Probabilistic Numerical Methods for Partial
Differential Equations: Elements of Analysis*

Denis Talay

The objective of these notes is to present recent results on the convergence
rate of Monte Carlo methods for linear Partial Differential Equations and
integrodifferential Equations, and for stochastic particles methods for some
nonlinear evolution problems (McKean—Vlasov equations, Burgers equation,
convection-reaction-diffusion equations). The given bounds for the numerical
errors are non asymptotic: one wants to estimate the global errors of the
methods for different possible values taken by their parameters (discretization
step, number of particles or of simulations, etc).

Only a selection of existing results is presented. Most of the proofs are
only sketched but the methodologies are described carefully. Deeper informa-
tion should be available in Talay and Tubaro [49]. A companion review paper
of these notes, with an emphasis on applications in Random Mechanics, is
Talay [48].

PART I - Monte Carlo Methods for Parabolic
PDE’s

1 Notation

We fix a filtered probability space (2, F, (F;), P), and a r-dimensional Brown-
ian motion (W;) on this space.

*THESE NOTES HAVE BEEN PUBLISHED IN ‘PROBABILISTIC MODELS FOR
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS’, D. TALAY AND L. TUBARO
(Eds.), LECTURE NOTES IN MATHEMATICS 1627, 1996.



Usually a time interval [0, 7] will be fixed.
The notation (X;(z)) stands for a process (X;) such that Xy = = a.s.

Given a smooth function ¢ and a multiindex « of the form
a=(a,...,0p), ay €4{1,...,d}

the notation 0%¢(t,z,y) means that the multiindex « concerns the differ-

entiation with respect to the coordinates of x, the variables ¢t and y being
fixed.

When 7 = (7) is a matrix, 4 denotes the determinant of «y, and +; denotes
the 57 — th column of ~.

When V' is a vector, V' denotes the matrix (9;V})%.

Finally, the same notation K (-), ¢, @, u, etc is used for different functions
and positive real numbers, having the common property of being independent
of T and of the approximation parameters (discretization step, number of
simulations or number of particles, etc).

2 The Euler and Milshtein schemes for SDE’s

Let (X;) be the process taking values in R? solution to

t t
Xt_Xﬁ/ b(Xs)ds+/ o(X,)dW, | (1)
0 0

where (W;) is a r-dimensional Brownian motion.

Our objective is to approximate the unknown process (X;) by an ap-
proximate process whose trajectories can easily be simulated on a computer.
Typically we must simulate a large number of independent trajectories of
this process. Therefore, the cost of the simulation of one trajectory must be
so low as possible.

An efficient procedure consists in choosing a discretisation step % of the
time interval [0, 7] and in simulating the Euler scheme defined by
Xg — XO ,
n _ n n T
X(p-l—l)T/n - XpT/n + b<XpT/n); (2)
+0(Xpr/n) Wepsyr/m — Worn).
To simulate one trajectory of (X;',0 < ¢ < T), one simply has to simulate

the family
(WT/na WQT/n - WT/na SRR Wr — WT*T/n)
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of independent Gaussian random variables. For %T <t < w X7 is

defined by '

X7 =X, + b( kT/n) (t — —> +o( kT/n)(Wt — Wer/m)- (3)

n

The convergence rate of this scheme has been studied according to various
convergence criterions. In the sequel we will present estimates on the dis-
cretization error according to several different criterions, all of them being re-
lated to probabilistic numerical procedures for Partial Differential Equations.
The proofs of most of these estimates use an elementary result concerning
the convergence in LP((2).

Proposition 2.1 Suppose that the functions b(-) and o(-) are globally Lip-
schitz.

Let p > 1 be an integer such that FE|Xy|** < oo.
Then there exists an increasing function K(-) such that, for any integer
n>1,
K(T)

<
=70

(4)

The function K(-) depends on the Lipschitz constants of the functions b(-)
and o(+), on the dimension d, on p and on F|Xy|*.

E | sup | X, —Xf\Qp
te[0,T]

Sketch of the proof. Let L, be the Lipschitz constant of b(-):
b(x)] < Lyla| + [b(0)] 5
a similar inequality holds for o(-). Thus, from (3) and It&’s formula, an
induction on k shows: there exists an increasing function K(-) such that for
any n € IN*,

E [ sup [X[P?| < K(T)(1+ B|X,[*) exp(K(T)). (5)

te[0,7T]

Here, the function K depends on L, L,, p and the dimension d.
Consider, for ¢t € [kT/n, (k + 1)T/n], the process

t
g = XkT/n - X;:T/n + / (b<X5) B b( /’?T/n))ds
JkT/n
t
+ / (0(X,) = o(Xfy)) AW, (6)
JkT/n



Apply the Ito formula to |z,/* between ¢ = L and ¢ = @; standard
computations and (5) then show that, for a new increasing function K(-),

K(T

K(T
E‘ﬁ(k+1)T/n‘2p < <1 + T)> E|5kT/n‘2p + ()

nP+1 ’

Noting that €y = 0, an induction on k provides the estimate

Cy exp(C,T
sup E\ew/n|2p < M
0<k<n np
To conclude, it remains to use (6) again. |

Applying the Borel-Cantelli lemma, one readily deduces the

Proposition 2.2 Suppose that the functions b(-) and o(-) are globally Lip-
schitz. Suppose that E|X,|*? < oo for any integer p. Then

]_ n—oo
Vo< a< 3 n® sup | X; — X]'| — 0 a.s. (7)

te[0,7)

The details of the easy proofs of the two preceding propositions can be
found in Faure’s thesis [13] or in Kanagawa [23] e.g.

Concerning the path by path convergence of the Euler scheme, one has an
even better information, which we briefly now present; we refer to Roynette [43]
for a complete exposition.

Let g(-) be a function from [0,7] to R and let p be a strictly positive
integer. Set

1/p
wy(91) i= sup ( 9+ ) — gl Wr)
|h|<t Iy,

with I, :={x € [0, T;z + h € [0,T]}. For 0 < a <1 and 1 < ¢q < +o0, set

T lwy (g, )\ dr)!
||g||(y,pq ||g||fp (/0 ( pt(x > t> )

The Besov space By is the Banach space of the functions g(-) such that
19lla.p.q < 00, endowed with the norm || - [|o,,. The Besov space Bg, , is the
usual space of Holder functions of order a.




Theorem 2.3 (Roynette [43]) Suppose that the functions b(-) and o(-)
are globally Lipschitz. Suppose that FE|X,|* < oo for any integer p. Let
X" := X% For any integer p > 1, for any n large enough, there ezists a
constant Crp(p) uniform with respect to n such that, for any v < %,

| X = X" [l12p.00< Cr(p)27" as. (8)

Sketch of the proof. Consider the process e(-) defined in (6). Define

b? = b(Xe) - b(X?) ) (7.? = U(Xs) o U(X?)

t t
£t ::/ b’;ds+/ o, dW;.
0 0

From the estimates (4) and (7), one can easily show that, for any v < 3,
for any n large enough,

Thus,

sup ([b2|+ |o¥]) < C27"7 a.s.,
0<s<T

and for any integer p > 1,

sup Blo? % < Cr(p)2".
0<s<T

The technical proposition 1 in Roynette [43] then implies: for any integer
p > 1, there exists a (new) constant Cr(p) uniform w.r.t. n such that, for
any 7 < 1,
| e llij2p.00< Cr(p)27"7" a.s.

The asymptotic distribution of the normalized Euler scheme error
U":=+yn(X — X"

is analysed in Kurtz and Protter [25| (see also their contribution to this
volume): (X,U"™) converges in law to the process (X,U) where U is the
solution to

t r d ] < y
U, .= / 8b(XS)USds+Z/ 8(7j(Xs)Udef+ﬁ Z do;(X;)o,;(X;)dBY,
0 j=1 70 ij=1

where (BY,1 < 4,5 < r) is a r’-dimensional standard Brownian motion
independent of X.



In the sequel, when d = r = 1, we also use the Milshtein scheme

r Xél = Xo,

Xopnr = Xy +0(X5 )L

p pT/n)w
+ (X)) Wipsvyryn — Wyryn)
L 30 (X5) o (X5 ) (Wopsryrgm = Worp)* = £).

(9)

Our reason for considering that scheme here comes from the

Proposition 2.4 Suppose that the functions b(-) and o(-) are twice contin-
uously differentiable with bounded derivatives.

Let p > 1 be an integer such that E|X,|*? < oo. Then there exists an
increasing function K(-) such that
K(T)

sup F|X, — X'?» < —L 10
Jup BIX- X[ < 25 (10)

If E|X,|* < oo holds for any integer p, then for any 0 < a < 1,
K(T)

n® sup B|X, — X} < ——=.
n<pP

te[0,7T]

(11)

The proof follows the same guidelines as the proof of Propositions 2.1 and 2.2.
See Faure[13]. Note that the Milshtein scheme has better convergence rates
than the Euler scheme for the convergence in LP(€2) and the almost sure
convergence. A similar remark is true for the convergence in Besov spaces,
see Roynette [43].

Here we consider the Milshtein scheme only when d = r = 1. In the
multidimensional case, generally it requires double stochastic integrals which
are not simple to simulate: see Talay [48] for a discussion and Gaines and
Lyons [16] for a method of resolution.

3 Monte Carlo methods for parabolic PDE’s

3.1 Principle of the method
Define the d x d matrix valued function (a}(-)) by
a() = o ()" ().
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Define the second-order differential operator £ by

1 i
Consider the problem

Oou _ ; d
{ Si(t,x) + Lu(t,z) = 0in[0,T) x R, (13)

(T,T) = f(z), v€ R*.

