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Abstract

Taking an odd, non-decreasing function �, we consider the (nonlinear) stochastic di�erential
equation

Xt =X0 + Bt − 1
2

∫ t

0

� ∗ u(s; Xs)ds; t¿0;

P(Xt ∈ dx)= u(t; dx); t¿0;
(Ẽ)

and we prove the existence and uniqueness of solution of Eq. (Ẽ), where � ∗ u(s; x)=
∫
R �(x−

y)u(s; dy) and (Bt ; t¿0) is a one-dimensional Brownian motion, B0 = 0. We show that Eq. (Ẽ)
admits a stationary probability measure and investigate the link between Eq. (Ẽ) and the asso-
ciated system of particles. c© 1998 Published by Elsevier Science B.V. All rights reserved.

AMS classi�cation: 60H10; 60K35; 60J60

1. Introduction

(1) Let � :R→R be an odd non-decreasing function. (Bt; t¿0) will denote a stan-
dard Brownian motion, B0 = 0. We are interested here in the following system:

Xt =X0 + Bt − 1
2

∫ t

0
� ∗ u(s; Xs) ds; t¿0;

P(Xt ∈ dx)= u(t; dx):
(Ẽ)

where � ∗ u denotes the convolution between � and u:

� ∗ u(s; x)=
∫
R
�(x − y)u(s; dy):
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0304-4149/98/$19.00 c© 1998 Published by Elsevier Science B.V. All rights reserved
PII: S0304 -4149(98)00018 -0



174 S. Benachour et al. / Stochastic Processes and their Applications 75 (1998) 173–201

In Eq. (Ẽ) there are two unknown parameters: the process (Xt ; t¿0) and the family
of measures (u(t; :); t¿0). Using the Itô formula, it is easy to show that u satis�es
the non-linear equation

ut = 1
2uxx + 1

2 [(� ∗ u)u]x;
u(0; dx)=P(X0 ∈ dx):

(F)

The system (Ẽ) can be reduced to the following stochastic di�erential equation (SDE):

Xt =X0 + Bt − 1
2

∫ t

0
b(s; Xs) ds;

b(s; x)=E[�(x − Xs)]:
(E)

From now on we only deal with Eq. (E) instead of Eq. (F).
Similar processes have been considered in the following contexts:
(a) � is a bounded Lipschitz continuous function. Eq. (F) is a Mc Kean Vlasov

equation (Mc Kean, 1966).
(b) � is the Dirac measure at 0. Eq. (F) is the Burgers equation, modelling locally

interacting particles (Stroock and Varadhan, 1979).
(c) � is the derivative of the Dirac measure at 0. Eq. (F) is the �Olschl�ager equation

remodelling locally interacting particles (Orelschl�ager, 1985).
(d) Funaki (1984) proved existence and uniqueness of weak solutions of Eq. (E),

in Rd. However, the assumptions of Funaki are di�erent from ours.
One-dimensional stationary Mc Kean–Vlasov-type equations (1966), are of the type

vxx + ((� ∗ v)v)x =0: (1.1)

Two natural questions are as follows.
(a) Consider the integro-di�erential equation

@u
@t
= vxx + ((� ∗ v)v)x: (1.2)

Under which conditions on the kernel � do we have

w − lim
t→∞ u(t; x)= v(x): (1.3)

(b) Besides, consider the interacting particles system

X i;N
t =X i

0 + Bi
t −

1
2

∫ t

0

 1
N

 N∑
j=1

�(X i;N
s − X j;N

s )

 ds:
If the propagation of chaos holds, then the sequence of empirical measures

((1=N )
∑N

i=1 �X i; N
t
), on the space C([0; T ];R) (T �xed), converges in law, as N goes to

in�nity, to a deterministic probability measure �, and moreover one has that �t(dx)=
u(t; x) dx; ∀t ∈ [0; T ]. Thus, if Eq. (1.3) holds, and if the approximation error of
u(t; x) dx by (1=N )(

∑N
i=1 �X i; N

t
) can be controlled (in some reasonable sense) uniformly

with respect to t ∈ [0;+∞[, then a probabilistic numerical procedure to solve Eq. (1.1)
could consist in simulating the particles system (X i;N

t ) for N and t large enough. In
the present paper, we only address the question (a).
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(2) In this paper, we assume

