance.
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7.2 Second-order schemes

As for the approximation of Lyapunov exponents, these schemes seem to have a
better long-time behaviour than simpler ones.
For example, one can show (cf Talay [55]):

Theorem 9. Suppose that the hypotheses (H1), (H2), (H3) hold:

(H1) the functions b, o are of class C*> with bounded derivatives of any order;

the function o is bounded;
H2) the operator L is uniformly elliptic: there exists a positive constant o such
( JZ y ellip P

that

d i i g
1,7
H3) there exists a strictly positive constant 3 and a compact set K such that:
yp P

Vee R - K , x-b(z) < Bz .

Consider the scheme (22) and the MCRK scheme (23), with the law of the
involved random variables defined as in the section (5.3), with the additional
hypothesis: the law of the U;H s and of the U;H s has a continuous density
w.r.t. the Lebesgue measure.

The schemes (22) and MCRK define ergodic Markov chains and for any func-
tion f of R? of class C™, having the property that f, as well as all its derivatives,
have an at most polynomial growth at infinity:

1 N —h
Ve e R A]115%0ﬁ;f(xp‘(x)):'/f(a)du(o)+0(h,2) . a.s.

For the Euler and the Milshtein schemes, the convergence rate is of order h.

We underline that now we do not require anymore that the law of the U§+1 s
has a compact support, therefore the Gaussian law of the increments of the
Wiener process is allowed.

Again, another good (and probably usually better) algorithm is to perform
a Romberg extrapolation (see the subsection 5.7); indeed, as for the problem of
computation of Ef(X(¢)) on a finite time interval, the errors due to the different
schemes introduced above can be expanded as power series in the discretization
step h (see Talay & Tubaro [58]):

Theorem 10. Suppose that the hypotheses of the preceding theorem hold. Let .
and Y be defined by (25) and (26) respectively and set

+oo
Ae ::/0 e Pe(t, y)p(dy)dt

+oo
A = / [ ottt
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Then the Euler scheme error satisfies: for any deterministic initial condition
—h
5 = X(] ’

N—+o00

N
[ rwutdy) - as. Jim <> FEEO) = A+ O®) L (41

For the Milshtein scheme, an analogous result can be written, substituting A,
to Ae.

7.3 Numerical experiments

The example is the same as in the section (5.5), with 2 = 0, so that the invariant
law is Gaussian of zero mean and of covariance matrix C.

We have observed a strong numerical instability of all the schemes (the results
are very different when h = 0.01 and h = 0.015), but the second-order schemes
lead to good results.

Below (figure 12), we compare + Z;V:] f(YZ(T)) for the Milshtein scheme
(thin line) and the scheme (22) (thick line), for

fla',a?) = o' |*

(the correct value is 3.0; in z-axis : Nh).

ERGO: 1/nu= 3.500/h= 0.010/MONTECARLO,MILSHTEIN
5 |

45 |

3.5

Y oV oy s

25 &

*10 °

Fig. 12. Milshtein and second-order schemes.

Remark : for the two schemes, 4 25:1 f(YZ(a:)) converges to [ f(0)du"(6),

where p" is the invariant law of the Markov chain (72)
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8 PRESTO : a generator of Fortran programs

PRESTO is a system which generates Fortran programs solving Stochastic Dif-
ferential Systems.

The user describes his problem using a bitmap environment; then PRESTO
treats the data, performs the transformation Stratonovich/It6 of the system if
necessary, uses its knowledge base in order to decide what particular scheme
can be used in the context described by the user, what random variables must
be involved and how they must be simulated, and finally writes a commented
complete Fortran program ready to be run.

Internally, the analytical expressions of the coefficients of the Itd system
and of the chosen scheme are computed by procedures written in a Computer
Algebra Programming System Language (Reduce in the first version, Maple in
the current one).

A complete description can be found in Talay [57].

9 Conclusion

We have proposed some discretization methods of stochastic differential sys-
tems, which seem efficient when one wants to simulate trajectories of diffusion
processes, or when one wants to compute certain quantities depending on the
law of a diffusion process, by techniques involving simulations.

A lot of open problems still remain, some of them are being studied: as ex-
amples, we could quote the discretization of reflected diffusions processes (which
are studied in extremely recent interesting papers, see e.g Calzolari & Costan-
tini & Marchetti [15] on the simulation of obliquely reflecting Brownian motions,
Liu [35] who uses a penalization technique, Lépingle [34] for reflections at the
boundary of a half-space or an orthant, and in a more abstract way Slomin-
ski [50]), the approximation of stopped diffusions and the numerical approxima-
tion of elliptic P.D.E.’s in bounded domains (see Milshtein [39]), the estimation
of the necessary simulation time corresponding to a given accuracy for ergodic
computations (computation of the stationary law, Lyapunov exponents, ...),
etc.

From the numerical implementation point of view, Bouleau [12] and Ben
Alaya [6] have just opened new perspectives by the use of the shift method to
generate Brownian paths with few calls to a random number generator, and by
their mathematical analysis of their algorithm (which is a nice application of the
ergodic theory) in particular when the objective is to compute expectations of
functionals of diffusion processes.

All these works show that the numerical analysis of diffusion processes is a
field which is developing so fast that a new review paper will be necessary in a
next future.
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