In the two different sets of hypotheses that we will consider for b(-), o(+)
and f(-), the following holds: the problem (13) has a unique solution which

belongs to the set C12([0,T) x R?) and is continuous on [0,T] x R?. This
unique solution is given by

U(t,l‘) = ETf(XTff) = PTftf(m) ) V(YL,’I‘) S [OaT] X Bd
where Py denotes the transition operator of the Markov process (X;).

Let {X i € IN} be a sequence of independent trajectories of the proceqq
X. If the Strong Law of Large Numbers applies for the sequence f(X, ( 1)),

then

u(t,z) = lim — Zf T (7)) ,as.

N—oo N

In practice one must approximate the Xt(’)(m)’s. We consider the simplest
approximation method: the Euler scheme. As we will see, this simple method
has very interesting properties in the present context, even from the point
of view of the convergence rate and of the numerical efficiency. The “Monte
Carlo+Euler” approximation of u(¢, z) is

V) = 0 FG ) (14)

where {X.n’(i) , 1 <i < N} denotes a set of independent trajectories of the
process X".

Why are we interested in this method? Is it competitive with the usual
deterministic algorithms of resolution of (13)? Of course there is no general
answer to such a question. The answer depends on the dimension d and on
the functions b(-), o(-). Roughly speaking, the Monte Carlo method seems
unuseful when a finite difference method, a finite element method, a finite



volume method or a suitable deterministic algorithm is numerically stable
and does not require too a long computation time.

Nevertheless we can give examples of situations where a Monte Carlo
method is efficient.

First, the computational cost of the deterministic algorithms growths
exponentially with the dimension d of the state space: these algorithms use
grids whose number of points growths exponentially with d. Thus, when d is
large (d > 4, say), the numerical resolution of (13) may even be impossible
without a Monte Carlo procedure, whose computational cost growths only
linearly with the dimension of the process X" to simulate.

A Monte Carlo algorithm may also be interesting when one wants to com-
pute u(t,-) at only a few points. This situation occurs in financial problems
(evaluation of an option price in terms of the spot prices of the stocks) or in
Physics (computation of the probability that a random process reaches given
thresholds). One can also think to use a Monte Carlo method to compute
u(t, -) on artificial boundaries in view of a decomposition of domains proce-
dure: one divides the whole space in a set of subdomains; then the objective
is to solve the problem (13) in each subdomain with Dirichlet boundary con-
ditions by deterministic methods; these Dirichlet boundary conditions, i.e.
the values of u(t,-) along the boundaries, can be approximated by a Monte
Carlo algorithm. This combination of numerical methods may have several
advantages. The resolution in the subdomains can be distributed to different
processors. The convergence rate results for the Monte Carlo+Euler method
suppose much weaker assumptions than the strong ellipticity condition of
the operator £; moreover if f(-) is a smooth function, no assumption on £
is required; therefore, if the matrix a(-) degenerates locally, the domain of
the numerical integration by a deterministic method can be reduced to the
nondegeneracy region by an approximation of u(t,-) along its boundaries,
which may considerably improve the efficiency of the deterministic method.

3.2 Introduction to the error analysis

Our objective is to give estimates for
lu(T,z) — u™™(T,z)|.
A natural decomposition of this error is as follows:
(T, 7) — " N(T,2)] < fu(T,x) — BF(X))]
+|Ef(X7(2)) — u" (T, z)
= a"+ ™V,



The analysis of 8™ is related to usual considerations on the Strong Law
of Large Numbers: Central Limit Theorems, Berry-Esseen inequalities, etc.
The difficulty here is to obtain estimates uniform w.r.t. to n. This can
be solved by the convergence in LP(€) of X" to X which holds under the
hypotheses we make below.

Consequently we concentrate our attention to a”.

When f(+) is a Lipschitz function, one can bound «” from above by using
the estimate (4) for p = 2. This gives the estimate:

C
ot < —=

\/ﬁ'
We now show that one can be much more clever.

For the rest of the section we suppose

(H) The functions b and o are C* functions, whose derivatives of any order
are bounded (but b and o are not supposed bounded themselves).

Define W(¢,-) by

d d
1 . 4 1
o) = 5 Zb’()b()&gv(t,-)+§ > V' ()al(-)deult, )
i,5=1 i,7,k=1
1 <& 16
+§4Z a;()ay (Vijuu(t, ) + 5= ult, )
i,5,k,l=1
d 1 o B
+;b () 5, Orut. )+§”z_:1a]( ) Oigult. ) (15)
Lemma 3.1 It holds that
T2 n—2 ]{,‘T n—1
EJCG ) - BT(Xa) = 5 B0 (5L X0, 0 )+ 3 ReGe) . (19
k=0 ’ k=0

where

Ry (z) = Bf(X7(z)) = BE(Prjmf)(X7 /(1))
and for k < n —1, R}(x) can be explicited under a sum of terms, each of
them being of the form

E [} (X, (2)) / e / - / oo ? 2))Dau(sy, X7 (2))

kT /n

+Q00(X33(.,))8(X'U,(53,XSS(.,)))d:‘?gdSQdS]] , (17)
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where |a] < 6, and the ©° s, ¢ s, ¢ ’s are products of functions which are

partial derivatives up to the order 3 of the a”’s and b'’s.

Proof. For z € R? define the differential operator £. by

Log()i= Y HE0) + 5 3 05200

=1

As u(t,-) = Pr_f(:) = Ef(X7_4()), one has
E,f(X7) = E.f(X1) = Eu(T, Xf) —u(0,2) = ) &

k<n-1

with (k‘ l)T KT
op = I, [u (T’X(kH)T/n) —u (7= w/n)] :

The It6 formula implies

(k+1)T
o=, (atu(t, XY 4 Lou(t, XY Boxn ) dt |
’ kT ’ g kT/n

n

from which, using (13), one gets

(k+1)T

5,’;:@/”" (

n

—Eu(t, X?) + Ezu<t= X?)Bz:X]?T/’n> dt.

Denote

I(t) == Ezu<t7Xt/)BZZXI?T/" —Lau (77 kw”) B,

and

e]k (t) = Ezu (7, kT/n) BZZXI?T/n - Eu(t, Xt )

kT
n

We have:
(k+1)T
51— B, / (17 (1) + J0 (1)) .

JEr

n

10
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We now consider I}'(t) and J;(t) as smooth functions of the process (X})
and recursively apply the 1t6 formula, using the fact that the function w
solves (13), so that Lu solves a similar PDE. |

The expansion (16) can be rewritten as follows:
E.f(X7) — E.f(Xr)

T T
= —/ E,V(s, X,)ds
n-Jo

T2 22 kT T [T
+—2 ET\IJ (_anT/n) - — / ET\IJ(‘?,XQ)dg
n n n Jo

k=0
2’)’12

FE () (),

:—/ E, ¥ (s, X;)ds
nJo

+A" + B" + Z ri(z) + C". (19)

k=0
From this expansion, it is reasonable to expect that the error

E.f(X7) — B, f(Xr)

T [T
—/ E, V(s, X,)ds
nJo

plus a remainder of order n 2, because

is equal to

—2

. kT kT
> (E\If ( XkT/n) — E,V (7,)(,”/”))

k=0

should be uniformly bounded w.r.t. n since each term of the sum should be
of order .

More precisely, for 1 < k < n — 2, one applies the expansion (19), substi-
tuting the function
kT
n =V
fua=w (5

11



to f(-). Set u,x(t,2) := Per/n—tfor(-) and denote by W, (¢,-) the function
defined in (15) with w, x instead of u and kT'/n instead of T'; thus, for some
functions g,(-) € C;°(R?) one has that, for ¢ < &L,

kT
U, . (t,) = Vx| Permt¥ [ —.- ] 1.
k( ) ZA:QA()A[/CT/ t (n >]
There holds

KT KT T2 2 iT .
]:

+ Z i) (20)

n,k

where the T

(z)’s are sums of terms of type (17) with u, , instead of u.

It is now clear that one key problem is as follows. Let v and A be mul-
tiindices, let g,(-) and g,\(-) be smooth functions with polynomial growth.
Set

@(97 ) = (]'y()avPT70f<)
We want to prove that quantities of the type
|E. [92(X])0\Po_1p(0, ) (2) Booxp ]| (21)
can be bounded uniformly w.r.t. n € IN*, 0 € [O,T — %}, te [0, 0 — %}

We distinguish two different situations. When f(-) is a smooth function,
we make no assumption on the operator £. When f(-) is only measurable
and bounded, we suppose that £ satisfies an assumption of the Hérmander

type.

3.3 Smooth functions f(-)

Let Hr be the class of functions ¢ : [0,7] x R — R with the following
properties: ¢ is of class C* and for any multiindex « there exist a positive
integer s and an increasing function K(-) such that

Vo€ [0,T] , Yo e R | |0.0(0,2) |< K(T)(1+ |z ).  (22)

A function ¢ of Hp is said homogeneous if it does not depend on the time
variable: ¢(6,x) = ¢(x).

In this subsection we suppose

12



(H1) The function f(-) is a homogeneous function of Hy.

It is well known that the condition (H) implies that there exists a smooth
version of the stochastic flow z — X;(z). For the sake of simplicity we
denote this smooth version X,(-). Besides, for any integer k£ > 0 the family
of the processes equal to the partial derivatives of the flow up to the order k
solves a system of stochastic differential equations with Lipschitz coefficients:
see, e.g., Kunita [24] and Protter [37]. Thus, for any 0 <¢ < T,

dult,z) = BiEf(Xy_(x)) = B Y 0;f(Xr_4(2))0: Xp_i(x). (23)

i=1

From (H) and (H1) one easily deduces that, for some increasing function
K(-) and some integer m,

|Osu(t, 2)| < K(T)(1 + |z[™).

