
Probabilistic Numerical Methods for PartialDi�erential Equations: Elements of Analysis�Denis Talay
The objective of these notes is to present recent results on the convergencerate of Monte�Carlo methods for linear Partial Di�erential Equations andintegrodi�erential Equations, and for stochastic particles methods for somenonlinear evolution problems (McKean�Vlasov equations, Burgers equation,convection-reaction-di�usion equations). The given bounds for the numericalerrors are non asymptotic: one wants to estimate the global errors of themethods for di�erent possible values taken by their parameters (discretizationstep, number of particles or of simulations, etc).Only a selection of existing results is presented. Most of the proofs areonly sketched but the methodologies are described carefully. Deeper informa-tion should be available in Talay and Tubaro [49]. A companion review paperof these notes, with an emphasis on applications in Random Mechanics, isTalay [48].PART I - Monte Carlo Methods for ParabolicPDE's1 NotationWe �x a �ltered probability space (
;F ; (Ft); IP ), and a r-dimensional Brown-ian motion (Wt) on this space.�THESE NOTES HAVE BEEN PUBLISHED IN `PROBABILISTIC MODELS FORNONLINEAR PARTIAL DIFFERENTIAL EQUATIONS', D. TALAY AND L. TUBARO(Eds.), LECTURE NOTES IN MATHEMATICS 1627, 1996.1



Usually a time interval [0; T ] will be �xed.The notation (Xt(x)) stands for a process (Xt) such that X0 = x a:s:Given a smooth function ' and a multiindex � of the form� = (�1; : : : ; �k) ; �i 2 f1; : : : ; dgthe notation @x�'(t; x; y) means that the multiindex � concerns the di�er-entiation with respect to the coordinates of x, the variables t and y being�xed.When  = (ij) is a matrix, ̂ denotes the determinant of , and j denotesthe j � th column of .When V is a vector, @V denotes the matrix (@iVj)ij.Finally, the same notation K(�), q, Q, �, etc is used for di�erent functionsand positive real numbers, having the common property of being independentof T and of the approximation parameters (discretization step, number ofsimulations or number of particles, etc).2 The Euler and Milshtein schemes for SDE'sLet (Xt) be the process taking values in IRd solution toXt = X0 + Z t0 b(Xs)ds+ Z t0 �(Xs)dWs ; (1)where (Wt) is a r-dimensional Brownian motion.Our objective is to approximate the unknown process (Xt) by an ap-proximate process whose trajectories can easily be simulated on a computer.Typically we must simulate a large number of independent trajectories ofthis process. Therefore, the cost of the simulation of one trajectory must beso low as possible.An e�cient procedure consists in choosing a discretisation step Tn of thetime interval [0; T ] and in simulating the Euler scheme de�ned by8<: Xn0 = X0 ;Xn(p+1)T=n = XnpT=n + b(XnpT=n)Tn+�(XnpT=n)(W(p+1)T=n �WpT=n): (2)To simulate one trajectory of (Xnt ; 0 � t � T ), one simply has to simulatethe family (WT=n;W2T=n �WT=n; : : : ;WT �WT�T=n)2



of independent Gaussian random variables. For kTn � t < (k+1)Tn , Xnt isde�ned byXnt = XnkT=n + b(XnkT=n)�t� kTn � + �(XnkT=n)(Wt �WkT=n): (3)The convergence rate of this scheme has been studied according to variousconvergence criterions. In the sequel we will present estimates on the dis-cretization error according to several di�erent criterions, all of them being re-lated to probabilistic numerical procedures for Partial Di�erential Equations.The proofs of most of these estimates use an elementary result concerningthe convergence in Lp(
).Proposition 2.1 Suppose that the functions b(�) and �(�) are globally Lip-schitz.Let p � 1 be an integer such that IEjX0j2p <1.Then there exists an increasing function K(�) such that, for any integern � 1, IE " supt2[0;T ] jXt �Xnt j2p# � K(T )np : (4)The function K(�) depends on the Lipschitz constants of the functions b(�)and �(�), on the dimension d, on p and on IEjX0j2p.Sketch of the proof. Let Lb be the Lipschitz constant of b(�):jb(x)j � Lbjxj+ jb(0)j ;a similar inequality holds for �(�). Thus, from (3) and Itô's formula, aninduction on k shows: there exists an increasing function K(�) such that forany n 2 IN�,IE " supt2[0;T ] jXnt j2p# � K(T )(1 + IEjX0j2p) exp(K(T )): (5)Here, the function K depends on Lb, L�, p and the dimension d.Consider, for t 2 [kT=n; (k + 1)T=n], the process"t := XkT=n �XnkT=n + Z tkT=n(b(Xs)� b(XnkT=n))ds+ Z tkT=n(�(Xs)� �(XnkT=n))dWs: (6)3



Apply the Itô formula to j"tj2p between t = kTn and t = (k+1)Tn ; standardcomputations and (5) then show that, for a new increasing function K(�),IEj"(k+1)T=nj2p � �1 + K(T )n � IEj"kT=nj2p + K(T )np+1 :Noting that "0 = 0, an induction on k provides the estimatesup0�k�n IEj"kT=nj2p � C1 exp(C2T )np :To conclude, it remains to use (6) again. �Applying the Borel-Cantelli lemma, one readily deduces theProposition 2.2 Suppose that the functions b(�) and �(�) are globally Lip-schitz. Suppose that IEjX0j2p <1 for any integer p. Then80 � � < 12 ; n� supt2[0;T ] jXt �Xnt j n!1�! 0 a:s: (7)The details of the easy proofs of the two preceding propositions can befound in Faure's thesis [13] or in Kanagawa [23] e.g.Concerning the path by path convergence of the Euler scheme, one has aneven better information, which we brie�y now present; we refer to Roynette [43]for a complete exposition.Let g(�) be a function from [0; T ] to IR and let p be a strictly positiveinteger. Set !p(g; t) := supjhj�t�ZIh jg(x+ h)� g(x)jpdx�1=pwith Ih := fx 2 [0; T ]; x+ h 2 [0; T ]g. For 0 < � < 1 and 1 � q � +1, setkgk�;p;q :=k g kLp(IR) +�Z T0 �!p(g; t)t� �q dtt �1=q :The Besov space B�p;q is the Banach space of the functions g(�) such thatkgk�;p;q <1, endowed with the norm k � k�;p;q. The Besov space B�1;1 is theusual space of Hölder functions of order �.4



Theorem 2.3 (Roynette [43]) Suppose that the functions b(�) and �(�)are globally Lipschitz. Suppose that IEjX0j2p < 1 for any integer p. Let~Xn := X2n . For any integer p > 1, for any n large enough, there exists aconstant CT (p) uniform with respect to n such that, for any  < 12 ,k X� � ~Xn� k1=2;p;1� CT (p)2�n a:s: (8)Sketch of the proof. Consider the process "(�) de�ned in (6). De�nebns := b(Xs)� b( ~Xns ) ; �ns := �(Xs)� �( ~Xns ):Thus, "t := Z t0 bnsds+ Z t0 �ns dWs:From the estimates (4) and (7), one can easily show that, for any  < 12 ,for any n large enough,sup0�s�T(jbns j+ j�ns j) � C2�n a:s:;and for any integer p � 1,sup0�s�T IEj�ns j2p � CT (p)2�np:The technical proposition 1 in Roynette [43] then implies: for any integerp > 1, there exists a (new) constant CT (p) uniform w.r.t. n such that, forany  < 12 , k "� k1=2;p;1� CT (p)2�n a:s: �The asymptotic distribution of the normalized Euler scheme errorUn := pn(X� �Xn� )is analysed in Kurtz and Protter [25] (see also their contribution to thisvolume): (X;Un) converges in law to the process (X;U) where U is thesolution toUt := Z t0 @b(Xs)Usds+ rXj=1 Z d0 @�j(Xs)UsdW js + 1p2 rXi;j=1 @�i(Xs)�j(Xs)dBijs ;where (Bij; 1 � i; j � r) is a r2-dimensional standard Brownian motionindependent of X. 5



In the sequel, when d = r = 1, we also use the Milshtein scheme8>>>>>><>>>>>>:
Xn0 = X0 ;Xn(p+1)Tn = XnpT=n + b(XnpT=n)Tn+ �(XnpT=n)(W(p+1)T=n �WpT=n)+ 12� �XnpT=n� �0 �XnpT=n� �(W(p+1)T=n �WpT=n)2 � Tn � :(9)Our reason for considering that scheme here comes from theProposition 2.4 Suppose that the functions b(�) and �(�) are twice contin-uously di�erentiable with bounded derivatives.Let p � 1 be an integer such that IEjX0j4p < 1. Then there exists anincreasing function K(�) such thatsupt2[0;T ] IEjXt �Xnt j2p � K(T )n2p : (10)If IEjX0j4p <1 holds for any integer p, then for any 0 � � < 1,n� supt2[0;T ] IEjXt �Xnt j2p � K(T )n2p : (11)The proof follows the same guidelines as the proof of Propositions 2.1 and 2.2.See Faure[13]. Note that the Milshtein scheme has better convergence ratesthan the Euler scheme for the convergence in Lp(
) and the almost sureconvergence. A similar remark is true for the convergence in Besov spaces,see Roynette [43].Here we consider the Milshtein scheme only when d = r = 1. In themultidimensional case, generally it requires double stochastic integrals whichare not simple to simulate: see Talay [48] for a discussion and Gaines andLyons [16] for a method of resolution.3 Monte Carlo methods for parabolic PDE's3.1 Principle of the methodDe�ne the d� d matrix valued function (aij(�)) bya(�) := �(�)��(�):6