� is an odd; increasing; locally Lipschitz continuous
function with polynomial growth:

(1.4)

Tamura (1984, 1987) (cf. also Dawson, 1983) analyzed an equation resembling
Eq. (E). However this author considered an Ornstein–Ulhenbeck process (converging
at in�nity) altered by a bounded non-linear drift term. Our context is di�erent: we
disturb a non-convergent process – the Brownian motion – by an unbounded non-
linear disturbance.
We claim that the two assumptions I and II of Funaki (1984) are not satis�ed in our

context. Let u and v be two even functions. If we choose �(x)= x3, for instance, it is
not di�cult to check that (2:1) of assumption I is not veri�ed. If we take �(x)= x5,
then x → b(x; u) grows as x3, therefore assumption II(ii) of Funaki (1984) does not
hold.
(3) Section 2 is devoted to the easiest case: �(x)= ax + b. For this choice of �,

we can calculate X and u explicitly, and it is obvious that Xt converges if and only
if a¿0 and b=0. Moreover, the limit is a Gaussian distribution. This example shows
that Xt converges if

�(0)= 0; sgn(x)�(x)¿0 ∀x∈R:

We prove in Section 3 the existence and uniqueness of Eq. (E) when � satis�es
moreover

�(x)− �(y)¿�1(x − y) + �0 ∀x¿y (1.5)

where �1¿0 and �0 ∈R.
Let (X; b) be a solution of Eq. (E). Assume for simplicity that the distribution of X0

is symmetric (i.e. X0 and −X0 have the same law). Then b(t; :) is an odd function and

sgn(x) b(t; x)¿0 ∀x∈R; ∀t¿0: (1.6)

This property plays a crucial role, and replaces the lack of bounds for �.
In the general case, we associate b with the solution X (b) of the (classical) stochastic

di�erential equation

X (b)
t =X0 + Bt − 1

2

∫ t

0
b(s; X (b)

s ) ds: (1.7)

We set �b(s; x)=E[�(x − X (b)
s ]. We check that � has a �xed point, this allows us to

prove that Eq. (E) admits a unique solution.
In Section 4, we investigate the existence of an invariant measure. The existence

requires the convexity of � only (we make use of a �xed point theorem based on
Schauder theorem). To prove the uniqueness, we assume in addition that �(x)= �0(x)+
�x, where �0 is an odd, increasing function, Lipschitz continuous, with linear growth,
and � is positive and large enough. This hypothesis is not necessary, since there exists a
unique invariant probability measure in the two special cases: �0(x)= x3 and �0(x)= x5.
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In the last section we associate a system of particles with Eq. (E) and we prove
that the limit system has the propagation chaos property (we do not need to suppose
that Eq: (5) holds).
In this context, processes X solving Eq. (E) cannot be used to model the position

of interacting particles. If two particles are in x and y, the drift equals �(x−y), and is
an increasing function of x−y, which is not very physical. However, X can represent
the charge of ionized particles lying in a chemical or biological medium. Suppose that
two particles have charge x being greater than y. These particles interact, i.e. electrons
come from particle 2 to particle 1, therefore the charge of particle 1 (resp. 2) decreases
(resp. increases). Moreover, the 
ux of electrons is stronger if the di�erence of charges
is greater. It seems intuitive that this system tends toward have an equilibrium state.
This limit state is not given a priori, and depends only on the exchange of charges (i.e.
function �) and the initial data. More precisely, we prove that the equilibrium state
depends only on � and E(X0).
In a second paper, we investigate the convergence of Xt , in distribution, when t goes

to in�nity, to the stationary probability.

2. The case �(x) = ax + b

We observe that b(s; x)=E(�(x− Xs))= ax+ b− am(s), where m(s)=E(Xs). As a
result (E) is now equivalent to

Xt =X0 + Bt − a
2

∫ t

0
(Xs − m(s)) ds− bt

2
:

We take the expectation of both sides

m(t)=E(Xt)=m(0)− bt
2
:

This means that m is known. We set

Yt =Xt − m(0) +
bt
2
: (2.1)

Y satis�es the following linear stochastic di�erential equation:

Yt = Y0 + Bt − a
2

∫ t

0
Ys ds:

The explicit solution is given by

Yt =e−at=2Y0 + Zt ; Zt =e−at=2
∫ t

0
eas=2 dBs:

Zt is a Gaussian r.v. with mean 0 and variance �(t)2 = (1 − e−at)=a. It is now clear
that if a¡0; Yt does not converge, in distribution, t→∞. We assume that a¿0.
Hence Zt converges to N(0; 1=a). Consequently, Xt converges if and only if b=0.
Finally if a¿0 and b=0, Xt converges, in distribution, to the Gaussian distribution
N(m(0); 1=a), as t approaches in�nity.
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It is interesting to note that the limit distribution depends on X0 through m(0)=
E(X0). If E(X0)= 0, we have

E[(Xt − e−at=2X0)2n]6
(
1− e−at

a

)n

E((B1)2n):

Consequently,

sup
t¿0

E[|Xt |2n]6cn(1 + E(|X0|2n)): (2.2)

3. Existence and uniqueness of solutions of Eq. (E)

In this section we assume that � :R→R satis�es:

� is increasing; (3.1)

� is an odd function (�(x)=−�(−x) ∀x∈R): (3.2)

There exist c¿0, r ∈N∗; �1¿0; �0 ∈R such that

|�(x)− �(y)|6|x − y|(c + |x|r + |y|r) ∀x; y∈R; (3.3)

�(x)− �(y)¿�1(x − y) + �0 ∀x¿y: (3.4)

If � is a polynomial function, then Eq. (3.3) holds. If � is an increasing and C1

function such that �′(x)¿�1¿0, for |x| large enough, then Eq. (3.4) is satis�ed. We
now state the main result of this section:

Theorem 3.1. Let X0 be a r.v. such that E[X
2(r+1)2

0 ]¡∞. Then the non-linear SDE:

Xt =X0 + Bt − 1
2

∫ t

0
b(s; Xs) ds;

b(s; x)=E[�(x − Xs)]
(E)

has a unique strong solution.

Remarks 3.2. (a) If � is a bounded and Lipschitz continuous function, Sznitzman and
Varadhan (1986) proved this theorem using the Vasertein metric. In our context, we
“replace” the boundedness of the coe�cient by the fact that x�(x) is positive and large
as x goes to ±∞.
(b) We observe that if E(|Xt |)¡∞, then

E(Xt)=E(X0) ∀t¿0; and Xt − E(X0) veri�es Eq: (E):

To prove this, we take the expectation in Eq. (E):

E(Xt)=E(X0)− 1
2

∫ t

0
E(�(Xs − X ′

s )) ds;
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where X ′
s is an independent copy of Xs. � being an odd function, E(�(X ′

s − Xs))= 0.
Therefore E(Xt)=E(X0). It is easy to check that Xt−E(X0) solves Eq. (E). As a result
we can suppose that E(Xt)=E(X0)= 0; ∀t¿0.
The �rst step in our proof of Theorem 3.1 consists in checking the uniqueness and

existence on an interval [0; T ], T being “small”. Then we extend these properties to
R+. In the following, we will need the classical result (see, for instance, Stroock and
Varadhan, 1979, Theorem 10.2.2, p. 255):

Proposition 3.3. Let b :R+ × R→R be a function such that for ever n

max
s¿0

|b(s; 0)|¡∞; (3.5)

|b(s; x)− b(s; y)|6cn|x − y|; (3.6)

for every n, |x|6n, |y|6n and

sgn(x) b(s; x)¿0 for |x| large enough: (3.7)

Then the (classical) SDE:

X (b)
t =X0 + Bt − 1

2

∫ t

0
b(s; X (b)

s ) ds (Fb)

admits a unique strong solution, for any initial data X0.

The idea of the proof of Theorem 3.1 is the following: we associate with a function
b, the solution X (b) of Eq. (Fb) and set

�b(s; x)=E[�(x − X (b)
s )]:

We prove that � has a �xed point b. Consequently X (b) is a solution of Eq. (E).
More precisely, we have to control the moments of X (b)

t and to de�ne an appropriate
functional space �T such that the restriction of � to �T is a contraction. The proof of
Theorem 3.1 is divided in �ve steps: Lemmas 3.4–3.8.