Differentiations of (23) provide a probabilistic interpretation of d,u(t, z) for
any multiindex «. It is easy to prove by induction that, for any multiindex
@, there exist an increasing function K,(-) and an integer m, such that

Buu(t, 2)] < Ku(T)(1+ Jo]"), (24
For ¢ € Hy and 6 fixed in [0, T] the function u(6;t, x) defined by
U(Q, ta .’E) = E¢(97 XTft(x)) = E$¢<07 XTft)

belongs to H, and satisfies

ou —
oty = 0,0<t<T, (25)
uw(0;T,z) = (0, ).

Similarly to (24) one has: for any multiindex «, there exists an increasing
function K,(-) and an integer m, such that

VO € [0,T), |Osu(d;t,z) < K (T)(1+ | z [F).
This result can be used to prove:

Lemma 3.2 Suppose (H) and (H1).

13



Let v et A be multiindices, let g(-) and g,(-) be smooth functions with
polynomial growth. Set

p(0,-) = g5(-)0, Prof(-).
There ezist an increasing function K(-) and an integer m such that
B, [9(X7)0xPorp(0,-)(2)Bomxp ]| < K(T)(1 + [2[™). (26)
Coming back to (19) and (20) one deduces the

Theorem 3.3 (Talay and Tubaro [50]) Suppose (H) and (H1). The Euler
scheme error satisfies

QT( )

n?

w(T, x) — Ef(X”)——/E\Ist)d+ (27)

and there exist an increasing function K(-) and an integer m such that

Qr ()| < K(T)(1+ |2[™). (28)

Here U(-,-) is defined by (15).

Observe that in the preceding statement the differential operator £ may
be degenerate.

3.4 Non smooth functions f(-)

Theorem 3.3 supposes that f(-) is a smooth function. From an applied point
of view this is a stringent condition: often one wants to compute quantities
of the type

P [ X7 ()| > y]

for a given threshold y > 0. Our objective now is to show that an expansion
of the type (27) still holds even when f(-) is only supposed measurable and
bounded. In the proof that we give, the boundedness could be relaxed: as in
the preceding section we could suppose that f(-) belongs to the set Hy. To
realize this programme a nondegeneracy condition is supposed. As we now
see, this condition is less restrictive than the uniform strong ellipticity of the
operator L.

We need some basic elements of the Malliavin calculus. For a complete
exposition of this theory we refer to Nualart |34] (we use the notation of this

14



book) and Tkeda-Watanabe [22[; the applications to the existence of a density
for the law of a diffusion process can also be found in Pardoux [36].

For h(-) € L*(Ry, R"), W(h) denotes the quantity [ < h(t),dW; >
S is the space of “simple ” functionals of the Wiener process W, i.e. the
sub-space of L?(Q, F, P) of random variables F' which can be written under
the form

= f(W(h),...,W(h,))
for some n, some polynomial function f(-) , some h;(-) € L*(R,, R").

For F € S, (D;F) denotes the R"-dimensional process defined by

The operator D is closable as an operator from LP(Q) to LP(Q; L*(0,T)),
for any p > 1. Its domain is denoted by ID'?. Define the norm

1/p

||F||1p E|F‘p+ ||DF||LPQL2 (0;1)) ’

The j-th component of D,F is denoted by D! F. The k-th order derivative
is the the random vector on [0, 7]* x Q whose coordinates are

Dt7]1 ------ 7kF — D7k Dg]]F ,

and D™? denotes the completion of S with respect to the norm

1/p
| Fl[np = E|F\p+ZE||DkF||

k=1

)*)

D> denotes the space (-, (),5, D’*.

For F := (F',...,F™) € (D>)™, vr denotes the Malliavin covariance
matrix associated to F', i.e. the m X m-matrix defined by

(VF)_; =< DF',DF’ > 21y .

Definition 3.4 We say that the random vector F' satisfies the nondegeneracy
assumption if the matrix vp s a.s. invertible, and the inverse matriz I'p :=
vn' satisfies

[det(Tp)| € () 17()

p>1

15



Remark 3.5 The above condition can also be written as follows:

! € (L7 ().

det(yr) — )

The main ingredient of our analysis is the following integration by parts
formula (cf. the section V-9 in Ikeda-Wanabe |22]):

Proposition 3.6 Let F' € (D)™ satisfy the nondegeneracy condition 3.4,
let g be a smooth function with polynomial growth, and let G in ID*°. Let
{Hp} be the family of random variables depending on multiindices 3 of length
strictly larger than 1 and with coordinates 5; € {1, ..., m}, recursively defined
in the following way:

Hi(F,G) = H,(F,G)

= Y {G < DI'},DF’ >p1
j=1

+T'} < DG, DF? > 27 (29)
TG LFT
Hy(F.G) = Hgp, . p)(F.G)
= Hﬁk (F’ H(ﬂla“-;ﬂk—])<F7 G)) ) (30)

where L is the so called Ornstein-Uhlenbeck operator whose domain includes
De. Then, for any multiindex o,

E[(909)(F)G] = Elg(F)Hq(F, G)]. (31)
One has the following estimate:

Proposition 3.7 For anyp > 1 and any multiindex (3, there exist a constant

C(p,3) > 0 and integers k(p, ), m(p, B), m'(p,B), N(p. ), N'(p, ), such
that, for any measurable set A C 2 and any F,G as above, one has

1
E[[Hs(F,G)[" Lal> < C(p,B) [ITr Lallees) |G llnew.6)mip.0)
1El 5@ mwe-  (32)
We now state another classical result, which concerns the solutions of sto-

chastic differential equations considered as functionals of the driving Wiener
process. [A, A'| denotes the Lie brackett of two vector fields A and A’.

16



Definition 3.8 Denote by Ag, Ay, ..., A, the vector fields defined by

For a multiinder o = (v, ..., ) € {0,1,...7}*, define the vector fields A%
(1 <i <r) by induction: AY := A; and for 0 < j <r, Aﬁ“’” = [A7, A?].

Finally set

Set
Vi(z) =1A inf Vi(z,n). (33)

Inl=1

Under the hypothesis (H), X;(z) € D> for any x € R?. Let v,(x) denote
the Malliavin covariance matrix of X,(x) and let T';(z) denote its inverse.

We replicate Corollary 3.25 in Kusuoka and Stroock [26] in a weakened
form.

Proposition 3.9 Suppose (H) and
(URH) Cp :=inf,cpa Vi(z) > 0 for some integer L.
Let L be an integer such that (UH) holds. Then

ITe(2)]| € () LX(Q) Vo € B,

p>1
and for any p > 1, for some constant p and some increasing function K(-),

1+ |z
$dL ’

T ()], < K(T) Ve R", YO<t<T. (34)

Thus, for anyt > 0 and any x € R? the law of X;(x) has a smooth density
pi(x, ). Besides, for any integers m, k and any multiindices o and 3 such that
2m+ |a|+|8| < k, there exist an integer M (k, L), a non decreasing function
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K(+) and real numbers C, q,Q depending on L, T, m, k,«, 3 and on the bounds
assoctated to the coefficients of the stochastic differential equation and their
derivatives up to the order M(k, L), such that the following inequality holds':

K(T)(1 + |2/9) (lz —y A1)?
om5e5P < e AN A Vo<t <T.
10" 0 ypt(l"a?/)‘ =1+ y — 22 t(1+ |z|)? 7 =hs

(35)
Equipped with this result we can prove the

Theorem 3.10 (Bally and Talay [1]) Let f(-) be a measurable and bounded
function. Under the hypotheses (UH) and (H), the Euler scheme error sat-

isfies
Cf(T’ T) Qn(f, T,.’I?)
+ 5 .

n n
The terms Cy (T, x) = fOT EY (s, X(x))ds and Q,(f, T, x) have the following
property: there exists an integer m, a non decreasing function K(-) depending
on the coordinates of a and b and on their derivatives up to the order m, and
positive real numbers q, () such that

Ef(Xr(z)) — Ef(X7(2)) = - (36)

1+ o)
Cr (T, 2)| + supa|Qu(f. T, @)] < K(T)|[ flloc 77— (37)

Sketch of the proof. As for Theorem 3.3, the main part of the proof
consists in bounding terms of the type (21) from above. In the present
context there is a serious difficulty: when f(-) is not smooth, the spatial

derivatives of u(t,-) explode when ¢ goes to T'. Indeed,

utr) = [ prda)f)dy

and the estimate (35) shows that for any |y| > 1,

K(T 1) 1
- T < — z||9
|a~yp7“7t(,rﬂ y)| = (T - t)q (1 + ||T|| )(1 + ||y - TH?)"Y‘ )
from which Il
|O5u(t, )| < K(T)ﬁ(l +11z]|°). (38)

It can be shown that there is no hope to improve the explosion rate in power
of T'—t.

!The constant 7 of the statement of Kusuoka and Stroock is equal to 1 under (H).
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But a miracle occurs: in (21) the derivatives of the function

P97t80(9a )

are integrated w.r.t. the law of X/ (z). Let us give an intuition of what
happens. Consider the case § = ¢ and replace X;*(z) by Xi(z). Then, in
view of (21) the problem becomes to bound from above an expression of the

type

By 197 (X0)0yu(t, X)l | = [E. [9y(X0) 0 (Prof) (X0
uniformly w.r.t. ¢ € [0, 7). When ¢ is “small” i.e ¢ < £ the transition operator
Pr_; has smoothened enough the initial condition f(-): the inequality (38)

implies
/1
Ta

Orult,x) < K(T) 1= (1 4 ) @),

When ¢ is “large” i.e t > L the estimate (38) cannot be used. Instead, we
observe that the matrix I';(z) has LP-norms which satisfy (see (34))
1+ |z

TdL

ITe(2) || < K(T)

Thus, one can apply the integration by part formula (31) with

9() = (Pr—f)() = u(t, )

and
F = Xt(l'

Using (32) one deduces that for T > ¢ > Z,

~—

1+ |z

| B |9, (Xe)Ohu(t, X)]| < K(D)| flloo iz

This would be perfect if we would not have to consider F' = X/'(x) rather
than F = X;(x): we must take care that X' (z) does not satisfy the nonde-
generacy condition (3.4). We now explain the reason.