De�ne the second-order di�erential operator L byL := dXi=1 bi(�)@i + 12 dXi;j=1aij(�)@ij: (12)Consider the problem� @u@t (t; x) + Lu(t; x) = 0 in [0; T )� IRd ;u(T; x) = f(x) ; x 2 IRd : (13)In the two di�erent sets of hypotheses that we will consider for b(�), �(�)and f(�), the following holds: the problem (13) has a unique solution whichbelongs to the set C1;2([0; T ) � IRd) and is continuous on [0; T ] � IRd. Thisunique solution is given byu(t; x) = IExf(XT�t) = PT�tf(x) ; 8(t; x) 2 [0; T ]� IRdwhere P� denotes the transition operator of the Markov process (Xt).Let fX(i)� ; i 2 INg be a sequence of independent trajectories of the processX. If the Strong Law of Large Numbers applies for the sequence f(X(i)t (x)),then u(t; x) = limN!1 1N NXi=1 f(X(i)T�t(x)) ; a:s:In practice one must approximate the X(i)t (x)'s. We consider the simplestapproximation method: the Euler scheme. As we will see, this simple methodhas very interesting properties in the present context, even from the pointof view of the convergence rate and of the numerical e�ciency. The �MonteCarlo+Euler� approximation of u(t; x) isun;N(t; x) := 1N NXi=1 f(Xn;(i)T�t (x)) ; (14)where fXn;(i)� ; 1 � i � Ng denotes a set of independent trajectories of theprocess Xn.Why are we interested in this method? Is it competitive with the usualdeterministic algorithms of resolution of (13)? Of course there is no generalanswer to such a question. The answer depends on the dimension d and onthe functions b(�), �(�). Roughly speaking, the Monte Carlo method seemsunuseful when a �nite di�erence method, a �nite element method, a �nite7



volume method or a suitable deterministic algorithm is numerically stableand does not require too a long computation time.Nevertheless we can give examples of situations where a Monte Carlomethod is e�cient.First, the computational cost of the deterministic algorithms growthsexponentially with the dimension d of the state space: these algorithms usegrids whose number of points growths exponentially with d. Thus, when d islarge (d � 4, say), the numerical resolution of (13) may even be impossiblewithout a Monte Carlo procedure, whose computational cost growths onlylinearly with the dimension of the process Xn to simulate.A Monte Carlo algorithm may also be interesting when one wants to com-pute u(t; �) at only a few points. This situation occurs in �nancial problems(evaluation of an option price in terms of the spot prices of the stocks) or inPhysics (computation of the probability that a random process reaches giventhresholds). One can also think to use a Monte Carlo method to computeu(t; �) on arti�cial boundaries in view of a decomposition of domains proce-dure: one divides the whole space in a set of subdomains; then the objectiveis to solve the problem (13) in each subdomain with Dirichlet boundary con-ditions by deterministic methods; these Dirichlet boundary conditions, i.e.the values of u(t; �) along the boundaries, can be approximated by a MonteCarlo algorithm. This combination of numerical methods may have severaladvantages. The resolution in the subdomains can be distributed to di�erentprocessors. The convergence rate results for the Monte Carlo+Euler methodsuppose much weaker assumptions than the strong ellipticity condition ofthe operator L; moreover if f(�) is a smooth function, no assumption on Lis required; therefore, if the matrix a(�) degenerates locally, the domain ofthe numerical integration by a deterministic method can be reduced to thenondegeneracy region by an approximation of u(t; �) along its boundaries,which may considerably improve the e�ciency of the deterministic method.3.2 Introduction to the error analysisOur objective is to give estimates forju(T; x)� un;N(T; x)j:A natural decomposition of this error is as follows:ju(T; x)� un;N(T; x)j � ju(T; x)� IEf(XnT (x))j+ jIEf(XnT (x))� un;N(T; x)j=: �n + �n;N :8



The analysis of �n;N is related to usual considerations on the Strong Lawof Large Numbers: Central Limit Theorems, Berry-Esseen inequalities, etc.The di�culty here is to obtain estimates uniform w.r.t. to n. This canbe solved by the convergence in Lp(
) of Xn to X which holds under thehypotheses we make below.Consequently we concentrate our attention to �n.When f(�) is a Lipschitz function, one can bound �n from above by usingthe estimate (4) for p = 2. This gives the estimate:j�nj � Cpn:We now show that one can be much more clever.For the rest of the section we suppose(H) The functions b and � are C1 functions, whose derivatives of any orderare bounded (but b and � are not supposed bounded themselves).De�ne 	(t; �) by	(t; �) = 12 dXi;j=1 bi(�)bj(�)@iju(t; �) + 12 dXi;j;k=1 bi(�)ajk(�)@ijku(t; �)+ 18 dXi;j;k;l=1aij(�)akl (�)@ijklu(t; �) + 12 @2@t2u(t; �)+ dXi=1 bi(�) @@t@iu(t; �) + 12 dXi;j=1 aij(�) @@t@iju(t; �): (15)Lemma 3.1 It holds thatIEf(XnT (x))�IEf(XT (x)) = T 2n2 n�2Xk=0 IE	�kTn ;XnkT=n(x)�+n�1Xk=0 Rnk(x) ; (16)where Rnn�1(x) := IEf(XnT (x))� IE(PT=nf)(XnT�T=n(x)) ;and for k < n � 1, Rnk(x) can be explicited under a sum of terms, each ofthem being of the formIE �'\�(XnkT=n(x)) Z (k+1)T=nkT=n Z s1kT=n Z s2kT=n(']�(Xns3(x))@�u(s3; Xns3(x))+'[�(Xs3(x))@�u(s3; Xs3(x)))ds3ds2ds1� ; (17)9



where j�j � 6, and the '\�'s, ']�'s, '[�'s are products of functions which arepartial derivatives up to the order 3 of the aij's and bi's.Proof. For z 2 IRd de�ne the di�erential operator Lz byLzg(�) := dXi=1 bi(z)@ig(�) + 12 dXi;j=1 aij(z)@ij :As u(t; �) = PT�tf(�) = IEf(XT�t(�)), one hasIExf(XnT )� IExf(XT ) = IExu(T;XnT )� u(0; x) = Xk�n�1 �nkwith �nk := IEx �u�(k + 1)Tn ;Xn(k+1)T=n�� u�kTn ;XnkT=n�� : (18)The Itô formula implies�nk = IEx Z (k+1)TnkTn �@tu(t; Xnt ) + Lzu(t; Xnt )Bz=XnkT=n� dt ;from which, using (13), one gets�nk = IEx Z (k+1)TnkTn ��Lu(t; Xnt ) + Lzu(t; Xnt )Bz=XnkT=n� dt:DenoteInk (t) := Lzu(t; Xnt )Bz=XnkT=n � Lzu�kTn ;XnkT=n�Bz=XnkT=nand Jnk (t) := Lzu�kTn ;XnkT=n�Bz=XnkT=n � Lu(t; Xnt )= Lu�kTn ;XnkT=n�� Lu(t; Xnt ):We have: �nk = IEx Z (k+1)TnkTn (Ink (t) + Jnk (t))dt:10



We now consider Ink (t) and Jnk (t) as smooth functions of the process (Xnt )and recursively apply the Itô formula, using the fact that the function usolves (13), so that Lu solves a similar PDE. �The expansion (16) can be rewritten as follows:IExf(XnT )� IExf(XT )= Tn Z T0 IEx	(s;Xs)ds+T 2n2 n�2Xk=0 IEx	�kTn ;XkT=n�� Tn Z T0 IEx	(s;Xs)ds+T 2n2 n�2Xk=0 IEx�	�kTn ;XnkT=n�� 	�kTn ;XkT=n��+ n�2Xk=0 rnk (x) + IExf(XnT )� IEx(PT=nf)(XnT�T=n)= Tn Z T0 IEx	(s;Xs)ds+An +Bn + n�2Xk=0 rnk (x) + Cn: (19)From this expansion, it is reasonable to expect that the errorIExf(XnT )� IExf(XT )is equal to Tn Z T0 IEx	(s;Xs)dsplus a remainder of order n�2, becausen�2Xk=0 �IEx	�kTn ;XnkT=n�� IEx	�kTn ;XkT=n��should be uniformly bounded w.r.t. n since each term of the sum should beof order 1n .More precisely, for 1 � k � n� 2, one applies the expansion (19), substi-tuting the function fn;k(�) := 	�kTn ; ��11



to f(�). Set un;k(t; x) := PkT=n�tfn;k(�) and denote by 	n;k(t; �) the functionde�ned in (15) with un;k instead of u and kT=n instead of T ; thus, for somefunctions g�(�) 2 C1b (IRd) one has that, for t � kTn ,	n;k(t; �) =X� g�(�)@� �PkT=n�t	�kTn ; ��� :There holdsIEx	�kTn ;XnkT=n�� IEx	�kTn ;XkT=n� = T 2n2 k�2Xj=0 IEx	n;k �jTn ;XnjT=n�+ k�1Xj=0 rn;kj (x) ; (20)where the rn;kj (x)'s are sums of terms of type (17) with un;k instead of u.It is now clear that one key problem is as follows. Let  and � be mul-tiindices, let g(�) and g�(�) be smooth functions with polynomial growth.Set '(�; �) := g(�)@PT��f(�):We want to prove that quantities of the type��IEx �g�(Xnt )@�P��t'(�; �)(z)Bz=Xnt ��� (21)can be bounded uniformly w.r.t. n 2 IN�, � 2 �0; T � Tn �, t 2 �0; � � Tn �.We distinguish two di�erent situations. When f(�) is a smooth function,we make no assumption on the operator L. When f(�) is only measurableand bounded, we suppose that L satis�es an assumption of the Hörmandertype.3.3 Smooth functions f(�)Let HT be the class of functions � : [0; T ] � IRd ! IR with the followingproperties: � is of class C1 and for any multiindex � there exist a positiveinteger s and an increasing function K(�) such that8� 2 [0; T ] ; 8x 2 IRd ; j @��(�; x) j� K(T )(1+ j x js): (22)A function � of HT is said homogeneous if it does not depend on the timevariable: �(�; x) = �(x).In this subsection we suppose 12



(H1) The function f(�) is a homogeneous function of HT .It is well known that the condition (H) implies that there exists a smoothversion of the stochastic �ow x �! Xt(x). For the sake of simplicity wedenote this smooth version Xt(�). Besides, for any integer k > 0 the familyof the processes equal to the partial derivatives of the �ow up to the order ksolves a system of stochastic di�erential equations with Lipschitz coe�cients:see, e.g., Kunita [24] and Protter [37]. Thus, for any 0 � t � T ,@iu(t; x) = @iIEf(XT�t(x)) = IE dXj=1 @jf(XT�t(x))@iXT�t(x): (23)From (H) and (H1) one easily deduces that, for some increasing functionK(�) and some integer m,j@iu(t; x)j � K(T )(1 + jxjm):Di�erentiations of (23) provide a probabilistic interpretation of @�u(t; x) forany multiindex �. It is easy to prove by induction that, for any multiindex�, there exist an increasing function K�(�) and an integer m� such thatj@�u(t; x)j � K�(T )(1 + jxjm�): (24)For � 2 HT and � �xed in [0; T ] the function u(�; t; x) de�ned byu(�; t; x) := IE�(�;XT�t(x)) = IEx�(�;XT�t)belongs to HT and satis�es( @u@t + Lu = 0 ; 0 � t < T;u(�;T; x) = �(�; x): (25)Similarly to (24) one has: for any multiindex �, there exists an increasingfunction K�(�) and an integer m� such that8� 2 [0; T ] ; j @�u(�; t; x) j� K�(T )(1+ j x jk�):This result can be used to prove:Lemma 3.2 Suppose (H) and (H1).13



