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RATE OF CONVERGENCE OF A STOCHASTIC PARTICLE METHOD 

FOR THE KOLMOGOROV EQUATION 


WITH VARIABLE COEFFICIENTS 


PIERRE BERNARD, DENIS TALAY, AND LUCIAN0 TUBARO 

ABSTRACT.In a recent paper, E. G. Puckett proposed a stochastic particle 
method for the nonlinear diffusion-reaction PDE in [ 0 ,  TI x R (the so-called 
"KPP" (Kolmogorov-Petrovskii-Piskunov) equation): 

where 1 - uo is the cumulative function, supposed to be smooth enough, of 
a probability distribution, and f is a function describing the reaction. His 
justification of the method and his analysis of the error were based on a splitting 
of the operator A . He proved that, if h is the time discretization step and N 
the number of particles used in the algorithm, one can obtain an upper bound 
of the norm of the random error on u ( T ,x )  in L'(C2 x R) of order I / N ' / ~ ,  
provided h but conjectured, from numerical experiments, that = @ ( I / N ' / ~ ) ,  
it should be of order B ( h )+ 8(1 / f l ) ,without any relation between h and 
N .  

We prove that conjecture. We also construct a similar stochastic particle 
method for more general nonlinear diffusion-reaction-convection PDEs 

where L is a strongly elliptic second-order operator with smooth coefficients, 
and prove that the preceding rate of convergence still holds when the coefficients 
of L are constant, and in the other case is B ( 4 )+ 8(1/m). 

The construction of the method and the analysis of the error are based on a 
stochastic representation formula of the exact solution u . 

1.1. Setting of the problem. In a recent paper [12], E. G. Puckett proposed a 
stochastic particle method for the nonlinear PDE in [0, TI x IR : 

= Au = Au + f ( u ) ,

{ 4 0 ,  .) = uo(.), 
where 1 - uo is the cumulative function, supposed to be smooth enough, of a 
probability distribution, and f is a function satisfying properties ensuring, in 
particular, that the solution u(t , x) takes values in [0, 11. 
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His justification of the method and his analysis of the error were based on 
a splitting of the operator A; a rough presentation of the algorithm is the 
following: 

(A) Initialization: One locates N particles on the real axis at positions x i  
with weights oh (i = 1, .. . ,N) of order & ,such that the functioni G(0, x )  = 

c:, wgH(xd - x )  is a good approximation of uo in L1 (P). 
(B) Approximation of the reaction: One numerically solves the ODE 

on a time interval of length h (this operation changes the weights of the parti- 
cles). 

(C) Approximation of the difusion: One numerically solves 

by randomly and independently moving the particles, considered as independent 
Brownian particles, during a time interval equal to h ,each particle keeping its 
own weight. 

(D) Computation of the approximate solution: The value at time h and point 
x of the approximate solution, a ( h ,  x )  , is obtained by adding the weights of 
all the particles which are at the right-hand side of x . 

(E) Iteration: At each time step, one performs the operations (B) (using
-
u(ph , .) instead of u(0,  .)) , (C), and (D). 

The upper bound of the random error on u (T ,  x )  in L 1 ( n  x R) is shown 
to be of order 1/Nil4,provided h = 8 ( 1  /N1J4) . 

In the last section of the paper, Puckett presents numerical results which 
obviously show that this estimation is very pessimistic and conjectures that the 
rate of convergence should be of order d ( h )  +@ ( l / ~ % ),without any relation 
between h and N .  

We tried to prove this conjecture by keeping the idea of the splitting but 
changing the technique used by Puckett to obtain some of his estimations. We 
could obtain a better rate of convergence than 1/N1I4 (we got 1/N2I7 pro- 
vided h is of order 1/N2I7) ,but we could neither get the right one, nor avoid 
a relation between h and N ,  mainly because we had to sum up the approxi- 
mation errors made at each step on the solution of the following PDE, where 
the initial condition u(ph, a )  is the approximate solution computed at step 
P = l ,  ... , h .T .  

F = A w ,

{ w(0,  a )  = a ( p h ,  - ) ,  

and these local errors appear to be of order 5 . 
Besides, the notion of splitting does not represent the basic operation of the 

algorithm, which is the approximation of the measure &u(t ,x )  d x  by a linear 
combination of Dirac measures at points defined by the current positions of the 
particles, and coefficients in the combination equal to the respective weights. 

'In the sequel, H will denote the Heaviside function: H ( y ) = 0 for y < 0,  H ( y ) = 1 for 
~ 2 0 .  
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Thus, we were led to change our point of view. 
Our objective was also to extend the algorithm to more general nonlinear 

reaction-diffusion-convection PDEs, namely, 

where L is a strongly elliptic second-order operator with smooth coefficients. 
A natural question is then: what must be the law of the motion of the particles? 
A natural attempt is to move the particles according to the law of a diffusion 
process whose infinitesimal generator is L ,but then one can see the computed 
solution (considered as a wave) propagate in the opposite direction to the prop- 
agation direction of the exact solution! 

The answers to this question and to the determination of the rate of con- 
vergence of the algorithm that we will construct (which reduces to the Puckett 
algorithm when L = A) are based upon an interpretation of the method com- 
pletely different from the splitting of A in (1.1), and an analysis of the error 
completely different from Puckett's one. The main tool will be a probabilistic 
representation formula of the exact solution, which will be used to get estimates 
on the rate of convergence. We emphasize that, applied to the Puckett algorithm 
for the KPP equation, our estimates below prove Puckett's conjecture. 