On one hand, one can easily prove the following: for any p > 1 and 7 > 1,
there exist an integer ) and a non decreasing function K (-) such that

sup | X7 () 5 < K01+ [2]°) (39)
and
s X, () — X7 (1), < %(1 + [l2]19). (40)
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On the other hand this result is far from satisfactory in view of the condi-
tion (3.4): indeed, if (Z") is a sequence of random variables, the convergence

to a random variable Z in LP(€2) does not imply that - is in LP(Q).

At this step of the proof a localization argument seems necessary. Let 7'
denote the Malliavin covariance matrix of X}' and let I'} denotes its inverse
(where it is defined). We recall that we are considering the case T' > ¢ > L.
Let Qg be the set of events where |§]' — 4| is larger than 2. Using (34)
and (40) one proves that P({) is small. On the complementary set of
Qo, |97 — 4| is small, which (roughly speaking) means that the Malliavin
covariance matrix of X/ (x) behaves like that of X;(z) (see (34)), which allows
integrations by parts of the type (31) with a good control of the LP-norms of
the variables H,,. [ |

3.5 Extensions

In the preceding proof, we have integrated by parts in order to make appear
f(+) instead of derivatives of u(t,-). One can refine the method to get an
expansion for

pr(z,y) — pr(z,y)

where pr(z,y) denotes the density of Xr(z) and pj(z, ) denotes the density
of the law of a suitable small perturbation of X;*(z) (the law of X/*(z) may
have no density, see our remark above on I'}(x)). To treat this problem, it is
natural to fix y, choose f5(&) = ps(y — &) where the ps(-)’s are such that the
sequence of measures (p;(£)d§) converges weakly to the Dirac measure at 0,
and make ¢ tend to 0. Theorem 3.10 is not sufficient since, when ¢ tends to
0, (|| f5 |l) tends to infinity. Nevertheless, if Fs is the distribution function
of the measure f;(£)d¢, the sequence (|| Fs ||o) is constant: this gives the
idea of proving inequalities of the type (37) with || F' ||~ instead of || f ||o
when f(-) has a compact support, F(-) being the distribution function of
the measure f(£)d¢. A supplementary difficulty is to prove that, instead of
(1+]|z||?) appears a function which satisfies an exponential upper bound and
that the function C, (7 ) itself satisfies an exponential upper bound: such
estimates permit to conclude that, when the differential operator £ in (12)
is strongly uniformly elliptic, that the density p}(x,y) of X/ (x) (which does
exist in this case) satisfies:

1 1
VmwGWXRﬂmww*ﬁ@w:*WW%w+QW@M (41)

n
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and there exists a strictly positive constant ¢, an integer ¢ and an increasing
function K'(-) such that

o) + B < S e (~Z2E)

For a complete exposition and a precise result, see Bally and Talay |2].

Observe also that the expansion of the error (36) justifies the Romberg
extrapolation procedure. Indeed, for some function e(-) one has

Ef(Xr) ~ Ef (X)) = e+ 0 ()

n2
and
o T 1
Ef(XT)—Ef(XT):Q—e(T)+(9 — |-
n n
Consider the new approximate value
Zy = 2Bf(X7") - Ef(X7) (43)

then
Ef(Xy)— Z} =0(n?).

Thus, a precision of order n~? is achieved by a linear combination of the re-

sults produced by the Euler scheme with 2 different step sizes. For numerical
examples and comments, see Talay and Tubaro [50].

In the context of the present subsection, the Milshtein scheme (9) (for
d = r = 1) has the same convergence rate as the Euler scheme (contrarily to
the approximation in L”(2)). The expansion of the Milshtein scheme error
makes appear a different function W(-).

The results given above only concern SDE’s driven by a Wiener process.
One can extend both the convergence rate analysis and the simulation tech-
nique to SDE’s driven by Lévy processes, which corresponds to the analysis
of Monte-Carlo methods for integro-differential equations of the type

ou
(¢ = 44
L (a4
Lu(t,z) + | {u(t,z+2) —u(t,z)— < 2z, Vu(t,z) > Ly <y} M(x,dz)
R4

where L is the elliptic operator (12) and the measure M (z,-) is defined as
follows: let v be a measure on R — {0} such that

/Rd(H z || Al)v(dr) < oo
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and let g(-) be a d x r-matrix valued function defined in R?; then, for any
Borel set B C R? whose closure does not contain 0, set

M(z,B) :=v{z; <g(z),z>€ B}.
Consider a Lévy process (Z;) and (X;) solution to

t
X, = X, + / 9(X,_)dZ,. (45)
J0

For K >0, m >0 and p € IN — {0}, set

plm) = L+ I+ Lo+ [ a1Pvta) + 1Al + el
m p/2 m
([ hvtan) [ palpotaz) (46
where v is the Lévy measure of (7;), and
nicp(m) = exp (Kpy(m)) . (47)
For m > 0 we define
h(m) = v({z; ||lz]| = m}). (48)

Theorem 3.11 (Protter and Talay [38]) Suppose:

(H1) the function f(-) is of class C*; f(-) and all derivatives up to order /
are bounded;

(H2) the function g(-) is of class C*; g(-) and all derivatives up to order /
are bounded;

(H3) X, € L(Q).

Then there exists a strictly increasing function K(-) depending only on d, r
and the L>-norm of the partial derivatives of f(-) and g(-) up to order 4 such
that, for any discretization step of type %, for any integer m,

Eg(Xr) - Eg(X7)| < Allgllpray(1 — exp(=h(m)T)) +
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Thus, the convergence rate is governed by the rate of increase to infinity of
the functions h(-) and nxrs(-).

Stronger hypotheses permit to get much more precise results:
Theorem 3.12 Suppose:

(HY’) the function f(-) is of class C*; all derivatives up to order 4 of f(-)
are bounded;

(H2’) the function g(-) is of class C* and moreover |0;g(x)| = O(||z||") for
I| =4 and some M' > 2;

(H3’) sz”>1 |z|"v(dz) < oo for 2 < v < M'™ := max(2M’,8) and X, €
LM (Q).

Then there exists an increasing function K (-) such that, for allm € IN — {0},

) < B (0)

|Eg(X7) — Eg(X7} "

(50)

Suppose now:

(H1”) the function f(-) is of class C®; all derivatives up to order 8 of f(-)
are bounded;

(H2”) the function g(-) is of class C® and moreover |0rg(z)| = O(||=||™")
for |I| =8 and some M" > 2;

(H3”) .me||>1 |z v(dx) < oo for 2 < v < M" := 2max(2M",16) and
Xy e LM (Q).

Then there exists a function C(-) and an increasing function K(-) such that,
for any discretization step of type L, one has

n’

c(T)

Eg(Xr) - Eg(X}) = —

+ R (51)

and sup,, n*| K| < nicery,mn(00).
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3.6 Newton’s variance reduction technique

In Newton [33] are presented variance reduction techniques for the Monte
Carlo computation of quantities of the type

E®(X)

where ®(-) is a real valued functional defined on C([0,T]; R?). In the preced-
ing subsection we have considered a much less general situation:

Dw) = flwr). (52)

Newton proposes a general methodology to reduce the variance of the Monte
Carlo procedure. His rather complex approach is based upon Haussmann’s
integral representation theorem applied to ®(X.). The analysis is consider-
ably simplified in the context (52) to which we limit ourselves here. In this
context, the principle of Newton’s method is as follows. Write

f(Xr(z)) = Ef(Xr(x)) + /0 (Ou)(t, Xi(x))o(Xe(x))dWy | a.s.

and set
7= f(Xp(z)) — /0 (Ou) (£, X, (2))o (X,(2))dW.

Of course Z is an unbiased estimator of F f(Xr(z)) and the variance of the
error is 0. Now suppose that one knows an approximation v of du. Then it
is natural to consider

7= f(Xp(x)) - /0 ot X () (X () AWV,

7 is an unbiased estimator of Ef(X¢(x)); the error of the variance is

E\Z - Ef(Xr(z))]’

—EfMNMA1MJMWW&meEﬂ&MD

= /E/O [((9u)(t, X, () = 0(t, Xi()))o (X ()| dt.

Thus, the variance may be small is o(+, -) is a good approximation of u(-,-) in
the sense that the right hand side of the preceding inequality is small (o(-, -)

24



can be seen as an approximation of du(-,-) in a suitable Hilbert space). In
such a case, one approximates

/0(au)(t,Xt(:r))a(Xt(x))th

by the sum

> 00T /1, X (2))0 (X (1) (Wpstyr/n — Worn)-

p=1

Such a variance reduction technique is called a “control variate” technique.
Newton also proposes a methodology to construct “importance sampling”
methods. See [33].

3.7 Lépingle’s reflected Euler scheme

Elliptic and parabolic PDE’s with a Dirichlet condition at the boundary lead
to probabilistic interpretations in terms of diffusion processes stopped at the
boundary. If the boundary condition is of the Neumann type then the prob-
abilistic interpretations involve reflected diffusion proceses. See Bensoussan
and Lions [3| or Freidlin |14] e.g.

We do not discuss here the approximation of stopped diffusions. Only a
few convincing results are available, see Milshtein [32].

For reflected diffusions on the boundary of the half-space, Lépingle [27|
has constructed and analysed a version of the Euler scheme which mimics the
reflection and is numerically efficient in the sense that the random variables
involved in the scheme are easy to simulate.

We first define a diffusion process obliquely reflected at the boundary of
the half-space.