Let  et � be multiindices, let g(�) and g(�) be smooth functions withpolynomial growth. Set '(�; �) := g(�)@PT��f(�):There exist an increasing function K(�) and an integer m such that��IEx �g(Xnt )@�P��t'(�; �)(z)Bz=Xnt ��� � K(T )(1 + jxjm): (26)Coming back to (19) and (20) one deduces theTheorem 3.3 (Talay and Tubaro [50]) Suppose (H) and (H1). The Eulerscheme error satis�esu(T; x)� IExf(XnT ) = �Tn Z T0 IEx	(s;Xs)ds+ QnT (x)n2 (27)and there exist an increasing function K(�) and an integer m such thatjQnT (x)j � K(T )(1 + jxjm): (28)Here 	(�; �) is de�ned by (15).Observe that in the preceding statement the di�erential operator L maybe degenerate.3.4 Non smooth functions f(�)Theorem 3.3 supposes that f(�) is a smooth function. From an applied pointof view this is a stringent condition: often one wants to compute quantitiesof the type IP [jXT (x)j > y]for a given threshold y > 0. Our objective now is to show that an expansionof the type (27) still holds even when f(�) is only supposed measurable andbounded. In the proof that we give, the boundedness could be relaxed: as inthe preceding section we could suppose that f(�) belongs to the set HT . Torealize this programme a nondegeneracy condition is supposed. As we nowsee, this condition is less restrictive than the uniform strong ellipticity of theoperator L.We need some basic elements of the Malliavin calculus. For a completeexposition of this theory we refer to Nualart [34] (we use the notation of this14



book) and Ikeda-Watanabe [22]; the applications to the existence of a densityfor the law of a di�usion process can also be found in Pardoux [36].For h(�) 2 L2(IR+; IRr), W (h) denotes the quantity R T0 < h(t); dWt >.S is the space of �simple � functionals of the Wiener process W , i.e. thesub-space of L2(
;F ; IP ) of random variables F which can be written underthe form F = f(W (h1); : : : ;W (hn))for some n, some polynomial function f(�) , some hi(�) 2 L2(IR+; IRr).For F 2 S, (DtF ) denotes the IRr-dimensional process de�ned byDtF = nXi=1 @f@xi (W (h1); : : : ;W (hn))hi(t):The operator D is closable as an operator from Lp(
) to Lp(
;L2(0; T )),for any p � 1. Its domain is denoted by ID1;p. De�ne the normkFk1;p := hIEjF jp + kDFkpLp(
;L2(0;T ))i1=p ;The j-th component ofDtF is denoted by DjtF . The k-th order derivativeis the the random vector on [0; T ]k � 
 whose coordinates areDj1;:::;jkt1;:::;tkF := Djktk : : :Dj1t1F ;and IDN;p denotes the completion of S with respect to the normkFkN;p := "IEjF jp + NXk=1 IEkDkFkpL2((0;T )k)#1=p :ID1 denotes the space Tp�1Tj�1 IDj;p.For F := (F 1; : : : ; Fm) 2 (ID1)m, F denotes the Malliavin covariancematrix associated to F , i.e. the m�m-matrix de�ned by(F )ij :=< DF i; DF j >L2(0;T ) :De�nition 3.4 We say that the random vector F satis�es the nondegeneracyassumption if the matrix F is a.s. invertible, and the inverse matrix �F :=�1F satis�es j det(�F )j 2 \p�1Lp(
):15



Remark 3.5 The above condition can also be written as follows:1det(F ) 2 \p�1Lp(
):The main ingredient of our analysis is the following integration by partsformula (cf. the section V-9 in Ikeda-Wanabe [22]):Proposition 3.6 Let F 2 (ID1)m satisfy the nondegeneracy condition 3.4,let g be a smooth function with polynomial growth, and let G in ID1. LetfH�g be the family of random variables depending on multiindices � of lengthstrictly larger than 1 and with coordinates �j 2 f1; : : : ; mg, recursively de�nedin the following way:Hi(F;G) = H(i)(F;G):= � mXj=1 �G < D�ijF ; DF j >L2(0;T )+�ijF < DG;DF j >L2(0;T ) (29)+�ijF �G � L̂F jo ;H�(F;G) = H(�1;:::;�k)(F;G):= H�k(F;H(�1;:::;�k�1)(F;G)) ; (30)where L̂ is the so called Ornstein-Uhlenbeck operator whose domain includesID1. Then, for any multiindex �,IE[(@�g)(F )G] = IE[g(F )H�(F;G)]: (31)One has the following estimate:Proposition 3.7 For any p > 1 and any multiindex �, there exist a constantC(p; �) > 0 and integers k(p; �), m(p; �), m0(p; �), N(p; �), N 0(p; �), suchthat, for any measurable set A � 
 and any F;G as above, one hasIE[jH�(F;G)jp llA] 1p � C(p; �) k�F llAkk(p;�) kGkN(p;�);m(p;�)kFkN 0(p;�);m0(p;�): (32)We now state another classical result, which concerns the solutions of sto-chastic di�erential equations considered as functionals of the driving Wienerprocess. [A;A0] denotes the Lie brackett of two vector �elds A and A0.16



De�nition 3.8 Denote by A0; A1; : : : ; Ar the vector �elds de�ned byA0(x) := dXi=1 bi(x)@i ;Aj(x) := dXi=1 �ij(x)@i ; j = 1; : : : ; r:For a multiindex � = (�1; : : : ; �k) 2 f0; 1; : : : rgk, de�ne the vector �elds A�i(1 � i � r) by induction: A;i := Ai and for 0 � j � r, A(�;j)i := [Aj; A�i ].Finally set VL(x; �) := rXi=1 Xj�j�L�1 < A�i (x); � >2 :Set VL(x) = 1 ^ infk�k=1 VL(x; �): (33)Under the hypothesis (H), Xt(x) 2 ID1 for any x 2 IRd. Let t(x) denotethe Malliavin covariance matrix of Xt(x) and let �t(x) denote its inverse.We replicate Corollary 3.25 in Kusuoka and Stroock [26] in a weakenedform.Proposition 3.9 Suppose (H) and(UH) CL := infx2IRd VL(x) > 0 for some integer L.Let L be an integer such that (UH) holds. Thenk�t(x)k 2 \p�1Lp(
) ; 8x 2 IRd ;and for any p � 1, for some constant � and some increasing function K(�),k�t(x)kp � K(T )1 + jxj�tdL ; 8x 2 IRd ; 80 < t � T: (34)Thus, for any t > 0 and any x 2 IRd the law of Xt(x) has a smooth densitypt(x; �). Besides, for any integersm; k and any multiindices � and � such that2m+ j�j+ j�j � k, there exist an integer M(k; L), a non decreasing function17



K(�) and real numbers C; q;Q depending on L; T;m; k; �; � and on the boundsassociated to the coe�cients of the stochastic di�erential equation and theirderivatives up to the order M(k; L), such that the following inequality holds1:j@mt @�x@�y pt(x; y)j � K(T )(1 + jxjQ)tq(1 + jy � xj2)k exp��C (jx� yj ^ 1)2t(1 + jxj)2 � ; 80 < t � T:(35)Equipped with this result we can prove theTheorem 3.10 (Bally and Talay [1]) Let f(�) be a measurable and boundedfunction. Under the hypotheses (UH) and (H), the Euler scheme error sat-is�es IEf(XT (x))� IEf(XnT (x)) = �Cf (T; x)n + Qn(f; T; x)n2 : (36)The terms Cf(T; x) := R T0 IE	(s;Xs(x))ds and Qn(f; T; x) have the followingproperty: there exists an integer m, a non decreasing function K(�) dependingon the coordinates of a and b and on their derivatives up to the order m, andpositive real numbers q; Q such thatjCf(T; x)j+ supnjQn(f; T; x)j � K(T )kfk11 + kxkQT q : (37)Sketch of the proof. As for Theorem 3.3, the main part of the proofconsists in bounding terms of the type (21) from above. In the presentcontext there is a serious di�culty: when f(�) is not smooth, the spatialderivatives of u(t; �) explode when t goes to T . Indeed,u(t; x) = ZIRd pT�t(x; y)f(y)dyand the estimate (35) shows that for any jj � 1,j@xpT�t(x; y)j � K(T � t)(T � t)q (1 + kxkQ) 1(1 + ky � xk2)jj ;from which j@x�u(t; x)j � K(T ) kfk1(T � t)q (1 + kxkQ): (38)It can be shown that there is no hope to improve the explosion rate in powerof T � t.1The constant 0 of the statement of Kusuoka and Stroock is equal to 1 under (H).18



But a miracle occurs: in (21) the derivatives of the functionP��t'(�; �)are integrated w.r.t. the law of Xnt (x). Let us give an intuition of whathappens. Consider the case � = t and replace Xnt (x) by Xt(x). Then, inview of (21) the problem becomes to bound from above an expression of thetype jIEx [g(Xt)@u(t; Xt)] j = jIEx [g(Xt)@(PT�tf)(Xt)] juniformly w.r.t. t 2 [0; T ). When t is �small� i.e t � T2 the transition operatorPT�t has smoothened enough the initial condition f(�): the inequality (38)implies j@x�u(t; x)j � K(T )kfk1T q (1 + kxkQ):When t is �large� i.e t � T2 the estimate (38) cannot be used. Instead, weobserve that the matrix �t(x) has Lp-norms which satisfy (see (34))k�t(x)k � K(T )1 + jxj�T dL :Thus, one can apply the integration by part formula (31) withg(�) = (PT�tf)(�) = u(t; �)and F = Xt(x):Using (32) one deduces that for T � t � T2 ,jIEx [g(Xt)@u(t; Xt)] j � K(T )kfk11 + jxj�T dL :This would be perfect if we would not have to consider F = Xnt (x) ratherthan F = Xt(x): we must take care that Xnt (x) does not satisfy the nonde-generacy condition (3.4). We now explain the reason.On one hand, one can easily prove the following: for any p > 1 and j � 1,there exist an integer Q and a non decreasing function K(�) such thatsupn�1 kXnt (x)kj;p < K(t)(1 + kxkQ) (39)and supn�1 kXt(x)�Xnt (x)kj;p < K(t)pn (1 + kxkQ): (40)19