We also stress that the stochastic particle algorithm we analyze is not the only 
one that can be developed for nonlinear reaction-convection-diffusion equations. 
In particular, Sherman and Peskin have proposed a numerical method (without 
proving convergence) in [14], based upon the simulation of branching Brownian 
motions; the term f(u)  is used to describe the law of the branching. For 
the convergence and the analysis of this algorithm, see the papers of Chauvin 
and Rouault [5, 4, 31. The main difference between the two algorithms is the 
following: the Sherman-Peskin particles have constant weights, but are highly 
dependent (they are the living particles of the branching process); the Puckett 
particles are independent, but the weights are dependent. For a finite horizon 
problem, the Puckett method seems to be simpler to implement and easier to 
use on a parallel computer; but if the problem is, for example, to study the 
asymptotic propagation velocity of a wave, then the Puckett algorithm cannot 
be efficient, because there is no reason at all for it to be stable (see our results 
on the rate of convergence); in that case, the Sherman-Peskin method must 
be preferred, since it is naturally related to the evolution of the solution, the 
particles concentration being large where the gradient of the solution is large. 

Our paper is organized as follows: in 52, we state our hypotheses and we 
present a collection of elementary results, which are frequently used in the 
sequel; then, in 53, we establish an original stochastic representation of the 
solution of the above nonlinear PDE; this formula permits us to construct a 
stochastic particle method, which reduces to the splitting method of Puckett 
when the coefficients of L are constant; in 54, we state our result on the rate of 
convergence; before proving it (556 and 7), we need to study in a precise way how 
dependent the weights of the particles are: this is done in 55. Finally (58), we 
consider the special case of constant coefficients. The Supplement contains some 
of the proofs (5  10) and an Appendix devoted to reaction-diffusion-convection 
PDEs. 

Our numerical experiments for nonconstant-coefficient examples do not add 
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information to the excellent last section of the paper of Puckett (devoted to the 
KPP equation), so that we refer to it. 

1.2. Notation, conventions. In the sequel, C will denote any deterministic 
strictly positive constant independent of the time discretization step h and the 
number of particles N (but, most often, it will depend on T) . 

We will always assume h E (0 ,  1) , of the form -& , where M is an integer. 
When a stochastic process ( X , ) is such that Xo = y a.s. for some real number 

y , we will often write (X,(y)) . 
When we write @(h) or B(h ) ,etc., it must be understood that the quantity 

involved (which may be random) can be bounded, uniformly in o if it is 
random, by, respectively, Ch or $ , the constant C being deterministic and 
uniform with respect to h and N . 

2.1. 	 Hypotheses. We make the following assumptions: 
(HI) f is a C2 function on [ 0 , 11 such that f(0) = f(1) = 0 ,  f (u)  2 0 

for u E [0, 11 (therefore, is bounded in (0 ,  11 and continuous in 0) ; 
(H2) b ,  a are two bounded C" functions; any derivative of any order is 

assumed to be a bounded function; a is bounded below by a strictly positive 
constant; 

(H3) 1 - uo is the cumulative function of a probability distribution. 
In the Appendix (see the Supplement), we recall that, under (HI),  (H2), (H3), 

for any T > 0 ,  there exists a unique classical solution in (0 ,  TI x R , taking 
values in [0, 11, to the problem 

$$= L u +  f ( u ) ,  

lirn,,O u(t , = uo(.) at every continuity point of uo ,
a )  

where 

In the sequel, we will often need an additional assumption on uo : 

(H4) uo is of class gbm(IW)
, and there exist strictly positive constants C1 , C2 

such that, for any x in R , lub(x)l < ~ ~ e - ~ 2 ~ ~, or 

(H5) uo is of the form 


where the oh 's are positive and such that 

2.2. Elementary results. In this subsection, we will state easy consequences of 
quite classical results, needed in the sequel. 

We begin with the obvious (but useful) inequality: 
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We derive some consequences of (H2) .  
Let (5 , )  be a diffusion process whose infinitesimal generator has bounded 

and C r ( R )  coefficients bo and 00 , and is strictly elliptic. 
We have the well-known property (see, for instance, Friedman [6]):under 

(H2) ,there exist C > 0 ,  l > 0 such that, for the density p,(y , z )  of the law 
of & ( y )  ( y ,  z E R ,  0 < t 5 T ) ,we have 

P ~ ( Y ,z )  5 -a 
C 

exp (- 'zu;'2). 
Therefore (for (iii) we apply (2.2)): 

Corollary 2.1. Let (it)be a difusion process whose injinitesimal generator has 
bounded and C r ( R )  coeficients, and is strictly elliptic. Then there exist C > 0 
and 13. > 0 such that for all t with 0 < t 5 T and for all x , y E R ,  we have 

(i) 

~ ( i t ( y )< x )  5 -
C 

J X  exp (- ( z
21t 
-Y )

2 ,  d l ,a -03 

(ii) 

P(L(Y)> x )  5 -a 
( z  - Y )  

Besides, we observe that, under the above hypotheses, there exists a constant 
C > 0 such that 

Vt > 0 ,  lim i , ( y )= +m a.s. 
y-++oo 

because the function y -+ & ( y )  is as .  increasing since its derivative is an ex- 
ponential. 