For d > 1 consider the domain D := R x R*. Suppose that X, €
D a.s.. Fix a vector
V= (Vs Va1, 1)
in R?.
Suppose that the functions b(-) and o(-) are globally Lipschitz. Then there

exists a unique adapted continuous process X with values in D and a unique
adapted continuous nondecreasing process L such that for any ¢t € [0, 7],

X, = Xo+ [}b(X,)ds + [, o(X,)dW, + 7L, ,
Lo = [y LixeopdLs.
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The process L is given by

L= sup (X~ L,)".

0<s<t

The reflected Euler scheme is as follows:

Xn — X[],
n _ T
Xlpiyrm = XpT/n+ (X ) (53
+0 (Xt /) Wepsyryn = Woryn)
n,d
+v max (0, AT/n( ) — XpT/n)
where

0= ) o) S o 2 W)

pT /n<s<0+pT/n

The simulation of the reflected Euler scheme requires the simulation of
the pair

(Weprryrsn = Wyryns A% (0))
at each step. This can be efficiently done, as proven in Lépingle [27]:

Proposition 3.13 Let o = («q,...,«,) be a vector of R" and let ¢ be a real
number. Set

Sy :=sup(< a, Wy > +cs) .
s<t

Let U = (Uy,...,U,) be a Gaussian vector of zero mean with covariance

matriz t Id, and let V' be an exponential random wvariable with parameter
(2¢)" independent of U. Set

1
Y = 5(< a,U > +et + (|a]*V + (< a, U > +ct)?)?).
Then the vectors (Wi, S;) and (U,Y) have the same law.

Now define a continuous-time version of the preceding scheme, coinciding
with X7, at each time pT/n: for i <t < w,

X(T; = XO )
X = Xy +6(Xg) (= 50) + 0 (X)) We = Warya) - (54)
+ SuppT/ngsgt(Agpr/n(p) o X;’T’“/n)

One has the following convergence result, similar to (4):
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Theorem 3.14 (Lépingle [27]) Suppose b(-) and o(-) are Lipschitz func-
tions and that FE|X,|* < oco. Then, for some constants C and Cy uniform
w.r.t. n,

< M_ (55)

FE [ sup | Xy — X2
n

t€[0,T]

In 28] Lépingle extends his analysis to the case of hypercubes with normal
reflections.

An estimate for the approximation of F f(X7) would be useful: this work
is in progress. A result of this nature has just appeared in a manuscript by
Costantini, Pacchiarotti and Sartoretto [12].

An original numerical procedure is proposed by Liu [29]|. This procedure
is based upon a penalization technique.

For Monte Carlo methods coupled with the simulation of obliquely reflect-
ing Brownian motions, Calzolari, Costantini and Marchetti [8] give confidence
intervals.

Other approximation problems are investigated by Slominski [44] and [45]
for much wider classes of semimartingales and much larger types of reflec-
tions. As expected the approximating processes are less easy to simulate than
Lépingle’s scheme and the convergence rates are lower. Other references can
be found in [27].

3.8 The stationary case

In this subsection we assume

(H3) the functions b, o are of class C> with bounded derivatives of any
order; the function ¢ is bounded;

(H4) the operator L is uniformly elliptic: there exists a strictly positive
constant « such that

Vo, £ € R, Y al(€)a's’ > alzf;

(]
(H5) there exists a strictly positive constant  and a compact set K such

that:
Ve R" — K, x-b(x) < —Blz|.
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It is well known that (H3)-(H5) are (even too strong) sufficient conditions
for the ergodicity of (X;): see for instance Hasminskii [21]. Thus, (X;) has
a unique invariant probability measure pu. The hypothesis (H4) implies the
existence of a smooth density p(-) for p. This density solves the stationary
parabolic PDE

Lp(-) = 0. (56)

Our objective is to approximate
fy)p(y)dy
J R4

for a given function f(-) in L(u).

Theorem 3.15 (Talay and Tubaro [50]) Assume (H3)-(H5).
The Euler scheme defines an ergodic Markov chain.

Let f() be a real function of class C*(IR?). Assume that f(-) and any of
its partial derivatives have a polynomaial growth at infinity.

Let W be defined as in (15). Set

A= /U+Oo /Rd‘lf(t,y)u(dy)dt-

Then the FEuler scheme with step size % satisfies: for any deterministic
initial condition & = Y(’)’,

N ——+4o0

[ Hntay) - as. tim %Z_}f( z/n@))—%w(%)- (57)

Sketch of the proof. The ergodicity of the Fuler scheme can be proven
by using a sufficient criterion due to Tweedie [51]: first, one can check that
there exits a compact set which is reached in finite time by the chain (X;:/n)
with a strictly positive probability; second, it is easy to check that for any n
large enough, there exists e > 0 such that for all deterministic starting point
X = x outside this compact set,

BIX}, [ < [af? — e
Next, we oberve that the measure p has finite moments of any order.
Similarly,
VpeIN, 3C, >0, 3y, >0, Ing >0, Vn>ny,
E|X](z)P < Cp(1+ |zfPe ™), Vt >0, Vz € R. (58)
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Note that (58) imply that F, f(X]") is well defined.

Equipped with these preliminary results, our main ingredient to prove (57)
is the following. Set

u(t,x) = E,f(X;) — /f(y)dﬂ(y)

Then, for any multiindex « there exist an integer s,, there exist strictly
positive constants I', and 7, such that

Oqu(t,z)| < To(1+ |z|**)e ™ ¥Vt >0, Vo € R (59)

The proof of this estimate is technical (see Talay [47]). One step is to show
that for any multiindex [, if M; is defined by

|I| = integer part of (M; —d/2)

and if

there holds, for s € IN large enough:
HC[>0, 3)\[>0, ‘v’\a|§M,,Vt>0,
/ Ouu(t, 2) 2 (2)dz < Oy exp(=Agt). (60)

An easy computation shows that the preceding inequality implies that
HCT ’ )\T : V|C\/‘ < M’ ’ Vi >0 ’ /80(71“,7‘)7(9(7’)”2(17‘ < Cl GXp(*)\ﬂL)

We then can deduce (59) by using the Sobolev imbedding Theorem.

Next, one observes that

=

N N

N
%ZETJ‘( n) = %Zu(p/n,q“ 22 E,¥(j/n, X}),)

p=1 p=1 j=1p
N
1 R
+ 5 2R
p=1

where R is a sum of terms, each term being a product of derivatives of
b(-), o(-) and u(p/n,-). Then one makes N tend to infinity. The exponential

Il
<)
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decay in (59) permits to control the sum of the remainders R} and to prove
that

The Milshtein scheme (9) (for d = r = 1) has the same convergence rate
as the Euler scheme. The expansion of the Milshtein scheme error makes
appear a different function W(-).

As in the non stationary case, the expansion of the error in terms of %
justifies a Romberg extrapolation which permits to accelate the convergence
rate. See 50| for numerical experiments.

30



PART 1II - Stochastic Particle Methods

In this part, we analyse stochastic particle methods for nonlinear PDE’s
in a few special cases. Our objective is to establish the convergence rates
which can be observed in numerical experiments for PDE’s such that an
explicit solution is known, especially the rate N~'/2 where N is the number
of particles of the algorithm.

Works in progress at Inria, based on the results presented below, have
for objective the analysis of the random vortex methods for the incompress-
ible 2D Navier-Stokes equation developed by Chorin, Hald, etc (Chorin [11],
Chorin and Marsden [10]|, Goodman [17|, Hald (|19] and [20]), Long [30],
Puckett (]40], [39]) e.g.; see also the bibliography in [11] and in the different
contributions of [18]).

From now on, we suppose

We also suppose

(H6) b(-) and o(-) are bounded functions of class C>*(R); any derivative of
any order is assumed bounded;

(H7) o(z) > 09 >0, Vz € R.
We continue to set a(-) := o*(+).
4 Introduction to the stochastic particle meth-
ods

Let Vi(+) be the distribution function of a probability law. Consider the PDE
in (0,7] x R

5 (t, @) = ja(x) &5Vt x)
+ (3d/(z) — b(z)) ZV(t,2) in (0,T)x R,  (61)
limy_oV(t,z) = Vy(x) at all continuity points of Vi(-).

It is well known (see for instance |15]) that under (H6)-(H7) the law of
X:(z) has a smooth density p;(x,-) for all z € R and all ¢ > 0; this density
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satifies
%(t,x} =L*p(t,z) , Vt>0,Vz e R,
(62)
pi(z,6)dé 5 6,
Besides, there exists an increasing function K(-) and a constant A > 0 such
that, for all (z,y) € R?,

pe(z,y) < K\/(Z_;) exp (—%) . (63)

From (62) it is easy to see that V(¢,-) is the distribution function of the
law of X; when the law of X is po(d€) := dVp(€).

Let H(-) denote the Heaviside function (H(z) = 0if z < 0, H(z) = 1 if
z>1). Set

N
i 1 : i i
wd:N,forz:l,...,N; VON(.Q?)—Z(UOH(.T.TO),
where ' .
. . ) ~
VZ>1,3:0::V01<N>,3:[1]::\/01<ﬁ>. (64)

Thus, V{¥(+) is a piecewise constant approximation to Vj(-).