On the other hand this result is far from satisfactory in view of the condi-tion (3.4): indeed, if (Zn) is a sequence of random variables, the convergenceto a random variable Z in Lp(
) does not imply that 1Zn is in Lp(
).At this step of the proof a localization argument seems necessary. Let ntdenote the Malliavin covariance matrix of Xnt and let �nt denotes its inverse(where it is de�ned). We recall that we are considering the case T � t � T2 .Let 
0 be the set of events where ĵnt � ̂tj is larger than ̂t4 . Using (34)and (40) one proves that IP (
0) is small. On the complementary set of
0, ĵnt � ̂tj is small, which (roughly speaking) means that the Malliavincovariance matrix ofXnt (x) behaves like that ofXt(x) (see (34)), which allowsintegrations by parts of the type (31) with a good control of the Lp-norms ofthe variables H�. �3.5 ExtensionsIn the preceding proof, we have integrated by parts in order to make appearf(�) instead of derivatives of u(t; �). One can re�ne the method to get anexpansion for pT (x; y)� ~pnT (x; y)where pT (x; y) denotes the density of XT (x) and ~pnt (x; �) denotes the densityof the law of a suitable small perturbation of Xnt (x) (the law of Xnt (x) mayhave no density, see our remark above on �nt (x)). To treat this problem, it isnatural to �x y, choose f�(�) = ��(y � �) where the ��(�)'s are such that thesequence of measures (��(�)d�) converges weakly to the Dirac measure at 0,and make � tend to 0. Theorem 3.10 is not su�cient since, when � tends to0, (k f� k1) tends to in�nity. Nevertheless, if F� is the distribution functionof the measure f�(�)d�, the sequence (k F� k1) is constant: this gives theidea of proving inequalities of the type (37) with k F k1 instead of k f k1when f(�) has a compact support, F (�) being the distribution function ofthe measure f(�)d�. A supplementary di�culty is to prove that, instead of(1+kxkQ) appears a function which satis�es an exponential upper bound andthat the function Cf�(T; x) itself satis�es an exponential upper bound: suchestimates permit to conclude that, when the di�erential operator L in (12)is strongly uniformly elliptic, that the density pnT (x; y) of Xnt (x) (which doesexist in this case) satis�es:8(x; y) 2 IRd � IRd; pT (x; y)� pnT (x; y) = � 1n�T (x; y) + 1n2RnT (x; y) (41)20



and there exists a strictly positive constant c, an integer q and an increasingfunction K(�) such thatj�T (x; y)j+ jRnT (x; y)j � K(T )T q exp��ckx� yk2T � : (42)For a complete exposition and a precise result, see Bally and Talay [2].Observe also that the expansion of the error (36) justi�es the Rombergextrapolation procedure. Indeed, for some function e(�) one hasIEf(XT )� IEf (XnT ) = Tn e(T ) +O� 1n2� ;and IEf(XT )� IEf �X2nT � = T2ne(T ) +O� 1n2� :Consider the new approximate valueZnT := 2IEf(X2nT )� IEf(XnT ) ; (43)then IEf(XT )� ZnT = O(n�2):Thus, a precision of order n�2 is achieved by a linear combination of the re-sults produced by the Euler scheme with 2 di�erent step sizes. For numericalexamples and comments, see Talay and Tubaro [50].In the context of the present subsection, the Milshtein scheme (9) (ford = r = 1) has the same convergence rate as the Euler scheme (contrarily tothe approximation in Lp(
)). The expansion of the Milshtein scheme errormakes appear a di�erent function 	(�).The results given above only concern SDE's driven by a Wiener process.One can extend both the convergence rate analysis and the simulation tech-nique to SDE's driven by Lévy processes, which corresponds to the analysisof Monte-Carlo methods for integro-di�erential equations of the type@u@t (t; x) = (44)Lu(t; x) + ZIRdfu(t; x+ z)� u(t; x)� < z;ru(t; x) > ll[kzk�1]gM(x; dz)where L is the elliptic operator (12) and the measure M(x; �) is de�ned asfollows: let � be a measure on IRd � f0g such thatZIRd(k x k2 ^1)�(dx) <121



and let g(�) be a d � r-matrix valued function de�ned in IRd; then, for anyBorel set B � IRd whose closure does not contain 0, setM(x;B) := �fz ; < g(x); z >2 Bg:Consider a Lévy process (Zt) and (Xt) solution toXt = X0 + Z t0 g(Xs�)dZs: (45)For K > 0, m > 0 and p 2 IN� f0g, set�p(m) := 1 + k�k2 + k�k2 + Z m�m kzk2�(dz) + k�kp + k�kp+ �Z m�m kzk2�(dz)�p=2 + Z m�m kzkp�(dz) (46)where � is the Lévy measure of (Zt), and�K;p(m) := exp (K�p(m)) : (47)For m > 0 we de�ne h(m) := �(fx; kxk � mg): (48)Theorem 3.11 (Protter and Talay [38]) Suppose:(H1) the function f(�) is of class C4; f(�) and all derivatives up to order 4are bounded;(H2) the function g(�) is of class C4; g(�) and all derivatives up to order 4are bounded;(H3) X0 2 L4(
).Then there exists a strictly increasing function K(�) depending only on d, rand the L1-norm of the partial derivatives of f(�) and g(�) up to order 4 suchthat, for any discretization step of type Tn , for any integer m,jIEg(XT )� IEg( �XnT )j � 4kgkL1(IRd)(1� exp(�h(m)T )) + �K(T );8(m)n : (49)22



Thus, the convergence rate is governed by the rate of increase to in�nity ofthe functions h(�) and �K(T );8(�).Stronger hypotheses permit to get much more precise results:Theorem 3.12 Suppose:(H1') the function f(�) is of class C4; all derivatives up to order 4 of f(�)are bounded;(H2') the function g(�) is of class C4 and moreover j@Ig(x)j = O(kxkM 0) forjIj = 4 and some M 0 � 2;(H3') Rkxk�1 kxk�(dx) < 1 for 2 �  � M 0� := max(2M 0; 8) and X0 2LM 0�(
).Then there exists an increasing function K(�) such that, for all n 2 IN�f0g,jIEg(XT )� IEg( �XnT )j � �K(T );M 0�(1)n : (50)Suppose now:(H1�) the function f(�) is of class C8; all derivatives up to order 8 of f(�)are bounded;(H2�) the function g(�) is of class C8 and moreover j@Ig(x)j = O(kxkM 00)for jIj = 8 and some M 00 � 2;(H3�) Rkxk�1 kxk�(dx) < 1 for 2 �  � M 00� := 2max(2M 00; 16) andX0 2 LM 00�(
).Then there exists a function C(�) and an increasing function K(�) such that,for any discretization step of type Tn , one hasIEg(XT )� IEg( �XnT ) = C(T )n +RnT (51)and supn n2jRnT j � �K(T );M 00�(1).
23



3.6 Newton's variance reduction techniqueIn Newton [33] are presented variance reduction techniques for the MonteCarlo computation of quantities of the typeIE�(X�)where �(�) is a real valued functional de�ned on C([0; T ]; IRd). In the preced-ing subsection we have considered a much less general situation:�(!�) = f(!T ): (52)Newton proposes a general methodology to reduce the variance of the MonteCarlo procedure. His rather complex approach is based upon Haussmann'sintegral representation theorem applied to �(X�). The analysis is consider-ably simpli�ed in the context (52) to which we limit ourselves here. In thiscontext, the principle of Newton's method is as follows. Writef(XT (x)) = IEf(XT (x)) + Z T0 (@u)(t; Xt(x))�(Xt(x))dWt ; a:s:and set Z := f(XT (x))� Z T0 (@u)(t; Xt(x))�(Xt(x))dWt:Of course Z is an unbiased estimator of IEf(XT (x)) and the variance of theerror is 0. Now suppose that one knows an approximation �v of @u. Then itis natural to consider�Z := f(XT (x))� Z T0 �v(t; Xt(x))�(Xt(x))dWt:�Z is an unbiased estimator of IEf(XT (x)); the error of the variance isIEj �Z � IEf(XT (x))j2= IE ����f(XT (x))� Z T0 �v(t; Xt(x))�(Xt(x))dWt � IEf(XT (x))����2= IE Z T0 j((@u)(t; Xt(x))� �v(t; Xt(x)))�(Xt(x))j2 dt:Thus, the variance may be small is �v(�; �) is a good approximation of u(�; �) inthe sense that the right hand side of the preceding inequality is small (�v(�; �)24



can be seen as an approximation of @u(�; �) in a suitable Hilbert space). Insuch a case, one approximatesZ T0 (@u)(t; Xt(x))�(Xt(x))dWtby the sum nXp=1 �v(pT=n;XnpT=n(x))�(XnpT=n(x))(W(p+1)T=n �WpT=n):Such a variance reduction technique is called a �control variate� technique.Newton also proposes a methodology to construct �importance sampling�methods. See [33].3.7 Lépingle's re�ected Euler schemeElliptic and parabolic PDE's with a Dirichlet condition at the boundary leadto probabilistic interpretations in terms of di�usion processes stopped at theboundary. If the boundary condition is of the Neumann type then the prob-abilistic interpretations involve re�ected di�usion proceses. See Bensoussanand Lions [3] or Freidlin [14] e.g.We do not discuss here the approximation of stopped di�usions. Only afew convincing results are available, see Milshtein [32].For re�ected di�usions on the boundary of the half-space, Lépingle [27]has constructed and analysed a version of the Euler scheme which mimics there�ection and is numerically e�cient in the sense that the random variablesinvolved in the scheme are easy to simulate.We �rst de�ne a di�usion process obliquely re�ected at the boundary ofthe half-space.For d > 1 consider the domain D := IRd�1 � IR�+. Suppose that X0 2�D a:s:. Fix a vector  := (1; : : : ; d�1; 1)in IRd.Suppose that the functions b(�) and �(�) are globally Lipschitz. Then thereexists a unique adapted continuous process X with values in �D and a uniqueadapted continuous nondecreasing process L such that for any t 2 [0; T ],Xt = X0 + R t0 b(Xs)ds+ R t0 �(Xs)dWs + Lt ;Lt = R t0 llfXds=0gdLs:25



The process L is given by Lt = sup0�s�t(Xds � Ls)�:The re�ected Euler scheme is as follows:8>>><>>>: Xn0 = X0 ;Xn(p+1)T=n = XnpT=n + b(XnpT=n)Tn+�(XnpT=n)(W(p+1)T=n �WpT=n)+max(0; AnT=n(p)�Xn;dpT=n) (53)whereAn� (p) := suppT=n�s��+pT=nf�bd(XnpT=n)(s�pT=n)� rXj=1 �dj (XnpT=n)(W js�W jpT=n)g:The simulation of the re�ected Euler scheme requires the simulation ofthe pair �W(p+1)T=n �WpT=n; AnT=n(p)�at each step. This can be e�ciently done, as proven in Lépingle [27]:Proposition 3.13 Let � = (�1; : : : ; �r) be a vector of IRr and let c be a realnumber. Set St := sups�t (< �;Ws > +cs) :Let U = (U1; : : : ; Ur) be a Gaussian vector of zero mean with covariancematrix t Id, and let V be an exponential random variable with parameter(2t)�1 independent of U . SetY := 12(< �;U > +ct+ (j�j2V + (< �;U > +ct)2)1=2):Then the vectors (Wt; St) and (U; Y ) have the same law.Now de�ne a continuous-time version of the preceding scheme, coincidingwith XnpT=n at each time pT=n: for kTn � t < (k+1)Tn ,8<: Xn0 = X0 ;Xnt = XnkT=n + b(XnkT=n) �t� kTn �+ �(XnkT=n)(Wt �WkT=n)+ suppT=n�s�t(Ans�pT=n(p)�Xn;dpT=n): (54)One has the following convergence result, similar to (4):26