Lemma 2.2. Under the above hypotheses on (&), there exists a C > 0 such that 
for any T 2 t > 0 ,  the probability density p , ( x ,  y )  of the law of &(x) satisjies 

The proof is in the Supplement. 
We recall that we denote by bo(-)and oo(.),respectively, the drift and the 

diffusion coefficients of (i,). Let (B,)  be a standard real Brownian motion. 
The Euler scheme is defined by 

2See Kunita [a, Chapter 21, e.g., for the diffeomorphisrn property of stochastic flows associated 
with stochastic differential equations. 
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and the Milshtein scheme is defined by 

= cp+ bO(Tp)h+ a o ( L ) ( ~ @ + l j hBph)-

(2.7) 1 
+ Ia~tTp)06tTp)((B(p+,ihBph12 h ) -

We now recall a result on the convergence rate (the first part is easy to show; 
the second is due to Milshtein [9]) .  

Proposition 2.3. Suppose that the functions bo and a0 are of class C" , and 
that any derivative is uniformly bounded. For the Milshtein scheme, we have 

(i) For any k E N* and for any initial condition co such that ElcOIZk < m, 
there exists a strictly positive constant C (depending only on T ,  and the bounds 
of bo , 00, and their two first derivatives) such that 

(ii) There exists a positive constant C such that, for any initial condition y , 

and, for any p = h1 , . . . , M = I ,  

Remark 2.4. When a0 is not a constant function, for the Euler scheme, one 
generically has 

(2.11) Elcph- t p l 2  5 Ch.  

When bo and a0 are constant functions, there is no approximation error. 
We now state some consequences of the hypotheses (H4)or (H5) .  

Remark 2.5. Under (H3) ,  (H4) ,  one has 

The hypothesis (H5)instead of (H4)implies 

Lemma 2.6. Assume that uo satisfies hypotheses (H3) ,  (H4) ;  then there exists 
C > 0 such that 

for any t E [ 0 ,T I .  



A STOCHASTIC PARTICLE METHOD FOR THE KPP EQUATION 56 1 

If uo satisfies (H5) ,  then 

The proof is in the Supplement. 
The next lemma gives a control of the error due to the permutation of the ex- 

pectation and a nonlinear function, and simply follows from a Taylor expansion 
of g ( x )- g ( E X ) .  

Lemma 2.7. Let g be a function of class c2with bounded second derivative; 
then for any square integrable random variable X we have 

Finally, the next equality will be useful in several subsequent computations: 
for any y , z E IR , there holds 

3. REPRESENTATIONOF THE SOLUTION OF ( 1 . 1 )  AND 

CONSTRUCTION OF THE ALGORITHM 

3.1. A probabilistic representation of the solution. We introduce a probability 
space (Q, F, P) equipped with a Brownian motion ( B ( t ) );for 0 I s < t 5 T ,
Kt will denote the least complete a-field for which all the B, - B, ( s  I u < 
v I t )  are measurable. 

Theorem 3.1. Under (H1)-(H3),  if uo is of class C r ( I R ) ,  we have the following 
representation: 

t 

(3.1) H ( X t  - x )exp (1f t  0 u ( s ,  X,) d s ) ]  , 

where ( X t )  is the solution to 

(3-2)  d X ,  = a ( X , )  dBt  - { b ( X , )- a ( X t ) a t ( X t ) )d t .  

Here, the law of Xo has a density equal to -ub , and (B , )  is a standard Brownian 

motion. 

Proof. The function v ( t  , x )  := ( t , x )  satisfies the following equation: 


= ( t ,  X )  = i c 2 ( ~ ) Q ( t ,  + O ( X ) C ' ( X ) ) ~ ( ~ ,X )  + ( b ( ~ )  X )

{ 
 + ( b t ( x )+ f' u ( t ,  x ) ) v ( t ,  x ), 

v ( 0 ,x ) = ub(x) .  

By applying the Feynman-Kac formula, we obtain 

where ( Y t )  is the solution to 

(3.4) d Yt = ( b ( Y t )+ a ( Y t ) a t ( Y t ) )d t  + a ( Y t )  dB,. 



562 PIERRE BERNARD, DENIS TALAY, AND LUCIAN0 TUBARO 

Consequently, recalling that 1 - uo is increasing and that u(t , x )  -+ 1 as 
x + -cc (see Lemma 2.6), we have 

As we will see below, the particles algorithm is based on approximating the 
measure ub(y) dy by a measure of type EL,o@, ;that suggests one performs 
the change of variable z = to,t(y),where 50,t(.) is the flow associated with the 
stochastic differential equation (3.4). Hence, we set y = t;,:(z) . 

Using results of the second chapter of Kunita [8], we have, for I9 < t , 

where dBe denotes the "backward" stochastic integral.3 
One infers that 

from which 

Hence, taking into account (2.5), we have 

t-1cl(t ; ;(z))d~$} dz] 

One now uses Lemma 6.2 of Chapter I1 of Kunita [8]: for any continuous 
function g(s , x) we have 

Thus, 

3 ~ o ra definition, cf. Kunita [8, end of Chapter I]. 
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where (M;(Z))B<~- is the exponential (backward) (5$t)elt-martingale defined 
bv 

The application x -+ to,t(x) is a.s. increasing (its derivative is an exponen-
tial); thus H(-to,  t ( ~ )+ z) = H ( < ~ , { ( Z )- x )  . 