Notation.
1. If � satis�es Eq. (3.3), let 2q¿r + 1, then there exists C¿0 such that

|�(x)|6C(1 + |x|2q) ∀x∈R: (3.8)

2. For any positive T , and b : [0; T ]×R→R we set

‖b‖T = sup
06s6T

sup
x∈R

( |b(s; x)|
1 + |x|2q

)
; 2q¿r + 1: (3.9)

3. Let ∧T be the set of b : [0; T ]× R→R such that

x→ b(s; x) is a non-decreasing function; for every s∈ [0; T ]; (3.10)
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• b(s; :) is a locally Lipschitz continuous function, uniformly with respect to s∈ [0; T ]:

|b(s; x)− b(s; y)|6cn|x − y|; ∀s∈ [0; T ]; |x|6n; |y|6n; (3.11)

b(s; x)− b(s; y)¿�1(x − y) + �0 ∀s∈ [0; T ]; ∀x¿y; (3.12)

‖b‖T¡∞: (3.13)

4. If b satsi�es Eqs. (2:5)–(2:7), and X (b) is the solution of Eq. (Fb), we introduce

�bn(t)=E[|X (b)
t |n]; (3.14)

�̂ b
n (t)= sup

06s6t
�bn(s): (3.15)

5. From now on, k1; k2; k3; : : : are “universal” constants, this means that kn depends
only on the �xed function �. In the same way k1(:) denotes a universal function.

Lemma 3.4. Assume that b∈∧T , n¿1, �(x)= �0x. Then b satis�es Eq. (3.5)–(3.7),
�∈∧T ; �̂ �

2n(T )¡∞ and

�̂ b
2n(T )6k1(n)(�̂

�
2n(T ) + (T‖b− �‖T )2n(1 + �̂ �

4qn(T )));

Proof of Lemma 3.4.
1. Let b be an element of ∧T , then b veri�es |b(s; 0)|6‖b‖T and

sgn(x) b(s; x)¿�1|x|+ �0 − ‖b‖T :

Consequently Eqs. (2:5)–(2:7) holds.
2. Suppose b∈∧T ; f∈∧T . X (b) and X (f) being solutions of Eq. (Fb) respectively
(Ff), then

X (b)
t − X (f)

t =−1
2

∫ t

0
(b(s; X (b)

s )− f(s; X (f)
s )) ds:

For every �¿1, x→|x|� is a C1-function, hence |X (b)
t − X (f)

t |� is equal to

−�
2

∫ t

0
sgn(X (b)

s − X (f)
s )|X (b)

s − X (f)
s |�−11{X (b)s 6=X (f)s }(b(s; X

(b)
s )− f(s; X (f)

s )) ds:

We take the limit, �→ 1+,

|X (b)
t − X (f)

t |
=−1

2

∫ t

0
sgn (X (b)

s − X (f)
s )(b(s; X (b)

s )− b(s; X (f)
s )

+b(s; X (f)
s )− f(s; X (f)

s )) ds:

Since x→ b(s; x) is non-decreasing, sgn (x − y)(b(s; x)− b(s; y))¿0. Then

|X (b)
t − X (f)

t |61
2

∫ t

0
|b(s; X (f)

s )− f(s; X (f)
s )| ds:
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Eq. (3.9) implies

|X (b)
t − X (f)

t |61
2
‖b− f‖T

∫ t

0
(1 + |X (f)

s |2q)) ds: (3.16)

Moreover, using H�older inequalities, we have

E

[(∫ t

0
(1 + |X (f)

s |2q) ds
)2n]

6k2(n)T 2n(1 + �̂f
4qn(T )); (3.17)

for any 06t6T .
3. We choose f(s; x)= �(x)= �0x. Then f∈∧T , and Eq. (1.2) tells us that �̂

�
2n(T )¡

∞. Using a convexity argument we easily obtain from Eqs. (3.16) and (3.17),

E[(X (b)
t )2n]6�̂ �

2n(T ) + k3(n)T 2n(1 + �̂ �
4qn(T ))‖b− �‖2nT :

If b∈∧T , we set

�b(s; x)=E[�(x − X (b)
s )]: (3.18)

The function �b is well de�ned since Eq. (3.8) holds.