Theorem 3.14 (Lépingle [27]) Suppose b(�) and �(�) are Lipschitz func-tions and that IEjX0j2 < 1. Then, for some constants C1 and C2 uniformw.r.t. n, IE " supt2[0;T ] jXt �Xnt j2# � C1 exp(C2T )n : (55)In [28] Lépingle extends his analysis to the case of hypercubes with normalre�ections.An estimate for the approximation of IEf(XT ) would be useful: this workis in progress. A result of this nature has just appeared in a manuscript byCostantini, Pacchiarotti and Sartoretto [12].An original numerical procedure is proposed by Liu [29]. This procedureis based upon a penalization technique.For Monte Carlo methods coupled with the simulation of obliquely re�ect-ing Brownian motions, Calzolari, Costantini and Marchetti [8] give con�denceintervals.Other approximation problems are investigated by Slominski [44] and [45]for much wider classes of semimartingales and much larger types of re�ec-tions. As expected the approximating processes are less easy to simulate thanLépingle's scheme and the convergence rates are lower. Other references canbe found in [27].3.8 The stationary caseIn this subsection we assume(H3) the functions b, � are of class C1 with bounded derivatives of anyorder; the function � is bounded;(H4) the operator L is uniformly elliptic: there exists a strictly positiveconstant � such that8x; � 2 IRd ; Xi;j aij(�)xixj � �jxj2 ;(H5) there exists a strictly positive constant � and a compact set K suchthat: 8x 2 IRd �K ; x � b(x) � ��jxj2:27



It is well known that (H3)-(H5) are (even too strong) su�cient conditionsfor the ergodicity of (Xt): see for instance Hasminskii [21]. Thus, (Xt) hasa unique invariant probability measure �. The hypothesis (H4) implies theexistence of a smooth density p(�) for �. This density solves the stationaryparabolic PDE L�p(�) = 0: (56)Our objective is to approximateZIRd f(y)p(y)dyfor a given function f(�) in L1(�).Theorem 3.15 (Talay and Tubaro [50]) Assume (H3)-(H5).The Euler scheme de�nes an ergodic Markov chain.Let f(�) be a real function of class C1(IRd). Assume that f(�) and any ofits partial derivatives have a polynomial growth at in�nity.Let 	 be de�ned as in (15). Set� := Z +10 ZIRd 	(t; y)�(dy)dt:Then the Euler scheme with step size 1n satis�es: for any deterministicinitial condition � = Xh0 ,Z f(y)�(dy)� a:s: limN!+1 1N NXp=1 f(Xnp=n(�)) = ��n +O� 1n2� : (57)Sketch of the proof. The ergodicity of the Euler scheme can be provenby using a su�cient criterion due to Tweedie [51]: �rst, one can check thatthere exits a compact set which is reached in �nite time by the chain (Xnp=n)with a strictly positive probability; second, it is easy to check that for any nlarge enough, there exists � > 0 such that for all deterministic starting pointXn0 = x outside this compact set,IEjXn1=nj2 � jxj2 � �:Next, we oberve that the measure � has �nite moments of any order.Similarly, 8p 2 IN ; 9Cp > 0 ; 9p > 0 ; 9n0 > 0 ; 8n � n0 ;IEjXnt (x)jp � Cp(1 + jxjpe�pt) ; 8t > 0 ; 8x 2 IR: (58)28



Note that (58) imply that IExf(Xnt ) is well de�ned.Equipped with these preliminary results, our main ingredient to prove (57)is the following. Set u(t; x) := IExf(Xt)� Z f(y)d�(y):Then, for any multiindex � there exist an integer s�, there exist strictlypositive constants �� and � such thatj@�u(t; x)j � ��(1 + jxjs�)e��t ; 8t > 0 ; 8x 2 IRd: (59)The proof of this estimate is technical (see Talay [47]). One step is to showthat for any multiindex I, if MI is de�ned byjIj = integer part of (MI � d=2) ;and if �s(x) := 1(1 + jxj2)s ;there holds, for s 2 IN large enough:9CI > 0 ; 9�I > 0 ; 8j�j �MI ; 8t > 0 ;Z j@�u(t; x)j2�s(x)dx � CI exp(��It): (60)An easy computation shows that the preceding inequality implies that9CI ; �I : 8j�j � MI ; 8t > 0 ; Z j@�(u(t; x)�s(x))j2dx � CI exp(��It):We then can deduce (59) by using the Sobolev imbedding Theorem.Next, one observes that1N NXp=1 IExf(Xnp=n) = 1N NXp=1 u(p=n; x) + 1Nn2 NXj=1 N�jXp=0 IEx	(j=n;Xnp=n)+ 1Nn3 NXp=1Rnpwhere Rnp is a sum of terms, each term being a product of derivatives ofb(�), �(�) and u(p=n; �). Then one makes N tend to in�nity. The exponential29



decay in (59) permits to control the sum of the remainders Rnp and to provethat limN!1 1Nn NXj=1 N�jXp=0 IEx	(j=n;Xnp=n) = Z +10 ZIRd 	(t; y)�(dy)dt: �The Milshtein scheme (9) (for d = r = 1) has the same convergence rateas the Euler scheme. The expansion of the Milshtein scheme error makesappear a di�erent function 	(�).As in the non stationary case, the expansion of the error in terms of 1njusti�es a Romberg extrapolation which permits to accelate the convergencerate. See [50] for numerical experiments.
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PART II - Stochastic Particle MethodsIn this part, we analyse stochastic particle methods for nonlinear PDE'sin a few special cases. Our objective is to establish the convergence rateswhich can be observed in numerical experiments for PDE's such that anexplicit solution is known, especially the rate N�1=2 where N is the numberof particles of the algorithm.Works in progress at Inria, based on the results presented below, havefor objective the analysis of the random vortex methods for the incompress-ible 2D Navier-Stokes equation developed by Chorin, Hald, etc (Chorin [11],Chorin and Marsden [10], Goodman [17], Hald ([19] and [20]), Long [30],Puckett ([40], [39]) e.g.; see also the bibliography in [11] and in the di�erentcontributions of [18]).From now on, we suppose d = r = 1:We also suppose(H6) b(�) and �(�) are bounded functions of class C1(IR); any derivative ofany order is assumed bounded;(H7) �(x) � �0 > 0 ; 8x 2 IR.We continue to set a(�) := �2(�).4 Introduction to the stochastic particle meth-odsLet V0(�) be the distribution function of a probability law. Consider the PDEin (0; T ]� IR8<: @V@t (t; x) = 12a(x) @2@x2V (t; x)+ �12a0(x)� b(x)� @@xV (t; x) in (0; T ]� IR ;limt!0 V (t; x) = V0(x) at all continuity points of V0(�): (61)It is well known (see for instance [15]) that under (H6)-(H7) the law ofXt(x) has a smooth density pt(x; �) for all x 2 IR and all t > 0; this density31



sati�es 8<: @p@t (t; x) = L�p(t; x) ; 8t > 0 ; 8x 2 IR ;pt(x; �)d� w! �x: (62)Besides, there exists an increasing function K(�) and a constant � > 0 suchthat, for all (x; y) 2 IR2,pt(x; y) � K(t)pt exp��(x� y)22�t � : (63)From (62) it is easy to see that V (t; �) is the distribution function of thelaw of Xt when the law of X0 is �0(d�) := dV0(�).Let H(�) denote the Heaviside function (H(z) = 0 if z < 0, H(z) = 1 ifz � 1). Set!i0 = 1N ; for i = 1; : : : ; N ; V N0 (x) = NXi=1 !i0 H(x� xi0) ;where 8i > 1 ; xi0 := V �10 � iN� ; x10 := V �10 � 12N� : (64)Thus, V N0 (�) is a piecewise constant approximation to V0(�).Now consider N independent copies of the process (Wt) and the corre-sponding N copies (X it) of (Xt) (1 � i � N), with X i0 = xi0. De�ne�Nt := 1N NXi=1 H(x�X it): (65)The distribution function of the measure �Nt isV N(t; x) = 1N NXi=1 H(x�X it):Proposition 4.1 Suppose (H6)-(H7) and(H8) There exist strictly positive constants C1, C2 such that, for any x inIR, jV0(x)j � C1e�C2x2 . 32



Then there exists an increasing function K(�) such that, for all N 2 IN�,IE k V (t; �)� V N(t; �) kL1(IR)� K(t)pN : (66)Sketch of the proof. We have:V (t; x)� V N(t; x) = V (t; x)� IEV N(t; x) + IEV N(t; x)� V N(t; x)= IP�0(Xt � x)� 1N NXi=1 IP (X it � x)+ 1N NXi=1 �IEH(x�X it)�H(x�X it)	=: A(x) +B(x):An integration by parts for Stieljes integrals leads toA(x) = Z IPy(Xt � x)dV0(y)� Z IPy(Xt � x)dV N0 (y)= Z (V0(y)� V N0 (y)) ddyIPy(Xt � x)dy:Thereforek A(�) kL1(IR)� Z Z ���� ddyIPy(Xt � x)���� dxjV0(y)� V N0 (y)jdy:The function y ! Xt(y) is a.s. increasing since its derivative is an expo-nential (see Kunita [24, Ch.2] e.g., for the di�eomorphism property of sto-chastic �ows associated with stochastic di�erential equations). Thus, againdenoting by Xt(�) the �ow de�ned by (1),P (Xt(y) � x) = P (y � X�1t (x)):X�1t is the solution to a stochastic di�erential equation. The coe�cients ofthis SDE are such that the above mentioned result of Friedman [15] applies:for some new function K(�),���� ddyIPx(X�1t � y)���� � K(t)pt exp��(x� y)22�t � :It comes: k A(�) kL1(IR)� K(t) k V0 � V N0 kL1(IR)� K(t)plog(N)N :33