Now consider N independent copies of the process (WW;) and the corre-
sponding N copies (X}) of (X;) (1 <i < N), with X} = z},. Define

i = Y H - X)), (65)

The distribution function of the measure u) is

N
1 )
VNt x) = ~ § H(z — X}).
=1

Proposition 4.1 Suppose (H6)-(H7) and

(H8) There exist strictly positive constants Cy, Cy such that, for any x in
R, |Vy(z)| < Cre ",
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Then there exists an increasing function K (-) such that, for all N € IN*,

K(t)
E|V(Et,) =V | nm< —==. 66
| V() ( )HT(R)f\/N (66)
Sketch of the proof. We have:
V(t,z) - VN(t,z) = V(t,x) - EVN(t,2) + EVN(t,x) — VN(t,1)
N
1 i
= Pu(X, <) - ;P(th < )

N
1 i i
+ S {EH(z - X])— H(z — X})}
=: A(z) + B(x).
An integration by parts for Stieljes integrals leads to

Az) = /P X, < 2)dVo(y /]P X, < 2)dVy' (y)

— [0hw) - V)P < 2y,

Therefore

140 s [ [ R, <

The function y — X,;(y) is a.s. increasing since its derivative is an expo-
nential (see Kunita [24, Ch.2| e.g., for the diffeomorphism property of sto-
chastic flows associated with stochastic differential equations). Thus, again
denoting by X;(-) the flow defined by (1),

dz|Vo(y) — V5" (y)|dy.

P(X,(y) < 2) = Py < X ().

X, ! is the solution to a stochastic differential equation. The coefficients of
this SDE are such that the above mentioned result of Friedman [15] applies:

for some new function K(-),
d K(t z—y)?
Cpxt <y <« e (U0,
dy \/z_f 27t

It comes:

K(1)y/Tog(N)

1AC) o< K@) | Vo — V¥ o < =
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Now consider B(z).

~ X))~ EH(z — X}))| dz.

E | B() | JV/E

The random variables (H(z — X;) — EH (x — X}))1<i<x have mean 0 and are
independent. Thus, by the Cauchy-Schwarz inequality,

1 .
E|B() lum < E}E ~ EH(z — X}))*dx
1 N
= < Y P(Xi<a2)P(X] > x)da
i=1

VAN
=2
\
-
's\
I+
o ?

D

M

o]
—N—

\

2o |3,
——
~y
<
Q.

h%

For fixed z the function

%ﬁ/‘ o {‘g}dy

is decreasing from (0,1) to (0, 1); therefore, the definition of the x{ implies

Z/Héexp{——} dy</ /” 1() {—y;} dy ds.

Easy computations wich use (H8) (see [4]) then lead to the following esti-
mate:

K(1)
E B ‘ L] < .
B0 s
[
In practice, one cannot use exact values of X;. Thus, we consider N
independent processes defined by the Euler or Milshtein scheme (X!) with
X{ =z}, and the new approximate measure

N

v 1

i = S H( - X)), (67)
=1
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The distribution function of the measure i} is
VN ) = = S H(n - X)),
N 4 i

Proposition 4.2 Suppose (H6)-(H7) and

(H8) There exist strictly positive constants Cy, Cy such that, for any x in
R, [Vi(x)| < C e O’

Then there exists an increasing function K(-) such that, for all N € IN*,

BNV V) loms KO (So+a) 09

with o = % for the Fuler scheme and o =1 for the Milshtein scheme.

Proof. The conclusion readily follows from Section 2 of Part I, the pre-
ceding theorem and the inequality

4 . K(T
BlH(z — X}) — Hz— X))l < BIXG - X5 < 20

The convergence rate # is optimal. Indeed, in the following example,
the error estimate is equal to ﬁ plus a negligible term. Let X be a random

variable taking the values 0 and 1 with probability % Let ¥ be the empirical
distribution of N independent copies of X and let V¥ be the distribution
function of uV. It is easy to see that

WV =V n :iNZ

For example, suppose that N = 2n. Then,

P 2n)! L ko (2n)!
V*VN ] =9 2n (7*2 2n Y2 A
I o1 (m) kZOk!(gnW kzonk!(an)!

Now, an easy induction shows that, for all n > 0,

n

2n,)! —_
ka =n2 .

k=0
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Besides,

< (2”>! 2
2 = 2°".
Z k!( 277 — k n!n!

Thus,

1 (2n)!
© 2+l plpl
Applying Stirling’s formula, one deduces

IV =V iy

N 1
1V =V om = \/—N(l +0(1)).
5 The Chorin-Puckett method for convection-
reaction-diffusion equations

Let f(-) be a real function such that

(H9) fis a C? function on [0, 1] such that f(0) = f(1) =0, f(u) > 0 for
u € [0, 1] (therefore, @ is bounded in (0, 1] and continuous in 0).

Let Vi(+) be as in the preceding subsection. Consider the convection-
reaction-diffusion PDE
ou

u(0,-) = uo() =1 — Vi().

(69)

In [4], Bernard, Talay and Tubaro have analysed a stochastic particle
method introduced by Puckett [40]. They have proven Puckett’s conjecture,
based on numerical obervations, on the convegence rate of the method. The
analysis is based on an original probabilistic interpretation of the solution.

Theorem 5.1 Under (H7)-(H9), if ug is of class Ci°(R), we have the fol-
lowing representation:

t
u(t,z) = F [H(Xt - a:) exp (/ f'o u(s,Xs) ds> ] , (70)
0
where (X;) 1s the solution to
dXt = O'(Xt) dBt — {b(Xt) — O'(Xt) 0'/<Xt)} dt. (71)

Here, the law of Xy has a density equal to —ug, and (B;) is a standard
Brownian motion.
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Sketch of the proof. The function v(t,z) := %(t, x) satifies the following
equation:

a 1 62 8
[ D(10) = 5oM@) g (0) + () + o(2) o' () 5 (1, 2)

+('(z) + frou(t,z))v(t,x) ,

L v(0,2) = uy(x).
By applying the Feynman-Kac formula, we obtain
t
oit.0) = B |ui(o) exp { [ W00 + 10 ute = s Vo)las || (72
0

where (Y;) is the solution to

dY, = (b(Y;) + o(Y,) o' (V) dt + o(Y;) dB,. (73)

One can easily check that u(t,x) — 1 as # — —oo. Thus,
+oo t
) =B [ umi)es | W00+ oult s viw)ds)
e Jo

Let &4(-) be the flow associated with the stochastic differential equa-
tion (73). Hence, we set y = &, (2).

Using results of the second chapter of Kunita [24|, we have, for 6 < t,
t R t
Gi) == [ oleln i~ [ e @) as
where dBy denotes the “backward” stochastic integral 2. One infers that
o
&fo,g (2)

—en (=¥l - G ) ao - / o611 B
from which

—u(t, )
2For a definition, cf. Kunita |24, end of Ch. I
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=F [/ﬁo ug(2) exp /Ot (b'(fovs(a)) + flou(t — s,fovs(a)))ds

§n,t(-73)

a=£51(2)
exp {/ t |-t - %o”(fs,:(z))} ds / t o’(fs;(z))d?Bs} dz] -

One now uses Kunita [24, Lemma 6.2, Ch. II |: for any continuous func-
tion g(s,x) we have

/otg(s’&’vs(a)) ds = /Ot.q(s,fs,;(z)) ds.

a=E54(2)

Thus,

—+oo

~u(t,r) =F [ H(—&o(x) + 2) exp { / frou(t—s. &, (z))ds’}
Jo

o —0O0

M (2)ug (z)dz]

where (M}(z))g<: is the exponential (backward) (F})s<,-martingale defined

Vi) = e {3 [ edenas— [ weienin )

The application © — &y+(z) is a.s. increasing (its derivative is an expo-
nential), thus H(—&(z) + z) = H(EJ} (2) — z).

Hence,

—u(t,z)
- F [ [ i new [ o, 62 Mé(z)ub(zﬂz] .

We observe that the law of the process (&, ,)o<o<s, on (2, F, P, Ft), is
identical to the law of the process (Xp)o<p<; solution to

dX@ = O'(Xg) ng - b(Xg) df.
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Hence, [, denoting the expectation under the law P, for which the initial
law of the process (X4) has a density equal to —uy(z), and (M;) denoting
the exponential martingale defined by

1 t t
Mt:exp{—i/ a’Q(XS)der/ a'(xs)st},
0 0

t
u(t,z) = Fy {H(Xt — T) exp {/ frou(t —s,X,) ds} Mt} .
0

we have

On (Q, F, Py, Fl), one performs the Girsanov transformation defined by

P(A) ::Eo{lAMT] . AeFr,

then, for t < T,

u(t,z) = E {H(Xt — ) exp {/tf’ ou(s, Xy) dsH .
0

Under P, (X,) solves
dX, = o(X;)dB; — {b(X;) — o(X;) o'(X,)} dt.
Here, (Bjy) defined by
. 0
Bg = Bg — / ()'I(XS) dS,
0
is a Brownian motion under IP. Obviously, the above representation of w is

identical to (70). |

Define the initial weights and the initial approximation by

N
; 1 ) _ i i
wﬂzﬁ,forzzl,...,]\f; uo(x):;on(xO_x)7
where
Vi< N ol =yt 1—i zy = uy" L (74)
0 0 N ’ 0 0 \aN



~ Let X™ be defined by the Milshtein scheme (9). From now on, we write
X instead of X". We set

vi i i i i T
X(p—l—l)T/n = pT/n (b(XpT/n) - U(XpT/n>UI(XpT/n>) E
+ 0 (X /a) (Blpstyrn — Birya) (75)
[ i i i T
+ §U<X];T/n)0-/<XpT/n) <<B(p+])T/n - BpT/n)2 - E) :

Let 71(7) denotes the label number of the particle located immediately at
the right side of the particle of label i at the time kT /n. We define

w;)T/n =
Wip-1)T/n (76)
| Lol DT/n Xiyyry) — f o ullp ~ DT/m X70150)
n Wip-1)T/n
and
pT/TI T prT/n pT/n T ) (77)

forp=1,...,n
Theorem 5.2 (Bernard, Talay and Tubaro [4]|) (i) Under (H7)-(H9),

there exists an increasing function K(-) and an integer ng such that,
for any n > ng and any N > 1,

w@»—MﬂwmmmSK@(§ﬁ+%§.

(ii) When the functions b(-) and o(-) are constant, then the rate of conver-
gence s given by

w@»—MﬂwmmmSK@(§ﬁ+%§.