Lemma 3.5.
1. � maps ∧T in ∧T (i.e. �(∧T )⊂∧T ) and

‖�b‖T6k4(1 + �̂ b
2q(T )): (3.19)

2. � is Lipschitz continuous: there exists k5 :R2+→R+; k5(x; :), k5(:; x) being in-
creasing functions for every x¿0, such that ∀b∈∧T ; ∀f∈∧T ,

‖�b− �f‖T6‖b− f‖TT k5(�̂
b
4q(T ); �̂

f
4q(T )): (3.20)

Proof of Lemma 3.5.
1. We set �b= c. Lemma 3.4 and (3:8) (resp. (3:3)) imply ‖c‖T¡∞ (resp. (3:11)
is satis�ed). Since � is increasing, c(s; :)=E[�(: − X (b)

s )] is also non-decreasing.
Suppose that x¿y, since � satis�es Eq. (3.4), and that x − X (b)

s ¿y − X (b)
s . Then

c(s; x)− c(s; y)=E[�(x − X (b)
s )− �(y − X (b)

s )]¿�1(x − y) + �0:

We have veri�ed �b∈∧T . By Eq. (3.8), we have

|�b(s; x)|6E[|�(x − X (b)
s )|]6k4(1 + x2q)E(1 + |X (b)

s |2q):
Consequently, Eq. (3.19) is veri�ed.

2. Let b; f in ∧T . We set X =X (b) and Y =X (f) for simplicity. Using Eq. (3.3), we
have

|�b(s; x)− �f(s; x)|6E[|�(x − Xs)− �(x − Ys)|]
6k6E[|Xs − Ys|(1 + |x|r + |Xs|r + |Ys|r)]
6k7(1 + |x|r)E(|Xs − Ys|(1 + |Xs|r + |Ys|r))
6k8(1 + |x|r){E(|Xs − Ys|2)(1 + E(|Xs|2r) + E((Ys)2r))}1=2:
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Using Lemma 3.4, we obtain

‖�b− �f‖T6k8(1 + �̂b2r(T ) + �̂f2r(T ))
1=2(E(|Xs − Ys|2))1=2:

Previous estimates (3.16) and (3.17) (with n=1) both yield

E((Xs − Ys)2)6k9‖b− f‖2TT 2(1 + �̂f4q(T )):

Moreover,

�̂b2r(T )6(�̂
c
4q(T ))

r=2q; c=f or b:

Lemma 3.6. Let K¿2k4(1+k1(q))�̂
�
2q(∞) and ∧K

T = ∧T ∩{b; ‖b‖T6K}. There exists
k10 such that if T = k10(K ;E(|X0|i); 16i68q2). Then
(i) �(∧K

T )⊂∧K
T and the Lipschitz norm of � restricted to ∧K

T is less than
1
2 .

(ii) There exists a strong solution of Eq. (E) such that

sup
06t6T

E(|Xt |2q)¡∞: (3.21)

Proof of Lemma 3.6.
1. Using Eq. (3.19) and Lemma (3:4) successively, we have

‖�b‖T6k4{1 + k1(q)[�̂
�
2q(∞) + 22qT 2q(‖b‖2qT + ‖�‖2q∞)(1 + �̂�4q2 (∞))]};

where ‖�‖∞=supx¿0 |�0x|=(1 + |x|2q), and

�̂�n (∞)= sup
t¿0

E(|X �
t |n):

If we choose T small enough such that

k4k1(q)22q(K2q + ‖�‖2q∞)(1 + �̂�4q2 (∞))T 2q6K=2 (3.22)

then ‖�b‖T6K , b being an element in ∧K
T . We have proved that �(∧K

T )⊂∧K
T .

2. Let k11 be the function de�ned by k11(x)= k5(x; x) (k5 appears in Eq. (3.20)).
Eq. (3.20) and Lemma 3.4 both imply ‖|�‖|T6 1

2 if T satis�es

T k11(k1(2q){�̂�4q(∞) + 24q(K4q + ‖�‖4q∞)(1 + �̂�8q2 (∞))T 4q})6 1
2 : (3.23)

Since �(x)= �0x, (i) is a consequence of the above inequalities.
3. We assume that T = k10(K ;E(|X0|k); 16k68q2). We will now establish that Eq. (E)
admits a strong solution. Let b0 be an element of ∧K

T . By induction, we de�ne the
sequence (bn):

bn+1 =�bn:

Since the Lipschitz norm of � is less than 1
2 ; (bn) is a Cauchy sequence belonging

to ∧K
T . It converges, with respect to ‖:‖T to b, verifying Eqs. (3.10), (3.12) and
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‖b‖T6K . We claim b∈∧K
T : we have to show that b satis�es the Lipschitz property