Now consider B(x).IE k B(�) kL1(IR)= 1N Z IE ����� NXi=1 (H(x�X it)� IEH(x�X it))����� dx:The random variables (H(x�X it)� IEH(x�X it))1�i�N have mean 0 and areindependent. Thus, by the Cauchy-Schwarz inequality,IE k B(�) kL1(IR) � 1N Z vuut NXi=1 IE(H(x�X it)� IEH(x�X it))2dx= 1N Z vuut NXi=1 IP (X it � x)IP (X it � x)dx� K(t)N Z vuut NXi=1 Z +1x�xi0p�t exp��y22 � dy dx:For �xed x the function�  x7�! 1p2�Z +1x�V�10 (�)p�t exp��y22 � dyis decreasing from (0; 1) to (0; 1); therefore, the de�nition of the xi0 implies12N NXi=1 Z +1x�xi0p�t exp��y22 � dy � Z 10 Z +1x�V�10 (s)p�t exp��y22 � dy ds:Easy computations wich use (H8) (see [4]) then lead to the following esti-mate: IE k B(�) kL1(IR)� K(t)pN : �In practice, one cannot use exact values of X it . Thus, we consider Nindependent processes de�ned by the Euler or Milshtein scheme ( �X it) withX i0 = xi0 and the new approximate measure��Nt := 1N NXi=1 H(x� �X it): (67)34



The distribution function of the measure ��Nt is�V N(t; x) := 1N NXi=1 H(x� �X it):Proposition 4.2 Suppose (H6)-(H7) and(H8) There exist strictly positive constants C1, C2 such that, for any x inIR, jV0(x)j � C1e�C2x2 .Then there exists an increasing function K(�) such that, for all N 2 IN�,IE k V (T; �)� �V N(t; �) kL1(IR)� K(T )� 1pN + 1n�� (68)with � = 12 for the Euler scheme and � = 1 for the Milshtein scheme.Proof. The conclusion readily follows from Section 2 of Part I, the pre-ceding theorem and the inequalityIEkH(x�X iT )�H(x� �X iT )kL1(IR) � IEjX iT � �X iT j � K(T )n� : �The convergence rate 1pN is optimal. Indeed, in the following example,the error estimate is equal to 1pN plus a negligible term. Let X be a randomvariable taking the values 0 and 1 with probability 12 . Let �N be the empiricaldistribution of N independent copies of X and let V N be the distributionfunction of �N . It is easy to see thatkV � V NkL1(IR) = 12N NXk=0 ����12 � kN ���� N !k!(N � k)! :For example, suppose that N = 2n. Then,kV � V NkL1(IR) = 2�2n nXk=0 (2n)!k!(2n� k)! � 2�2n nXk=0 kn (2n)!k!(2n� k)! :Now, an easy induction shows that, for all n > 0,nXk=0 k (2n)!k!(2n� k)! = n22n�1:35



Besides, 2 n�1Xk=0 (2n)!k!(2n� k)! + (2n)!n!n! = 22n:Thus, kV � V NkL1(IR) = 122n+1 (2n)!n!n! :Applying Stirling's formula, one deduceskV � V NkL1(IR) = 1pN (1 + o(1)):5 The Chorin-Puckett method for convection-reaction-di�usion equationsLet f(�) be a real function such that(H9) f is a C2 function on [0; 1] such that f(0) = f(1) = 0, f(u) � 0 foru 2 [0; 1] (therefore, f(u)u is bounded in (0; 1] and continuous in 0).Let V0(�) be as in the preceding subsection. Consider the convection-reaction-di�usion PDE8><>: @u@t = L u+ f(u) ;u(0; �) = u0(�) = 1� V0(�): (69)In [4], Bernard, Talay and Tubaro have analysed a stochastic particlemethod introduced by Puckett [40]. They have proven Puckett's conjecture,based on numerical obervations, on the convegence rate of the method. Theanalysis is based on an original probabilistic interpretation of the solution.Theorem 5.1 Under (H7)-(H9), if u0 is of class C1b (IR), we have the fol-lowing representation:u(t; x) = IE �H�Xt � x� exp�Z t0 f 0 � u�s;Xs� ds� � ; (70)where (Xt) is the solution todXt = �(Xt) dBt � fb(Xt)� �(Xt) �0(Xt)g dt: (71)Here, the law of X0 has a density equal to �u00, and (Bt) is a standardBrownian motion. 36



Sketch of the proof. The function v(t; x) := @u@x(t; x) sati�es the followingequation:8>>>>><>>>>>:
@v@t (t; x) = 12�2(x)@2v@x2 (t; x) + (b(x) + �(x) �0(x))@v@x(t; x)+(b0(x) + f 0 � u(t; x)) v(t; x) ;v(0; x) = u00(x):By applying the Feynman-Kac formula, we obtainv(t; x) = IE �u00(Yt(x)) exp�Z t0 [b0(Ys(x)) + f 0 � u(t� s; Ys(x))] ds�� ; (72)where (Yt) is the solution todYt = (b(Yt) + �(Yt) �0(Yt)) dt+ �(Yt) dBt: (73)One can easily check that u(t; x)! 1 as x! �1. Thus,u(t; x) = �IE Z +1x u00(Yt(y)) exp�Z t0 [b0(Ys(y)) + f 0 � u(t� s; Ys(y))] ds�dy:Let �0;t(�) be the �ow associated with the stochastic di�erential equa-tion (73). Hence, we set y = ��10;t (z).Using results of the second chapter of Kunita [24], we have, for � < t,��1�;t (z) = z � Z t� �(��1s;t (z)) d̂Bs � Z t� b(��1s;t (z)) ds;where d̂B� denotes the �backward� stochastic integral 2. One infers that@@z ��10;t (z)= exp�Z t0 n� b0(��1�;t (z))� 12�02(��1�;t (z))o d� � Z t0 �0(��1�;t (z)) d̂B��from which�u(t; x)2For a de�nition, cf. Kunita [24, end of Ch. I]37



= IE" Z +1�0;t(x) u00(z) exp8<:Z t0 �b0(�0;s(�)) + f 0 � u(t� s; �0;s(�))�ds������=��10;t (z)9=;exp�Z t0 h� b0(��1s;t (z))� 12�02(��1s;t (z))ids� Z t0 �0(��1s;t (z))d̂Bs� dz#:One now uses Kunita [24, Lemma 6.2, Ch. II ]: for any continuous func-tion g(s; x) we haveZ t0 g(s; �0;s(�))������=��10;t (z) ds = Z t0 g(s; ��1s;t (z)) ds:Thus,�u(t; x) = IE" Z +1�1 H(��0;t(x) + z) exp�Z t0 f 0 � u(t� s; ��1s;t (z))ds�M t0(z)u00(z)dz#where (M t�(z))��t is the exponential (backward) (F t�)��t-martingale de�nedby M t�(z) = exp��12 Z t� �02(��1s;t (z)) ds� Z t� �0(��1s;t (z))d̂Bs� :The application x ! �0;t(x) is a.s. increasing (its derivative is an expo-nential), thus H(��0;t(x) + z) = H(��10;t (z)� x).Hence,�u(t; x)= IE" ZIRH(��10;t (z)� x) exp�Z t0 f 0 � u(s; ��1t�s;t(z))ds�M t0(z)u00(z)dz#:We observe that the law of the process (��1t��;t)0���t, on (
;F ; IP;F t0), isidentical to the law of the process (X�)0���t solution todX� = �(X�) dB� � b(X�) d�:38



Hence, IE0 denoting the expectation under the law IP0 for which the initiallaw of the process (X�) has a density equal to �u00(z), and (Mt) denotingthe exponential martingale de�ned byMt = exp��12 Z t0 �02(Xs) ds+ Z t0 �0(Xs)dBs� ;we haveu(t; x) = IE0 �H(Xt � x) exp�Z t0 f 0 � u(t� s;Xs) ds�Mt� :On (
;F ; IP0;FT0 ), one performs the Girsanov transformation de�ned byeIP (A) := IE0h1AMT i ; A 2 FT0 ;then, for t � T ,u(t; x) = eIE �H(Xt � x) exp�Z t0 f 0 � u(s;Xs) ds�� :Under eIP , (Xt) solvesdXt = �(Xt) d ~Bt � fb(Xt)� �(Xt) �0(Xt)g dt:Here, ( ~B�) de�ned by ~B� = B� � Z �0 �0(Xs) ds;is a Brownian motion under eIP . Obviously, the above representation of u isidentical to (70). �De�ne the initial weights and the initial approximation by!i0 = 1N ; for i = 1; : : : ; N ; �u0(x) = NXi=1 !i0 H(xi0 � x) ;where 8i < N : xi0 = u�10 �1� iN� ; xN0 = u�10 � 12N� : (74)39



Let Xn be de�ned by the Milshtein scheme (9). From now on, we write�X instead of Xn. We set�X i(p+1)T=n = �X ipT=n � �b( �X ipT=n)� �( �X ipT=n)�0( �X ipT=n)� Tn+ �( �X ipT=n)(Bi(p+1)T=n � BipT=n) (75)+ 12�( �X ipT=n)�0( �X ipT=n)�(Bi(p+1)T=n �BipT=n)2 � Tn� :Let �k(i) denotes the label number of the particle located immediately atthe right side of the particle of label i at the time kT=n. We de�ne!ipT=n =!i(p�1)T=n (76) 1 + Tn f � �u((p� 1)T=n; �X i(p�1)T=n)� f � �u((p� 1)T=n; �X�p�1(i)(p�1)T=n)!i(p�1)T=n !and �u(pT=n; x) = NXi=1 !ipT=nH( �X ipT=n � x) (77)for p = 1; : : : ; n.Theorem 5.2 (Bernard, Talay and Tubaro [4]) (i) Under (H7)-(H9),there exists an increasing function K(�) and an integer n0 such that,for any n > n0 and any N � 1,ku(T; �)� �u(T; �)kL1(IR�
) � K(T )� 1pN + 1pn� :(ii) When the functions b(�) and �(�) are constant, then the rate of conver-gence is given byku(T; �)� �u(T; �)kL1(IR�
) � K(T )� 1pN + 1pn� :The same estimates hold for the standard deviation of ku(T; �)��u(T; �)kL1(IR).Sketch of the proof. The lengthy proof consists in observing that thealgorithm is a discretization of the representation (70).40