Hence, 

We observe that the law of the process (t;:, t)olglt , on ( R ,  9,P ,  &'), is 
identical to the law of the process (Xe)o<e<t,- - solut~onto 

dXe = a(Xe)dBo - b(Xo)dB. 

Hence, IEo denoting the expectation under the law Po for which the initial 
law of the process (Xe) has a density equal to -ub(z), and (Mt) denoting the 
exponential martingale defined by 

t t 

Mt = exp {- fi o ' 2 ( ~ s )ds  + a'(x3)dB3} , 

we have 

On (Q ,9,Po,%T) ,one performs the Girsanov transformation defined by 

F(A):= IEo[lAM~], A E &T;  
then, for t 5 T ,  

Under F , the process (XI) solves 

dXt = a(Xt)dBt - {b(Xl)- a(Xt)al(Xt))dt. 

Here, (&)defined by 

is a Brownian motion under @.Obviously, the above representation of u is 
identical to (3.1). 

One can deduce a result of the same type as the preceding one for a piecewise 
constant initial data uo : 

Proposition 3.2. If uo is of the form EL,w b ~ ( x i- x)  , then we have 
N 

I 
t 

(3.5) u(t ,x )  = oh&H(X, (xi) - x)  exp {if' o u(s ,X,(X;)) ds}] . 
i= 1 

The proof (based upon an approximation argument) is in the Supplement. 
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3.2. Principle of the algorithm. Let T > 0 be fixed, and h a time discretiza- 
tion step of type 5 , for some integer M .  We want to approximate u(T,  x )  . 

Approximating -uh(z) d z  by xEl~66,;, one gets the following approxi- 
mation formula: 

N 

u(T,  x )  N zW ~ I E  H(XT(X;) - X )  exp {STf'  o u(s , x,(x;)) ds  
i= 1 

Now, on (Q ,9,P) ,we are given N independent Brownian motions {(BB) , 
i = 1 , . .. , N) with respect to the filtration (4e )e ,o ,  simply denoted by (go) 
in the sequel. 

Let (Xi) be the (independent) solutions to the following SDEs (in forward 
time): 

dXi = a(Xi) dB; - {b(Xi)- a(Xi)a '(Xi)) dB, 

{ x; = x;. 
The particle algorithm replaces the expectation by a point estimation: 

N 

u(T ,  x)  N zW;H(X; - x )  exp {iTf o u(s , x,')ds 
i= 1 

Then we approximate 

and if we define by induction 

5P; = ~ f k + l ) h= P L ~exp{hff u(kh, xL~)) ,  
we get, for any p = 0 ,  1 ,  .. . , M = Tlh , 

N 

i= 1 

In fact, the (Xjh) 'S will be, in turn, approximated by the Milshtein scheme 
(2.7) applied to (3.2): 

-i 
X p + ~  = ~i - ( b ( z i )- a ( ~ i ) a ' ( ~ i ) ) h  -B'ph )+ ~ ( Z ~ ) ( B L + ~ ) ~  

(3.6) 1 -i 

- Biph )2 - h).+ Z a ( x p ) a ' ( T i ) ( ( ~ ~ + ~  
Thus, if we define 

we have 
N 

~ ( p h ,X) N C$,H(F;- x). 
i= 1 

Actually, one considers the weights in a slightly different way in order that 
the sum of the weights is equal to 1 (this fact will be used in the sequel): 
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where 7tk (i) denotes the label number of the particle just to the right of the par- 
ticle of label i at the time kh (if the considered particle is at the rightmost posi- 
tion at time kh ,we just have pihexp{hf ou(kh , TL} E pih+h f ou(kh ,~1)).
That transformation of the weights corresponds to the step "Rkbt" of the split- 
ting method of Puckett (cf. [12]). 

3.3. The algorithm. Finally, the algorithm will be the following: we define the 
initial weights and the initial approximation by 

where 

Evidently, uo(.) is a piecewise constant approximation to the initial datum 
UO('). 

Recall that we define the approximating process by (3.6). 
We now define, in a recursive way (and using the same convention for the 

particle at the rightmost position as previously): 

and 

Remark 3.3. All the weights, for some constant C uniform in h ,N ,  i , and 
k ,are bounded by 

C
(3.10) 0 5 w i 5 ,  

and, forany k = 1 ,  ... ,M = T l h ,  the weights wi (i  = 1 ,  ... ,N) are qk-l)h-
measurable (this will play an important role in the sequel). Moreover, it is easy 
to check from the definition (3.8) that, for any p = 1, ... ,M = Tlh , 

N 

(3.11) = 1.xu; 
i= 1 

By using the fact that f' and f" are bounded, and that the wph 's are bounded 
by C I N ,  we have 

Proposition 3.4. Under the hypotheses (HI)-(H4), we have 
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In addition, 

The proof (which uses (2.8)) is in the Supplement. 

The main result of the paper is the following theorem. 

Theorem 4.1. (i) Under the hypotheses (H1)-(H4), there exist strictly positive 
constants C and ho < 1 such that, for any h < ho and any N 2 1,  

(ii) When the functions b and a are constant, then the rate of convergence is 
given by 

Ilu(T, .) - L Cu ( T 7  .)ll~l~iwxn) 

The same estimates hold for the standard deviation of Ilu(T, -) - i i(T, . ) I IL lca ,  . 