Eq. (3.11). Let Xn=X (bn). Since bn+1 =�bn,

|bn+1(s; x)− bn+1(s; y)|6E[|�(x − Xn(s))− �(y − Xn(s))|]
6k12(N )(1 + �̂bnr (T ))|x − y|;

if |x|6N; |y|6N .
Since ‖bn‖T6K , Lemma 3.4 implies

|bn+1(s; x)− bn+1(s; y)|6k13(N; �̂�4q2 (∞); K; T )|x − y|:
We can take the limit as n→∞, and obtain

|b(s; x)− b(s; y)|6k13(N; �̂�4q2 (∞); K; T )|x − y|:

It is obvious that b=�b and X =X (b) is a strong solution of Eq. (E).

As part (i) of Lemma 3.6 shows, the constants that appear depend on the moments
of X0. Yet we are not able to construct a solution on [0;+∞[. We need to check that
these constants do not explode:

sup
t¿0

E(|X (b)
t |2n)¡∞:

We start with a preliminary result.

Lemma 3.7. Let f be a continuous and di�erentiable function de�ned on [0;+∞[, and
R-valued. We assume that there exists l¿0, such that {t;f(t)¿l}⊂{t;f′(t)¡0}.
Then

sup
x¿0

f(x)6f(0)∨ l:

Lemma 3.8. Let b∈∧T , and suppose �(b)= b (i.e. X (b) is a solution of Eq. (Fb) or
Eq. (E)) and E(X0)= 0. Then

�̂b2n(T )6k14(mi; 26i62n);

where mk =E(|X0|k).

Proof of Lemma 3.8.
1. Let X0 and X ′

0 be two independent random variables, having the same distribution.
We consider two independent Brownian motions B and B′, X and X ′ which are
solutions of

Xt =X0 + Bt − 1
2

∫ t

0
b(s; Xs) ds;

and

X ′
t =X ′

0 + B′
t −

1
2

∫ t

0
b(s; X ′

s ) ds;



S. Benachour et al. / Stochastic Processes and their Applications 75 (1998) 173–201 183

respectively, where b(s; x)=E(�(x − Xs))=E(�(x − X ′
s )). We set

Yt =Xt − X ′
t ; �n(t)=E(|Yt |n); n¿2:

Y is a semimartingale with decomposition

Yt = Y0 + Bt − B′
t −

1
2

∫ t

0
(b(s; Xs)− b(s; X ′

s )) ds:

We apply the Ito formula and take the expectation and the derivative. We obtain

�′
2n(t)= n{2(2n− 1)�2n−2(t)− E[Y 2n−1t (b(t; Xt)− b(t; X ′

t ))]}:

Suppose that x¿y. Since b satis�es Eq. (3.12): b(t; x) − b(t; y)¿�1(x − y) + �0,
then

(x − y)(b(t; x)− b(t; y))¿�1(x − y)2 − |�0||x − y| ∀x¿y:

As a result,

�′
2n(t)6n{2(2n− 1)(�2n(t))1−1=n + |�0|(�2n(t))1−1=2n − �1�2n(t)}:

There exists k15(n)¿0, such that x¿k15(n) implies

2(2n− 1)x1−1=n + |�0|x1−1=2n − �1x¡0:

Consequently, {t; �2n(t)¿k15(n)}⊂{t; �′
2n(t)¡0}. Applying Lemma 3.7, we have

E[(Xt − X ′
t )
2n]6k15(n)∨E((X0 − X ′

0)
2n); n¿1: (3.24)

2. Let � and �′ be two independent r.v., �′ being a copy of �, such that E(�)=E(�′)
= 0. We claim that

E(�2n)6k16(E((�− �′)2); : : : ; E((�− �′)2n)): (3.25)

We will prove this identity by induction on n. If n=1; E((�−�′)2)= 2E(�2). Then
Eq. (3.25) holds. Assume that Eq. (3.25) is satis�ed. Since E(�)=E(�′)= 0, we
have

E((�− �′)2n+2)= 2E(�2n+2) +
2n∑
k=2

(
2n+ 2

k

)
E(�k)E(�′2n+2−k):

This equality implies Eq. (3.25), with n being replaced by n+ 1.
3. We have observed in the Introduction that if E(X0)= 0, then E(Xt)= 0. It is su�-
cient to use steps 1 and 2 now.