The same estimates hold for the standard deviation of ||u(T,-)—u(T, )| L1 (m)-

Sketch of the proof. The lengthy proof consists in observing that the
algorithm is a discretization of the representation (70).

40



Indeed, the approximation of —uy(z) dz by

N
g Wy O
i=1

leads to
N T
u(T,x) ~ Zw6 E |:H(XT(T6) — T) exp {/ fou(s, X,(xp)) dSH .
i=1 /0

Let {(B}),i=1,..., N} be N independent Brownian motions and let (X})
be the (independent) solutions to the following SDE’s (in forward time):

42X} = o (X)) dB) — {b(X}) — 0(X}) o' (X))} do,
Xé = a:f].

One has
N T
uw(T,z) ~ Zw[’] E [H(Xfr — ) exp {/ flou(s, X7) dsH :
i=1 0
The particle algorithm replaces the expectation by a point estimation:

N T
uw(T,z) ~ Zw(’] H(X: — ) exp {/ flou(s, X7) ds} :
i=1 70

Then, one approximates exp {fOT flo u(s,Xﬁ) ds}. The integral is dis-
cretized with a step T'/n and the Milshtein scheme is used to approximate
the X;T/n’s. Besides, the unknown function wu(pT/n,-) is replaced by its
approximation a(pT'/n,-). It is this substitution which introduces a depen-
dency in the algorithm, because the computation of a(pT/n,-) requires to
sort the positions of the particles at each step of the algorithm (see the role
of the functions 7, () in (76)). Without this substitution, the weights would
be recursively defined by

— — T "’
Plp41)T/n = PpT/m T Ef o u(pT'/n, XpT/n)'

The following key estimate shows that the true weights are not far from
being independent, which explains that the global error of the algorithm is
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of order N~'/? ag if the weights were independent. Set ol := E|w! — p|?

and oy, := sup; a,. One can show (the proof is very technical) :

C

< —5+ 5 (78)

Then, one must carefully estimate the error produced by each one of the
successive approximations that have just been described. In particular, the
difficulty is to avoid the summation over p of the “statistical error” involved
in the algorithm which identifies u(pT/n,-) and FEu(pT/n,-), because such

n

a summation would lead to an estimate on the global error of order I In
fact, a more clever analysis shows that the algorithm propagates the error

u(pT/n,-) — Eu(pT/n,-)

in a rather complex way whereas the “statistical error” can be taken into
account only at time 7T'; this latter error can be controlled owing to the
estimate (78). |

6 One-dimensional Mc-Kean Vlasov equations

Consider two Lipschitz kernels b(z,y), s(z,y) from R? to R, a probability
distribution function V; and the nonlinear problem

Gr(ta) = S0 ([ s(@,y) 5o (ty)dy)* G (1 2)]
— [ [ dCoy) 22t y)dy ]| 2L(t, ), (79)
V(O’T) = %(T) ]

Later on, we will see that Burgers equation can be interpreted as a special
case of this family of problems.

Our objective is to develop an algorithm of simulation of a discrete time
particle system {Y} it =1 N} such that the empirical distribution

N

_ 1 ;
Virm(z) = N Z H(zx — Yk:T/n)

i=1

approximates the solution V' (¢, z) of (79). Contrarily to the stochastic par-
ticle method of the previous subsection, the weights are constant but, in
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counterpart, the positions of the particles are given by dependent stochastic
processes.

Consider the system of weakly interacting particles described by

X = / b, )l (dy) dt + / XY )l (dy)dW
R R (80)

uN _ yi g
XN =Xii=1,... N,

where (W}'),..., (W}) are independent one-dimensional Brownian motions
and p} is the random empirical measure

1 N
N E
/"[/t — ﬁ - 5XZ’N

The functions b and s are the “interaction kernels”. When the initial distri-
bution of the particles is symmetric and when the kernels are Lipschitz, one
has the propagation of chaos property: the sequence of random probability
measures (pV) on the space of trajectories defined by

1 N
N §
M = N - 6X.i’N

converges in law as N goes to infinity to a deterministic probability measure
p. Besides, if for each ¢ we denote by pu; the one-dimensional distribution of
p (py is the limit in law of p¥), then there exists a unique strong solution
(X:) to the nonlinear stochastic differential equation

X, = X, + /Ot/RMXG’y)'ue(dy)dt + /Ot/Rs(Xe,y)ue(dy)dWa, a1

i is the law of the random variable X;, for all ¢ > 0

(see S. Méléard’s contribution to this volume or Sznitman [46] e.g.). One
consequence of the propagation of chaos is that the law of one particle, for
example the law of (X,""), tends to the law of the process (X;) when N goes
to infinity.

Defining the differential operator L(u) by

i =5 ([ S(x,y)du(y)>2.f”(x) # ([ senautn) £
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Ito’s formula shows that p, is the solution to the McKean-Vlasov equation
{ % <pu, f >=< ,ut,L(,ut)f > , Vfe C'}?(B),
Ht=0 = Mo-

Consequently, the distribution function V (¢, x) of u: solves (79) where Vj(+)
is the distribution function of .

(82)

We suppose that the following assumptions hold:

(H10) There exists a strictly positive constant s, such that
s(x,y) > s.>0, Y(z,y).

(H11) The kernels b(-,-) and s(-, ) are uniformly bounded functions of R?;
b(-,-) is globally Lipschitz and s(-, -) has uniformly bounded first partial
derivatives.

(H12) The initial law po has a continuous density ug(-) satisfying: there
exist constants M > 0, n > 0 and a > 0 such that

2
up(z) < nexp(—a%) for |z |> M.

The initial distribution function V' (0,-) = V4(+) is approximated as in the
preceding subsection. We set

vy = Vi /).

Consider the system (80) with the initial condition X = 32, and denote
its solution by (X;, 1 <4 < N). There holds
1< 4 1< 4
dXi = NZ()(X;’,X,?) dt + st (X, X]) dwj, t€0,T],

j=1 j=1

Xi=wyh,i=1,...,N.

3

To get a simulation procedure of a trajectory of each (X7), we discretize
in time and we approximate u; by the empirical measure of the simulated

particles. The Euler scheme then leads to

Y(k+])7“/n = YkT/n + N Z b( kT /n ’YET/”)E
=1
1 N J |
T N Z S( le/n’ kaT/n) (W(lk—Fl)T/n - leT/n) ) (83)
Jj=1
L Yy = yi,i=1,...,N.



In the same way, we approximate V (¢, -) solution to (79) by the cumulative
distribution function of p:

N
VkT/n Z kT/n VT c R. (84)

Theorem 6.1 (Bossy and Talay [7], Bossy [5]) Suppose (H10)-(H12). Let
V(t,x) be the solution of the PDE (79).

There ezists an increasing function K(-) such that, Vk € {1,...,n}:
E |V(ET/n,.) ~ Virm(.)

(P

< K(T) <||Vo — Vollwim) + \/1—N %) (85)
and
Var (HV(kT/n, ) - VkT/n(')Hm(R))
< K(T) (||V0 Vollonam + 3 + :L) (86)
Besides,
¥ = Tl < S

Sketch of the proof. Define 8 : [0,T] x R — R by

B(t.a) = [ bla.g) mldy).

and o0 : [0,7] x R — R hy

o(t,x) r—/]RS(m,y) pue(dy).

Under our hypotheses, there exists a unique strong solution to

dzy = B(t, z)dt + o(t, z) dwy ,
(87)

Zt=0 = 20 ,

where z; is a square integrable random variable. When the law of zy is g,
the two processes (z;) and (X;) solution to (81) have the same law and

Vita) = BHi(a~ X) = By~ =) = [ BHE ) nodn)
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Consider the independent processes (z;)(—1, ) solutions to

dei = Blt, =) di + o(t,=}) WV
(88)
25 = Yo-
Applying the Euler scheme to (88), one defines the independent discrete-
time processes (Zj;,):
+o(kT/n, Zyr),) (W(lk“)/n - liT/n) ; (89)

1 i

2o = Yo-
The global error is decomposed as follows:

E |V(KT/n,z) — Virm(z H,l
< || EuH(z = 2rm) — EﬁoH( _ZkT/”)HL](ﬂ?)

N
1 i
+E || g, H(x — z70) — > H(x — zigy) (90)
= L(R)
o
+FE N Z H(z — ZkT/n Z H(x ZkT/n
=1 L'(R)
1
+E N Z H(r — ZkT/n Z H(zx kT/n
= L(R)

The first term of the right handside corresponds to the approximation error
of the measure pp; the second term essentially is a statistical error related to
the Strong Law of Large Numbers; the third term is the discretization error
induced by the Euler scheme; the last term corresponds to the approxima-
tion of the coefficients B(kT/n,-) and o(kT/n,-) by means of the empirical
measure f.p,, which introduces the family of dependent processes (Y,:T/n).
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One successively proves:

HENOH(T - Zt) - EﬁoH(m - Zt)HLl(R) <C || Vo — VU ||L1(R) )

1 .
E|E; H(z — 2) — ﬁz H(z — 2}

=1 L'(R)
N N
1 i 1 ; C
E NZH(W*ZWM)*NZH(W*ZICT/”) S%»
i=1 i=1 LY(R)
1 — 1 —
=1 =1 L1(IR)

(f f+||v0 V0||L1(R)>-

The three first inequalities are obtained following the guidelines presented
in Section 4 and observing that an inequality of the type (63) holds for the
density of the law of z(z). The proof of the last inequality is based upon
an induction formula with respect to £ which mimics the propagation of the
global error. More precisely, set

ZE|Ztk - Ytl

and . T

A tedious computation, where the Lipschitz condition on the kernels and
the estimate (4) play a role, shows that

VE
B <1+ DB, + L (5 + Iy 4 cLV A

E]<CT

n ?