When f = 0 ,  the estimate (i) can be improved. Indeed, if po denotes 
the probability measure whose 1 - uo is the cumulative function, and (Xi) is 
defined by 

dXi = o(Xi) dBi - {b(Xi)- o(Xi)ol(Xt)) d t  , 
then, from (3. l) ,  u(t ,x) = E,, H(Xt - x) and to the error 

contribute a statistical error 

which is of order 1 / n ,  and an approximation error 

which generically is of order h when the Milshtein scheme is used. The non- 
linearity of the PDE induced by f changes the order of convergence, at least in 
our proofs. Our numerical experiments have not permitted us to check whether 
fi is the best estimate: typically, the algorithm was extremely sensitive to h ; 
when h was small, it was difficult to isolate the error due to the discretization 
from the statistical error (we could not choose N so large as it would have 
been necessary), and for different, but not small h , some numerical instabili- 
ties produced statistical and discretization errors of comparable magnitude. In 
any case, the important point seems to us that the behavior of the error can be 
described without assuming a relation between h and N . 

The gain in accuracy, when b and o are constant, is not mysterious: to give 
a feeling of what happens, suppose b = 0 and o = 1;in that case, the particles 
are Brownian, and the law of the Xfp+l)h -XLh'S can be simulated exactly (one 
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just has to simulate independent Gaussian variables), whereas, when a is not 
constant, one has to approximate the processes (Xj) ; the passage from h to 

is due to this approximation (see Proposition 2.3). 
We also remark that, when the coefficients are not constant, we obtained the 

above estimates after having used the Milshtein scheme, not the Euler scheme 
(compare Remark 2.11 and inequality (2.10)). Finally, we stress that the Euler 
and Milshtein schemes are the only schemes reasonable from the point of view 
of numerical efficiency (see Talay [16]). 

The next three sections are devoted to the proof of part (i) of this theorem. 
In $8, we will explain what must be changed in the proof in order to obtain 
the better estimate in part (ii). Similar computations permit us to obtain the 
estimates for the standard deviation. 

The @A's are not independent, but we can choose other weights that are 
independent and approximate the oL's in order to get, in the sequel, useful 
estimates. 

We define pi by 

(5.1) 	 PA = @5, P; = p;-,(l + hf' 0 u((p - 1)h,xL-,,,)). 
The p; 's (i = I , .. . ,N) are independent, and it is easy to show there exists 

a C > O  suchthat lpfil5 $ .  
Set a; :=Elm; - pLl2, and a, := sup,a;. 
The objective of this section is to prove (cf. Proposition 5.8) 


Ch C 

Vh, Vp= 1 ,  ... ,M = T - " , 5 W + F .h .  

Remark 5.1. We observe 

As f' o u is Lipschitz, and as X is defined by the Milshtein scheme (cf. 
Proposition 2.3), we get 

We now need to get a precise estimate of J ~ l a , ( ~ i )  - u(ph ,7;)12. Having 
defined 

N 

we have 
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An upper bound for the first term of the right-hand side will be given in $ 5.1 
below, an upper bound for the second term in $5.2, and finally we will come 
back to the inequality (5.2) in 95.3. 

5.1. Anupper bound for lElii ,(~;)-u;(~;)l ' .  

Propositoin 5.2. There holds 

(5.4) ElZP(~;)  u;(~;)l' 5 ~ N ' C X ~-
N 
C + Ch.- + 

Proof. We have 

Therefore, to get the conclusion it remains to prove 

Lemma 5.3. For i # j # k one has 

The proof is in the Supplement. 

5.2. An upper bound for lElu;(~;) - u(ph ,7;)12. For brevity, we will denote 

The objective of this subsection is to prove (see (10.4) in the Supplement) 
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Proposition 5.4. There holds 

Proof. Let uN(t ,X )  := zE1w$E[H(x/ - X) exp($ f'o u(s, xi)ds)] . Then 

U .  5 CElu(ph, 7;)- uN(ph,7;)12 

EH(X;~-
-xb)eSo ph 

fiO u(s,X;'d' 

Ph 

-H(x;~-7;)eJo f10 U ( S ,  xi)ds 

Each of the three following lemmas will deal with a term of the right-hand 
side of the preceding inequality. The proofs are in the Supplement. 

Lemma 5.5. There exists a C > 0 such that for any t E [0, T] we have 

Lemma 5.6. There holds 

Lemma 5.7. There holds 

5.3. An upper bound for a,. From the two previous subsections, we obtain, 
considering (5.2), (5.3), (5.4), and (5.5), 

Proposition 5.8. We have, for all p , 

Proof. We have 

We define by induction ro = a0 and 
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We observe that, for any p , there holds a, < T ,  . 
If, for any p ,  we have fi < $ + A,then we have obtained (5.6); 

otherwise, there exists a j such that 

As (7,) is increasing, we would then have that, for any p > j ,  fi> $ + 
1then, for any p > j , we would also have 
N* ' 

from which we deduce that 

Hence, (5.6) is true for any p . 

For the sequel we need to compare the solution u ( t ,  x )  to problem (2.1) 
with the solution u ( t  , x )  to the problem 

for small values of t . We can represent 

v ( t  7 x )  = E(uo(Z , (x ) ) ) ,  
where ( Z i ( x ) )is the solution to the following equation: 

(6.2) dZi = b ( Z i )d t  + o ( Z i )d B i ,  Z o ( x )= X .  