Indeed, the approximation of �u00(z) dz byNXi=1 !i0 �xi0leads tou(T; x) ' NXi=1 !i0 IE �H(XT (xi0)� x) exp�Z T0 f 0 � u(s;Xs(xi0)) ds�� :Let f(Bi�); i = 1; : : : ; Ng be N independent Brownian motions and let (X i�)be the (independent) solutions to the following SDE's (in forward time):8<: dX i� = �(X i�) dBi� � fb(X i�)� �(X i�) �0(X i�)g d�;X i0 = xi0:One hasu(T; x) ' NXi=1 !i0 IE �H(X iT � x) exp�Z T0 f 0 � u(s;X is) ds�� :The particle algorithm replaces the expectation by a point estimation:u(T; x) ' NXi=1 !i0 H(X iT � x) exp�Z T0 f 0 � u(s;X is) ds� :Then, one approximates expnR T0 f 0 � u(s;X is) dso. The integral is dis-cretized with a step T=n and the Milshtein scheme is used to approximatethe X ipT=n's. Besides, the unknown function u(pT=n; �) is replaced by itsapproximation �u(pT=n; �). It is this substitution which introduces a depen-dency in the algorithm, because the computation of �u(pT=n; �) requires tosort the positions of the particles at each step of the algorithm (see the roleof the functions �k(�) in (76)). Without this substitution, the weights wouldbe recursively de�ned by��i(p+1)T=n = ��ipT=n + Tn f � u(pT=n; �X ipT=n):The following key estimate shows that the true weights are not far frombeing independent, which explains that the global error of the algorithm is41



of order N�1=2 as if the weights were independent. Set �ip := IEj!ip � �ipj2,and �p := supi �ip. One can show (the proof is very technical) :8p = 1; : : : ; n ; �p � CnN2 + CN3 : (78)Then, one must carefully estimate the error produced by each one of thesuccessive approximations that have just been described. In particular, thedi�culty is to avoid the summation over p of the �statistical error� involvedin the algorithm which identi�es �u(pT=n; �) and IE�u(pT=n; �), because sucha summation would lead to an estimate on the global error of order npN . Infact, a more clever analysis shows that the algorithm propagates the erroru(pT=n; �)� IE�u(pT=n; �)in a rather complex way whereas the �statistical error� can be taken intoaccount only at time T ; this latter error can be controlled owing to theestimate (78). �6 One-dimensional Mc-Kean Vlasov equationsConsider two Lipschitz kernels b(x; y), s(x; y) from IR2 to IR, a probabilitydistribution function V0 and the nonlinear problem8>>>><>>>>: @V@t (t; x) = 12 @@x �(RIR s(x; y)@V@x (t; y)dy)2 @V@x (t; x)�� � RIR b(�; y) @V@x (t; y)dy � @V@x (t; x) ;V (0; x) = V0(x) ; (79)Later on, we will see that Burgers equation can be interpreted as a specialcase of this family of problems.Our objective is to develop an algorithm of simulation of a discrete timeparticle system fY ikT=n; i = 1; : : : ; Ng such that the empirical distribution�VkT=n(x) := 1N NXi=1 H(x� Y ikT=n)approximates the solution V (t; x) of (79). Contrarily to the stochastic par-ticle method of the previous subsection, the weights are constant but, in42



counterpart, the positions of the particles are given by dependent stochasticprocesses.Consider the system of weakly interacting particles described by8>><>>: dX i;Nt = ZIRb(X i;Nt ; y)�Nt (dy) dt + ZIRs(X i;Nt ; y)�Nt (dy)dW it ;X i;N0 = X i0 ; i = 1; : : : ; N ; (80)where (W 1t ); : : : ; (WNt ) are independent one-dimensional Brownian motionsand �Nt is the random empirical measure�Nt = 1N NXi=1 �Xi;Nt :The functions b and s are the �interaction kernels�. When the initial distri-bution of the particles is symmetric and when the kernels are Lipschitz, onehas the propagation of chaos property: the sequence of random probabilitymeasures (�N) on the space of trajectories de�ned by�N = 1N NXi=1 �Xi;N�converges in law as N goes to in�nity to a deterministic probability measure�. Besides, if for each t we denote by �t the one-dimensional distribution of� (�t is the limit in law of �Nt ), then there exists a unique strong solution(Xt) to the nonlinear stochastic di�erential equation8>><>>: Xt = X0 + Z t0 ZIR b(X�; y)��(dy)dt + Z t0 ZIR s(X�; y)��(dy)dW� ;�t is the law of the random variable Xt; for all t � 0 (81)(see S. Méléard's contribution to this volume or Sznitman [46] e.g.). Oneconsequence of the propagation of chaos is that the law of one particle, forexample the law of (X1;Nt ), tends to the law of the process (Xt) when N goesto in�nity.De�ning the di�erential operator L(�) byL(�)f(x) = 12 �ZIR s(x; y)d�(y)�2 f 00(x) + �ZIR b(x; y)d�(y)� f 0(x) ;43



Itô's formula shows that �t is the solution to the McKean-Vlasov equation� ddt < �t; f >=< �t; L(�t)f > ; 8f 2 C1K (IR) ;�t=0 = �0: (82)Consequently, the distribution function V (t; x) of �t solves (79) where V0(�)is the distribution function of �0.We suppose that the following assumptions hold:(H10) There exists a strictly positive constant s� such thats(x; y) � s� > 0 ; 8(x; y):(H11) The kernels b(�; �) and s(�; �) are uniformly bounded functions of IR2;b(�; �) is globally Lipschitz and s(�; �) has uniformly bounded �rst partialderivatives.(H12) The initial law �0 has a continuous density u0(�) satisfying: thereexist constants M > 0, � � 0 and � > 0 such thatu0(x) � � exp(��x22 ) for j x j> M:The initial distribution function V (0; �) = V0(�) is approximated as in thepreceding subsection. We set yi0 := V �10 (i=N):Consider the system (80) with the initial condition X i;N0 = yi0, and denoteits solution by (X it ; 1 � i � N). There holds8>>><>>>: dX it = 1N NXj=1 b �X it ; Xjt � dt + 1N NXj=1 s �X it ; Xjt � dwit ; t 2 [0; T ] ;X i0 = yi0 ; i = 1; : : : ; N:To get a simulation procedure of a trajectory of each (X it), we discretizein time and we approximate �t by the empirical measure of the simulatedparticles. The Euler scheme then leads to8>>>>>>>><>>>>>>>>:
Y i(k+1)T=n = Y ikT=n + 1N NXj=1 b(Y ikT=n ; Y jkT=n)Tn+ 1N NXj=1 s(Y ikT=n; Y jkT=n) �W i(k+1)T=n �W ikT=n� ;Y i0 = yi0 ; i = 1; : : : ; N: (83)
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In the same way, we approximate V (t; �) solution to (79) by the cumulativedistribution function of �t:V kT=n(x) := 1N NXi=1 H(x� Y ikT=n) ; 8 x 2 IR: (84)Theorem 6.1 (Bossy and Talay [7], Bossy [5]) Suppose (H10)-(H12). LetV (t; x) be the solution of the PDE (79).There exists an increasing function K(�) such that, 8 k 2 f1; : : : ; ng:IE V (kT=n; :)� V kT=n(:)L1(IR)� K(T ) �kV0 � V 0kL1(IR) + 1pN + 1pn� (85)and V ar �V (kT=n; :)� V kT=n(:)L1(IR)�� K(T ) �kV0 � V 0k2L1(IR) + 1N + 1n� : (86)Besides, V0 � V 0L1(IR) � Cplog(N)N :Sketch of the proof. De�ne � : [0; T ]� IR �! IR by�(t; x) := ZIR b(x; y) �t(dy) ;and � : [0; T ]� IR �! IR by�(t; x) := ZIR s(x; y) �t(dy):Under our hypotheses, there exists a unique strong solution to8<: dzt = �(t; zt)dt + �(t; zt) dwt ;zt=0 = z0 ; (87)where z0 is a square integrable random variable. When the law of z0 is �0,the two processes (zt) and (Xt) solution to (81) have the same law andV (t; x) = IEH(x�Xt) = IE�0H(x� zt) = ZIR IEH(x� zt(y)) �0(dy):45



Consider the independent processes (zit)(i=1;::;N) solutions to8<: dzit = �(t; zit) dt + �(t; zit) dW it ;zi0 = yi0: (88)Applying the Euler scheme to (88), one de�nes the independent discrete-time processes (zikT=n):8>>><>>>: zi(k+1)T=n = zikT=n + �(kT=n; zikT=n) Tn+�(kT=n; zikT=n) �W i(k+1)=n �W ikT=n� ;zi0 = yi0: (89)The global error is decomposed as follows:IE V (kT=n; x) � V kT=n(x)L1(IR)� IE�0H(x� zkT=n) � IE�0H(x� zkT=n)L1(IR)+IE IE�0H(x� zkT=n) � 1N NXi=1 H(x� zikT=n)L1(IR) (90)+IE  1N NXi=1 H(x� zikT=n) � 1N NXi=1 H(x� zikT=n)L1(IR)+IE  1N NXi=1 H(x� zikT=n)� 1N NXi=1 H(x� Y ikT=n)L1(IR):The �rst term of the right handside corresponds to the approximation errorof the measure �0; the second term essentially is a statistical error related tothe Strong Law of Large Numbers; the third term is the discretization errorinduced by the Euler scheme; the last term corresponds to the approxima-tion of the coe�cients �(kT=n; �) and �(kT=n; �) by means of the empiricalmeasure �kT=n, which introduces the family of dependent processes (Y ikT=n).
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One successively proves:IE�0H(x� zt) � IE�0H(x� zt)L1(IR) � C k V0 � V 0 kL1(IR) ;IE IE�0H(x� zt) � 1N NXi=1 H(x� zit)L1(IR) � CpN ;IE  1N NXi=1 H(x� zikT=n) � 1N NXi=1 H(x� �zikT=n)L1(IR) � Cpn ;IE  1N NXi=1 H(x� �zikT=n)� 1N NXi=1 H(x� Y ikT=n)L1(IR)� C � 1pn + 1pN + kV0 � �V0kL1(IR)� :The three �rst inequalities are obtained following the guidelines presentedin Section 4 and observing that an inequality of the type (63) holds for thedensity of the law of zt(x). The proof of the last inequality is based uponan induction formula with respect to k which mimics the propagation of theglobal error. More precisely, setEk := 1N NXi=1 IEj�zitk � Y itk j2and � := kV0 � �V0k2L1(IR) + 1N + Tn :A tedious computation, where the Lipschitz condition on the kernels andthe estimate (4) play a role, shows that8<: Ek � (1 + CTn )Ek�1 + CTn (� + Tn ) + CTn pEk�1ptk�1 p� for k > 1;E1 � CTn ;from which one can deduceIE  1N NXi=1 H(x� �zikT=n)� 1N NXi=1 H(x� Y ikT=n)L1(IR)� C � 1pn + 1pN + kV0 � �V0kL1(IR)� :47