Vo for k> 1,

te—1
from which one can deduce
1 N
XY A - Vi
-1

1 1 ~
<C|—+4+— Vo — Vol i
< <\/ﬁ+\/ﬁ+” 0 0||L(1R)>

I1(R)
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Suppose now that the objective is to approximate the solution of the
equation (82) rather than (79).

The above hypotheses imply that for all £ > 0 the measure y; has a density
u(t, ) w.r.t. Lebesgue’s measure. To obtain an approximation of u(kT/n, ),
we construct a regularization by convolution of the discrete measure f,,.

Let ®¢ () be the density of the Gaussian law N(0,£?) and set
ex ( Yk:lT/n)
P 2¢? '

(H11’) The kernel b(-,-) is in CZ(R?) and s(-,-) is in C}(R?).

N
1

U(IET/n( ) = (q)c‘:*:U’kT/n - N Z

=1

We strengthen our hypotheses:

(H12’) The initial law pg has a strictly positive density wuo(-) in C*(R)
satisfying: there exist strictly positive constants M, n and « such that

2
ug(x) + ug(z)] + |ug(z)| < n exp <()/%) , for |z| > M.

One then have the

Theorem 6.2 (Bossy and Talay [7], Bossy [5]) Suppose (H10), (H11’)
and (H12’). Let u(t,-) be the classical solution to the PDE

([ s(x.y)ult,y)dy) }

du (f T) 19 )
ai [u(t, =) [ blx,y)u(t,y)dy] | (91)

2 0z

u(0,z) = ug(z) ,
where ug(-) is the density of py.
Then there exists an increasing function K (-) such that, Vk € {1,...,n},

E [Ju(kT/n, ) = T (]| 1 ey
< K(T) {52 + é(HVO — Vollrim + \/LN + %)} (92)

and
Var (Hu(kT/n, )= H‘ET/”(.)HLI(P)

< K(T) [g + = <||Vo — V0||,1 )+ % + — ! ﬂ (93)
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Sketch of the proof. The first step consists in proving that the density
u(t, ) belongs to the Sobolev space W*!'(R) and that the norm of u(¢,-) in
W*!(R) is bounded uniformly in ¢ € [0, T]. This is done by using a criterion
due to Cannarsa and Vespri [9] to check that the function (1 + 2?)u(t, )
belongs to C!([0, T]; L*(R)) N C([0, T]; W**(R)). Equipped with this result,
one can then use the well-known estimate (cf. Raviart [41])

lute, ) = (ulte, ) * ) [l < C e lulty, )lwei(m)- (94)

The second step is easy. It consists in checking that

_ C _
Bl (u(ts, ) =, () * Pellm < = B[Vt ) = Vo Ol

Therefore, one can conclude by applying Theorem 6.1. |

Thus, the rate of convergence depends on relations between £, N and n.
This is not estonishing: roughly speaking, if € is too large, the smoothing by
®_(-) is too crude whereas, when ¢ is too small w.r.t. N, there may be too
few particles in the windows of size ¢.

7 The Burgers equation

For all the results of this section we refer to Bossy and Talay [6] and Bossy [5].

Consider the Burgers equation:

2
NV _ 1.0V V0T xR,

V(0,2) = Vo(x) .

This PDE can be seen as the Fokker-Planck equation for the limit law
of particle systems corresponding to a kernel b(-, ), roughly speaking, equal
to a Dirac measure (see Sznitman [46]). The corresponding algorithm must
involve a smoothing of this kernel. The analysis of its convergence rate is still
in progress. Another stochastic particle method for the Burgers equation has
been proposed by Roberts [42].

In order to construct a stochastic particle algorithm involving a kernel
b(-,-) less irregular than a Dirac measure ( therefore more interesting from a
numerical point of view), we interpret the solution of the Burgers equation
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as the distribution function of the probability measure U, solution to the
following McKean-Vlasov PDE:

oU 1 ,0°U 0
oy _ 2t 2vYr Y Hls
ot 20 O o ((/R (.Z' U)Ut(dy)> Ut> ,

Ut:() — U[] .

(96)

The above PDE is understood in the distribution sense. Its nonlinear part
makes appear the discontinuous interaction kernel b(z,y) = H(x — y).

To this McKean-Vlasov equation, is associated the nonlinear stochastic
differential equation

dX, = odWV, + / H(X, — )Qu(dy) dt . Qu(dy) is the law of X,
" (97)

Xt:[] == X[) of law QO .

As the kernel H(z — y) is discontinuous, the “classical” results of the
propagation of chaos for weakly interacting particles do not apply. Thus, one
first must prove that there exists a solution to (97) and that the propagation
of chaos holds for the corresponding particles system.

Let M(R) denote the set of probability measures on R. For any measure
p € M(RR) the differential operator L, is defined by

Loyt @) = 30520 + ([ - putn) Fe).

One can prove the existence and the uniqueness of a solution to the follow-
ing nonlinear martingale problem (98) associated to the operator L : for any
initial distribution @y € M(RR), there exists a unique @ in M(C([0,T]; R))
(we denote by @, t € [0, 7], its onedimensional distributions) such that

(1) @ = Uy,
(1) F € C(R).F(a(0) = Fa0) = [ £, Flale))ds, t € 0.7 (0

is a @ martingale ,

where z(-) denotes the canonical process on the space of continuous func-
tions from [0, 7] to R (this is done by showing the convergence of the solu-
tions of the martingale problems corresponding to an appropriate sequence of
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smoothened Heaviside functions). Equipped with this result, one can prove
that there is a unique solution @ in the sense of probability law to (97). (Be-
sides, one can show that the distribution function of @, is the classical solution
to the Burgers equation.)

One can also prove the following

Proposition 7.1 The propagation of chaos holds for the sequence of mea-
sures () defined by

1 N
N §
M = N - 6X.i’N

where

N
. , 1 4 4
dXN = odW + ~ SO HXY - X)) dt.

J=1

Sketch of the proof. First, one easily shows that the sequence of the
laws of the p¥’s is tight. Then, let TI3° be a limit point of a convergent
subsequence of {Law(p”™)}. Similarly to what is done in Section 4.2 of S.
Méléard’s contribution in this volume, set

Plon) =< (0) = 1) = [ Lo (0)0) glalon).as0) >

where f € CE(R), g € Co(R*), 0 < 51 < ... < 5, < s < T and m is a
probability on C([0,T]; R). Then use the two following arguments.

(a) First, limy_., o E[F(pu")]? =0 since

C A
: N\12 : ?
i ELFGO < ST ( [ o)

(b) Second, one can show that the support of I13° is the set of solutions to the
nonlinear martingale problem (98). As the uniqueness of such a solution
holds, one gets that II3° = dp. Here, one cannot use the continuity of
F(-)in P(C([0,T]; R)) endowed with the Vaserstein metric because the
Heaviside function is discontinuous, but one can take advantage of the
explicit form of F. The key argument is as follows. Let v be defined
by

N
N = —1 E O i ;
TN (XBN XN xRN LNy
ik =1

o1



Let TI™° € P(P(C([0,T]; R)")) be the limit of a convergent subsequence
of the tight family {Law(v")}. Denote by v' the first marginal of
a measure v € P(C([0,T]; R)*) (for all Borel sets A in C([0,T]; R),
v (A) = v(A x C([0,T]; R) x C([0,T]; R) x C([0,T]; R))). Then, one
observes that

n* —ae, v=voveov v

Besides, one can prove that

: N\12 __
Jim B[P =

»/P(c<[o,ﬂ;m4> {/C([o TR [f(m - —/ f(xh)d
/ Hiz <xa>d9] (99)

gzl ...,z )dl/(T v 2w )}Zdﬂoo(l/) :

One then proves that I1*°-a.e.,

1 1 o2 [t ) t 1 ) 1
_ v " do — _ , "
/C([O,T};]R)Q) [f(a:t) fla) =5 /s f () /s H(x) — 22) f'(x})

glal ... ,xip)dul(xl) ® dv'(2?) = 0. (100)

Then, (100) and the uniqueness to the nonlinear martingale prob-
lem (98) imply that v' =@ which is equivalent to

]\}im (Law(p™)) = dp -
See [6] for details.

We now turn our attention to the numerical approximation of the pre-
ceding particle system. We set:

i T
Yororm = W/ﬂ ZH< KT/n kT/n) n
1 i
TN (Wekrvyrsn = Wiam) (101)
;N
i=1
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A much more complex and technical analysis than for the McKean-Vlasov
equations with Lipschitz kernels (the study of the propagation from %T to
EHDT of the error is very intricate when the kernels are not globally Lipschitz)

n

leads to

Theorem 7.2 (Bossy and Talay [6], Bossy [5]) Let V(t,x) be the clas-
sical solution of the Burgers equation (95) with the initial condition Vi. Sup-
pose (H12).

Let Vw/n(m) be defined as above, N being the number of particles.
There exists an increasing function K (-) such that for all k € {1,...,n}:

E[V(KT/n,.) ~ Vil

SKQO—%m®+jﬁ+%) (103)

The monotonicity of the function V4(-) can be relaxed: see |7| for the
modification of the algorithm when V4(-) is non monotonic and for the cor-
responding error analysis.

In a forthcoming paper, Bossy and Talay extend this analysis to Chorin’s
random vortex method for the 2-D incompressible Navier-Stokes equation.
The interpretation of the Navier-Stokes equation in terms of limit law of
weakly interacting particles has been given by Marchioro and Pulvirenti |31]
and Osada [35]. The interaction kernel is still less smooth than the Heaviside
function since it is the Biot and Savart kernel, which is singular at 0. This
makes the error analysis delicate.

For numerical experiments on the above stochastic particle methods re-
lated to McKean-Vlasov equations, see M. Bossy’s thesis |5].
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