Let P O ( x ,d y )  be the transition probability associated with (2,). 

Theorem 6.1. Assume the hypotheses (H1)-(H3);then for any 0 < h < 1 and 
any x E R ,  we have 

u(h 7 x )  = Euo(zh(x))f h f  (Euo(zh (x ) ) )f R h ( x )  

with the following estimate: 
if uo satisfies (H4), then 

(6.3) IIRh(.)lI~l~iw~5 c h 2; 

if uo belongs to a family of functions satisfying (H5)with weights bounded 
by 5,the constant C being uniform on the family, then 

The proof is obtained by combining the propositions of this section and 
Remark 6.6: Proposition 6.3 expands u(h,x ), the others give estimates of the 
norm of the remaining terms in L1( R ). 
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Remark 6.2. The proof will make it clear that the constant in (6.4) can be made 
more explicit (see the footnotes in the sequel): 

This will be used to treat the special case of constant b and a (see $8). 

Proposition 6.3. Assume the hypotheses (H1)-(H3);then for any 0 < h < 1 and 
any x E R we have 

u ( h 7x )  = Euo(Zh(x))  h f  (Euo(Zh(x)) )  Rh(x )  

with the following estimate: 

+ ChE[uo(Zh(x))- Eu0(zh(x))12. 

For the proof of this proposition we need the following lemma. 

Lemma 6.4. There holds 

with 

+ c E [ u o ( z h ( x ) )- ~ u ~ ( z h ( x ) ) ~ ~ .  
Proof of Lemma 6.4. Using Lemma 2.7, we have 

with ,. 

We now note that 

S ~ E ~ ~ U O ( Z ~ ( Y ) ) P ~ - ~ ( X ,d y )  = ~ / oU O ( ~ ~ ( X ) )7 

from which, by applying once again Lemma 2.7, we get the conclusion. 

Proof of Proposition 6.3. Hypothesis ( H I )  implies that If ( y ) / y l  < C for a 
suitable C and 0 < y 5 1 ;moreover, f ( y ) / y  is continuous in 0. 
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By the Feynman-Kac formula, we have 

(6.6) u(h ,x)  = E 	 il 
= Euo(Zh(x))+ E ~ 0 ( ~ h(x)) 

(6.7) 	 =: Euo(Zh(x))+ Ah. 
By applying the Taylor formula, we can write 

Ah = euO(zh(x))1 
1 f u(h - 7 Zs(x)) ds 

(6.8) + ?EuO(zh(x))[l u(h - s , Zs(x)) I 
from which we have Ah = Bh + RE with 

and 

where, in the last steps, we used the transition property of PO(x,  dy) . 
On the other hand, by the same argument used to obtain (6.6), we have 

EUO(ZS(Y)>~ ( $ 7  Y)+ D(s7 Y)= 

with, for some C > 0 large enough, 

Hence, we can write 

B h = l ~ f 0 ~ ( ~ , ~ ) P h - s ( x , d ~ ) d ~ + E h  

with (remembering that is uniformly bounded in [O,  I]) 
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Finally, by collecting (6.7), (6.8), (6.1O ) ,  we have 

with 

Therefore, it remains to  treat $ J, f o u(s,y)Ph-,(x , d y )d s  . W e  observe 
that 

with (using (6.9)) 

U ( S  -"Z f f ( y ) )dB P h - s ( ~ ,d y ) d sl l U ( S  - 19, Z f f( y ) )  

f U ( S  - 1 9 ,  Z ~ + h - s ( x ) )  d o  dS.  
U ( S  - 6 ,  Zff+h-s(x)) 

W e  conclude by applying Lemma 6.4. 

Proposition6.5. (i)Assume that (H1)-(H3) hold, and that uo belongs to afamily 
of functions satisfying (H5)  with weights bounded by 5, the constant C being 
uniform on the family; then, for any 0 < s < h ,  we have 

1~ ~ [ u O ( z s ( y ) )- ~ u O ( z s ( ~ ) ) l ~ p h - s ( xd ~ ) d x5 c A ,  

where the constant C depends only on T and the coejicients of the diflerential 
operator L . 

( i i)If uo satisJies (H4)  instead of the above condition, then we have 
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Proof. In the case of Hypothesis (H5) we have 

Thus, using (3.10) and Corollary 2.1 (iii), we have 

Therefore, 

C (Y - xI2

(-2i(h -s)) dyi=l  

from which 
C
11SN(Y)~~-S(X7 dy) d x  5 FA. 

W W  


With similar arguments, one can show that 

(see the details in the Supplement). 
In the case of Hypothesis (H4), we can apply the It6 formula 
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hence, 

We estimate A in the following way: 

Using again (2.3), we get 

1 (z  - x ) ~/ ~ d xc/ s J~/[Luo(z)12- exp (- 2A8 ) d z  d0 dx 
1 W h - s W  dB 

In the same way we have 

B < csJWa2(z)ua(z)dx. 