�Suppose now that the objective is to approximate the solution of theequation (82) rather than (79).The above hypotheses imply that for all t > 0 the measure �t has a densityu(t; �) w.r.t. Lebesgue's measure. To obtain an approximation of u(kT=n; �),we construct a regularization by convolution of the discrete measure �kT=n.Let �"(�) be the density of the Gaussian law N(0; "2) and setu"kT=n(x) := ��" � �kT=n� (x) = 1N NXi=1 1p2�" exp �(x� Y ikT=n)22"2 ! :We strengthen our hypotheses:(H11') The kernel b(�; �) is in C2b (IR2) and s(�; �) is in C3b (IR2).(H12') The initial law �0 has a strictly positive density u0(�) in C2(IR)satisfying: there exist strictly positive constants M , � and � such thatu0(x) + ju00(x)j + ju000(x)j � � exp���x22 � , for jxj > M:One then have theTheorem 6.2 (Bossy and Talay [7], Bossy [5]) Suppose (H10), (H11')and (H12'). Let u(t; �) be the classical solution to the PDE8><>: @u@t (t; x) = 12 @2@x2 hu(t; x) �RIR s(x; y)u(t; y)dy�2i� @@x �u(t; x) RIR b(x; y)u(t; y)dy� ;u(0; x) = u0(x) ; (91)where u0(�) is the density of �0.Then there exists an increasing function K(�) such that, 8k 2 f1; : : : ; ng,IE u(kT=n; :)� u"kT=n(:)L1(IR)� K(T ) �"2 + 1" � kV0 � V 0kL1(IR) + 1pN + 1pn �� (92)and V ar �u(kT=n; :)� u"kT=n(:)L1(IR)�� K(T ) �"4 + 1"2 �kV0 � V 0k2L1(IR) + 1N + 1n �� : (93)48



Sketch of the proof. The �rst step consists in proving that the densityu(t; �) belongs to the Sobolev space W 2;1(IR) and that the norm of u(t; �) inW 2;1(IR) is bounded uniformly in t 2 [0; T ]. This is done by using a criteriondue to Cannarsa and Vespri [9] to check that the function (1 + x2)u(t; x)belongs to C1([0; T ];L2(IR))T C([0; T ];W 2;2(IR)). Equipped with this result,one can then use the well-known estimate (cf. Raviart [41])ku(tk; �)� (u(tk; �) � �") kL1(IR) � C "2 ku(tk; �)kW 2;1(IR): (94)The second step is easy. It consists in checking thatIEk (u(tk; �)� utk(�)) � �"kL1(IR) � C" IE kV (tk; :)� V tk(:)kL1(IR):Therefore, one can conclude by applying Theorem 6.1. �Thus, the rate of convergence depends on relations between ", N and n.This is not estonishing: roughly speaking, if " is too large, the smoothing by�"(�) is too crude whereas, when " is too small w.r.t. N , there may be toofew particles in the windows of size ".7 The Burgers equationFor all the results of this section we refer to Bossy and Talay [6] and Bossy [5].Consider the Burgers equation:8><>: @V@t = 12�2@2V@x2 � V @V@x ; in [0; T ]� IR ;V (0; x) = V0(x) : (95)This PDE can be seen as the Fokker-Planck equation for the limit lawof particle systems corresponding to a kernel b(�; �), roughly speaking, equalto a Dirac measure (see Sznitman [46]). The corresponding algorithm mustinvolve a smoothing of this kernel. The analysis of its convergence rate is stillin progress. Another stochastic particle method for the Burgers equation hasbeen proposed by Roberts [42].In order to construct a stochastic particle algorithm involving a kernelb(�; �) less irregular than a Dirac measure ( therefore more interesting from anumerical point of view), we interpret the solution of the Burgers equation49



as the distribution function of the probability measure Ut solution to thefollowing McKean-Vlasov PDE:8>><>>: @U@t = 12�2@2U@x2 � @@x ��ZIRH(x� y)Ut(dy)�Ut� ;Ut=0 = U0 : (96)The above PDE is understood in the distribution sense. Its nonlinear partmakes appear the discontinuous interaction kernel b(x; y) = H(x� y).To this McKean-Vlasov equation, is associated the nonlinear stochasticdi�erential equation8>><>>: dXt = �dWt + ZIRH(Xt � y)Qt(dy) dt ; Qt(dy) is the law ofXt ;Xt=0 = X0 of law Q0 : (97)As the kernel H(x � y) is discontinuous, the �classical� results of thepropagation of chaos for weakly interacting particles do not apply. Thus, one�rst must prove that there exists a solution to (97) and that the propagationof chaos holds for the corresponding particles system.LetM(IR) denote the set of probability measures on IR. For any measure� 2 M(IR) the di�erential operator L(�) is de�ned byL(�)f(x) = 12�2@2f@x2 (x) + �ZIRH(x� y)�(dy)� @f@x (x) :One can prove the existence and the uniqueness of a solution to the follow-ing nonlinear martingale problem (98) associated to the operator L(:): for anyinitial distribution Q0 2 M(IR), there exists a unique IQ in M(C([0; T ]; IR))(we denote by IQt, t 2 [0; T ], its onedimensional distributions) such that(i) IQ0 = U0 ;(ii) 8f 2 C2K(IR); f(x(t))� f(x(0))� Z t0 L(IQs)f(x(s))ds; t 2 [0; T ]is a IQ martingale ; 9>>=>>;(98)where x(�) denotes the canonical process on the space of continuous func-tions from [0; T ] to IR (this is done by showing the convergence of the solu-tions of the martingale problems corresponding to an appropriate sequence of50



smoothened Heaviside functions). Equipped with this result, one can provethat there is a unique solution IQ in the sense of probability law to (97). (Be-sides, one can show that the distribution function of IQt is the classical solutionto the Burgers equation.)One can also prove the followingProposition 7.1 The propagation of chaos holds for the sequence of mea-sures (�N) de�ned by �N = 1N NXi=1 �Xi;N�where dX i;Nt = �dW it + 1N NXj=1 H(X i;Nt �Xj;Nt ) dt:Sketch of the proof. First, one easily shows that the sequence of thelaws of the �N 's is tight. Then, let �11 be a limit point of a convergentsubsequence of fLaw(�N)g. Similarly to what is done in Section 4.2 of S.Méléard's contribution in this volume, setF (m) :=< m;�f(x(t))� f(x(s))� Z ts L(m�)f(x(�))d�� g(x(s1); : : : ; x(sk)) >where f 2 C2b (IR), g 2 Cb(IRk), 0 < s1 < : : : < sk � s � T and m is aprobability on C([0; T ]; IR). Then use the two following arguments.(a) First, limN!+1 IE[F (�N)]2 = 0 sincelimN!+1 IE[F (�N)]2 � limN!+1 CN2 NXi=1 IE �Z ts �dW i��2= 0:(b) Second, one can show that the support of �11 is the set of solutions to thenonlinear martingale problem (98). As the uniqueness of such a solutionholds, one gets that �11 = �IQ. Here, one cannot use the continuity ofF (�) in P(C([0; T ]; IR)) endowed with the Vaserstein metric because theHeaviside function is discontinuous, but one can take advantage of theexplicit form of F . The key argument is as follows. Let �N be de�nedby �N := 1N4 NXi;j;k;l=1 �(Xi;N� ;Xj;N� ;Xk;N� ;Xl;N� ) :51



Let �1 2 P(P(C([0; T ]; IR)4)) be the limit of a convergent subsequenceof the tight family fLaw(�N )g. Denote by �1 the �rst marginal ofa measure � 2 P(C([0; T ]; IR)4) (for all Borel sets A in C([0; T ]; IR),�1(A) = �(A � C([0; T ]; IR) � C([0; T ]; IR) � C([0; T ]; IR))). Then, oneobserves that �1 � a.e; � = �1 
 �1 
 �1 
 �1:Besides, one can prove thatlimN!+1 IE[F (�N)]2 =ZP(C([0;T ];IR)4)�ZC([0;T ];IR)4 �f(x1t )� f(x1s)� �22 Z ts f 00(x1�)d�� Z ts H(x1� � x2�)f 0(x1�)d�� (99)g(x1s1; : : : ; x1sp)d�(x1; x2; x3; x4)o2 d�1(�) :One then proves that �1-a.e.,ZC([0;T ];IR)2) �f(x1t )� f(x1s)� �22 Z ts f 00(x1�)d� � Z ts H(x1� � x2�)f 0(x1�)d��g(x1s1; : : : ; x1sp)d�1(x1)
 d�1(x2) = 0: (100)Then, (100) and the uniqueness to the nonlinear martingale prob-lem (98) imply that �1 = IQ which is equivalent tolimN!1(Law(�N)) = �IQ :See [6] for details. �We now turn our attention to the numerical approximation of the pre-ceding particle system. We set:Y i(k+1)T=n := Y ikT=n + 1N NXj=1 H �Y ikT=n � Y jkT=n� Tn+ 1N �W i(k+1)T=n �W ikT=n� ; (101)�VkT=n(�) := 1N NXi=1 H �x� Y ikT=n� : (102)52



A much more complex and technical analysis than for the McKean-Vlasovequations with Lipschitz kernels (the study of the propagation from kTn to(k+1)Tn of the error is very intricate when the kernels are not globally Lipschitz)leads toTheorem 7.2 (Bossy and Talay [6], Bossy [5]) Let V (t; x) be the clas-sical solution of the Burgers equation (95) with the initial condition V0. Sup-pose (H12).Let V kT=n(x) be de�ned as above, N being the number of particles.There exists an increasing function K(�) such that for all k 2 f1; : : : ; ng:IE kV (kT=n; :)� V kT=n(:)kL1(IR)� K(T )�kV0 � V 0kL1(IR) + 1pN + 1pn� : (103)The monotonicity of the function V0(�) can be relaxed: see [7] for themodi�cation of the algorithm when V0(�) is non monotonic and for the cor-responding error analysis.In a forthcoming paper, Bossy and Talay extend this analysis to Chorin'srandom vortex method for the 2-D incompressible Navier-Stokes equation.The interpretation of the Navier-Stokes equation in terms of limit law ofweakly interacting particles has been given by Marchioro and Pulvirenti [31]and Osada [35]. The interaction kernel is still less smooth than the Heavisidefunction since it is the Biot and Savart kernel, which is singular at 0. Thismakes the error analysis delicate.For numerical experiments on the above stochastic particle methods re-lated to McKean-Vlasov equations, see M. Bossy's thesis [5].References[1] Bally, V., Talay, D., �The law of the Euler scheme for stochastic dif-ferential equations (I) : convergence rate of the distribution function�,Probability Theory and Related Fields, 104, 43-60 (1996).[2] Bally, V., Talay, D., �The law of the Euler scheme for stochastic dif-ferential equations (II) : convergence rate of the density�, Monte CarloMethods and Applications, 2, 93-128 (1996).53
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