Remark 6.6. From (6.11) and (10.5) (see the Supplement) in the preceding 
proof, we have also shown that in the case (H5) we have 

~[uO(zh(x))-Eu0(zh(x))12d x  < ~ f i  

or, more pre~isely,~ 

~ [ u o ( z h(X)) -& U O ( Z ~(x))12dX < C& 
i<j 

From (6.12), in the case of Hypothesis (H4), we have 

Proposition 6.7. For 8 E [0, h], define 

Then, under (H1)-(H3): 
(i) if uo satisfies (H4), there exists a C > 0 such that for all h < 1 andfor 

all 0 E (0,  h ) ,  we have 
IIV~,O(~)IIL~(R)IC ;  

4See Remark 6.2. 
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(ii) if uo belongs to a family of functions satisfiing (H5) with weights bounded 
by 5,the constant C being uniform on the family, there exists a C > 0 such 
that for all h < 1 and for all 13 E (0 ,  h )  , we have 

C N 

I I C U ~ , O ( - ) I I L ~ ( R )  5 C + 7 I x / / .  
i= 1 

The result is an easy consequence of Lemma 2.6: see the Supplement. 

We remark that 


Like the preceding proposition, one can show 

Proposition 6.8. Define 

Then, under the hypotheses of Proposition 6.5, 
(i) if uo satisfies (H4), there exists a C > 0 such that for all h < 1 

I I  v / ~ ( . ) I I L ~ ( R )  I Ch2; 
(ii) if uo belongs to a family of functions satisfiing (H5) with weights bounded 

by $, the constant C being uniform on the family, there exists a C > 0 such 
that for all h < 1 

7. ESTIMATEOF THE GLOBAL ERROR 

We recall the notation M = T l h  . 

We are now in a position to prove the first part of our main Theorem 4.1. 

First, we write 


Ilu(T, .) - ~ M ( . ) I I L ~ ( ~ ~ ~ ) - + Ilu(T, .) -EZM(')IIL~(W).I l l E a ~ ( - )  u ~ ( . ) I I ~ l ( w ~ n )  

In 97.1, we will bound the first term of the right-hand side by -&+ c&; 

in 97.3, the second term will be bounded by 5+ c G ,  so that the announced 
convergence rate (for general functions b and a)  will be established. 

7.1. Estimate of IIEuM(.)-ZM(.)llLl(,xn). Our objective is to show 

Proposition 7.1. There exists a constant C > 0 such that, for any h = 6 ,any 
p 5 M ,  and any N ,  

Proof. Define 
N 

Pp(x)= ~;H(X;, - x ) .  
i= 1 
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Using (2.14) and (2.10)' we have 

Therefore, it is sufficient to prove 

Lemma 7.2. There exists a C > 0 such that, for any N ,  h 5 1, and p 5 M = 
T / h , 

Proof of Lemma 7.2. We have (using the fact that the sum of the weights is 
equal to 1) 

We will only consider the first term on the right, the second being treated in 
the same way. We use the independent weights of $5.  We have 

Using the independence of the pi's and of the (Xi) 's, and bounding the 
variance by the second moment, one gets 
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Now we observe that the first term of the right-hand side can be bounded from 
above by 

N +m

5i+m4 ix-x;)/mexp {-gJ dy dx. 

For x E [0, +co) the function 

Yx 1 +O0st+- J exp {-$} dy
( x - u ; l ( s ) ) / r n  

is decreasing from (0,  1) to (0 ,  1) ; therefore, the definition of the x; implies 

&ei+mi=, X - X ; I ) I ~exp {- $1 dy 

L1ixX;l(s))lmexp {-~iiJ dy ds  

= -J J'" exp {- $1 dy ub(z)d 3 
( x - z ) / ~  

Using (H4), we deduce for suitable A. > 0 

x2  
exp {-$1 dy ~ e x p(-2 ~ 0 ( l+ph)  ) + C U O ( ~ )  

i= 1 

so that, by (2.12), 

Now, by (5 .6) ,  

But (see (2.8)) 

Then we apply (3.13). 

7.2. A corollary. As a corollary to the previous subsection, we have the fol-
lowing result: 
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Lemma 7.3. Define 

There exists a C > 0 such that 

for any N ,  h < 1 ,  and p 5 M =  T / h .  

Proof. First we observe that 

and by Lemma 2.2 

from which, by the boundedness of the function i& , 

We then apply Lemma 7.2. 

7.3. Estimate of Ilu(T, .) -lEiiM(.)IIL~(W).For any p = 1 ,  ... , M ,  define 
-
v p(t ,x )  as the solution to 

and consider 

We will show (cf. Proposition 7.6 below) that 

We first treat 

Our objective is to show 
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Proposition 7.4. For all p , there holds 

Proof. We will only consider the first term on the right of (7.3). 
Consider (Be),  a (ge)-Brownian motion (see the beginning of $3.2), and 

(Ve(y)), the solution to 

We stress that, for each 19> 0, ~ ~ ( y )is independent of Fp!. 
We will denote by qh(y) the approximation of qh(y) obta~ned by applying 

the Milshtein scheme (2.7) to the stochastic differential equation (7.5). 
We first note, using (3.12) and the conventions described in (1.2), that 

Therefore. 

with (we apply (2.4) and (2.8)) 
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Applying (3.13), we deduceS 

Now, we perform a similar expansion of IEFp+l(h ,x )  . 

Using the representation (3.5), we can also write 


where 

Using again (2.14) and the estimate (2.9), one can check that 

with 

3C > 0, VY E R,  IIylo(h, Y, .)IILf(R) I ch3I2. 

Therefore, 

with 

Therefore, combining (7.1 1) and (7.8), in view of (7.12) and (7.9), we see 
that it remains to treat 

and to show that its norm in L1(R+) can be bounded by ha +9. 
5When f = 0, this term is absent; this permits us to justify a remark we made in $4. 
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But 

Furthermore, 

with 

B - 3 -l r l ( i ,p ,  h ,  S ) I  5 CIEp h l v p + l ( ~ ,  - v s ( 7 ; ) ) 1 2 .vS(T;))E p h v p + i ( ~ ,  

We now expand f( ~ % h % + ~  .( s, vS(7;))) 
Let (9:) be N independent copies of the process ( q s ) .The representation 

(3.5)permits us to write 

Then, if we define 

we get 

Thus, we have obtained 
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As above (see (3.14)), we deduce 

lld(h ') l lL1(R+)2 

N 

i c h 2 + c ~ C w : , / F ; ~  / r 2 ( i , p , h , e ) ~ d e  
i= 1 (Ah 


For A we have 

where 
k -kA, := IE%~IH(T;-xi)-H(% (x,)- tl:(~;))l. 

The next steps to prove A 5 Ch& + $ are given in the Supplement. 
For the term B we observe, using the independence of the particles, 

Hence, using (3.14), 

We now treat yp . 
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Proposition 7.5. For all p , there holds 

Proof. We use the local expansion of u(ph , .) and VP(.) deduced from The-
orem 6.1. Here, Hypothesis (H2) implies that Pt(x, dy) = pt(x,y) dy . In 
addition, we apply Proposition 6.1 twice: 

We substitute u(ph, .) to uo ; then we are in the case where the initial 
condition satisfies (H4) (from (3.3), (2.3), and (H4), it is easy to obtain the 
condition on the spatial derivative), and we have 

with I I R ; : ~ , ~ ( . ) I I ~ ~ ( ~ ,5 c h 2. 
We substitute ap(.)to uo ; then we are in the case where the initial con-

dition satisfies (H5), and we have 

with 

< c h a .SO that, using (3.141, E I I R ~ ~ ~ ~ ~ ( . ) I I ~ ~ ~ ~ ~-
Thus, using again (2.13), we get 

2 

+ C h J I ~ ( l ~ p ( ~ ) ~ h ( x , ~ ) d ~- ~ J ~ ~ ( y ) p ~ ( x ,R y)dy)  dx. 

Applying Lemmas 2.2 and 7.3, one obtains 

Finally, we can prove 

Proposition 7.6. For all p , there holds 
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Proof. We use the definition (7.2) and the estimates (7.14) and (7.4) to get 

In the proof of Lemma 5.5, we remarked that yl = Ilu(h, -) - v N ( h, -) l l L ~ ( w ,  
can be bounded by CIIIEl(uo- Zo)(Zh(.)) lI I L ~ ( W ) ; as Zo 2 uo for x < xF-' < 
C (1 +d m ),using u ( x )= - Jx+" u l ( y )d y  , (2.2),and (H4) ,we get, for some 
C > 0 large enough,

y l<c l  ( Z O ( X )- U O ( X ) )d x  
x [ < c + c ~  

( 1  - U O ( X ) ) ~ X+ C l,c+cmuo( x )d x  

Thus, p1 < C ( &  + h3I2+ f$) , and we can proceed by induction to end the 
proof. 

In this section, we explain what must be changed in the proof to get the better 
estimate -&+ C h  for the error when the coefficients of L are constant. 

Without loss of generality, we can assume that b = 0 and a = 1 . In that 
case we have that xi = X j  = x! + wd, . 

First, one remarks that the expansion in Remark 5.1 can then be changed to 

so that the inequality (5.2) can be modified to 

One can readily show that (5.4) can be reduced to 

E l 7 i p ( ~ i )- U ; ( X ~ ) ~< ~ ~ a , .  

Therefore, with the same arguments as in the proof of Proposition 5.8, one can 
show that the inequality (5.6) can be modified to 

This remark permits us to change the last lines of the proof of Lemma 7.2, so 
that one gets 

C 
IliiP(') - l E C p ( ' ) l l L l ( R x ~ )5 -+ C h .lm 
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Consequently, the conclusion of Lemma 7.3 becomes: there exists a constant 
C > 0 such that 

.4,h(~)5 -C + Chn 
forany AT, h 5 1 ,and  p5 M =  T / h .  

Now, we recall the inequality (6.5). This permits us to modify the beginning 
of the proof of Proposition 7.5 in the following way: 

2 

+ ~ h L ~ ( ~ i i , ( ~ ) p h ( x , ~ ) d ~ - ~ J i i , ( ~ ) ~ h ( x , y ) d y )11g 	 dx. 

Thus, it remains to check that we can improve the estimate for 6, . Namely, 
instead of (7.4), we have 

Actually, one just has to consider (7.6) and (7.10): now % ( x i )  and vh (7;) 
are equal, thus the conclusion is straightforward. 

We have constructed a stochastic particle algorithm for general one-dimen- 
sional reaction-diffusion-convection PDEs, by establishing a convenient proba- 
bilistic representation of the solution and discretizing it in space and time. 

We have given its rate of convergence, which also proves a conjecture of 
Puckett concerning this method for the KPP equation. 
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