Remark 3.9. Assume X is a solution of (Fb), X ′ an independent copy of X , b being
an element of �T . In general, E(Xt) 6=E(X0). However, if �b= b (i.e. X is a solution
of Eq. (E)), E(Xt)=E(X0). This property, as the proof of Lemma 3.8 shows, is crucial
to the determination of an upper bound of the moments of Xt . If X is a solution of
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Eq. (E), the drift term b(s; Xs) is equal to E(�(Xs − X ′
s )). Therefore, it is natural to

deal with Xt − X ′
t .

Proof of Theorem 3.1. We can assume E(X0)= 0 (see the remark in the Introduc-
tion). Let us introduce U =max{T¿0; Eq. (E) admits a unique solution X on [0; T ],
sup06t6T E(X 2q

t )¡∞}, with the convention max ∅=0.
1. We �rst check U¿0. We choose K :

K =max{2k4(1 + k1(q))�̂
�
2q(∞)); k4(1 + k14(mi; 26i62q)))}: (3.26)

By Lemma 3.6, we know there exists T = k17(mi; 16i68q2) and a unique b∈�K
T

such that b=�(b). It is clear that X =X (b) is a strong solution of Eq. (E) on [0; T ].
Assume that Y is a solution of Eq. (E) on [0; T ], such that sup06t6T E(Y 2qt )¡∞.
We set c(t; x)=E(�(x − Yt)]. As we check in step 1 of the proof of Lemma 3.5, c
belongs to �T and

|c(t; x)|6k4(1 + x2q)
(
1 + sup

06t6T
E(Y 2qt )

)
:

Since c=�c, Lemma 3.8 tells us

‖c‖T6k4(1 + k14(mi; 26i62q))6K:

Hence c∈�K
T , therefore c= b and Y =X .

2. We notice that �̂�2q(∞)= k18(mi; 26i62q). We set

m′
i = k14(mj; 26j6i); i¿2:

Let K ′ be the positive number de�ned by Eq. (3.26), where mi is replaced by
m′

i . This K ′ corresponds to T ′= k11(m′
i ; 26i68q2)¿0. Suppose that U¡∞. We

choose �¡T ′=2. There exists T , U − �¡T¡U , and a unique solution X on [0; T ]
verifying sup06t6T E(X 2q

t )¡∞. We consider (E) on [T;+∞[ with initial data XT .
By Lemma 3.8,

sup
06t6T

E(X 2q
t )6k14(mi; 26i62q):

Then as in previous step, we can de�ne a unique solution on [T; T + T ′]. But
T + T ′¿U , which generates a contradiction. This shows that U =∞.
We note that the proof of Theorem 3.1 implies the following result.

Proposition 3.10. Let X be the solution of Eq. (E). Suppose that E(X 2n
0 )¡∞. Then

sup
t¿0

E(|Xt |2n)¡∞ ∀n¿1:

4. Existence of a stationary distribution

Let X be the solution of Eq. (E). Assume that u(x) dx is a stationary distribution.
Then u satis�es the Fokker–Plank equation

1
2u

′′ + 1
2(u(� ∗ u))′=0: (4.1)
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Integrating this relation, we obtain

u(x)= � exp−
∫ x

0
(� ∗ u)(y) dy: (4.2)

If �(x)= x, then � ∗ u(y)= ∫R(y − z)u(z) dz=y − a; hence,

u(x)= � exp(− 1
2x
2 + ax):

u being a density function, � is necessarily equal to e−a2=2=
√
2�.

We observe that we have a family of invariant distributions.
As we do in Section 3, we assume that � is a locally Lipschitz continuous, increasing,

odd function, and veri�es Eq. (3.3).
We note that Eq. (3.2) can be written in the following fore:

u(x)=
exp−(∫ x

0 (� ∗ u)(y) dy)
�(u)

; (4.3)

where

�(u)=
∫
R
exp−

(∫ x

0
(� ∗ u)(y) dy

)
dx: (4.4)

We set

D=
{
� :R→R+;

∫
R
�(x) dx=1; �(x)= �(−x) ∀x∈R; sup

x
(1 + |x|2n)�(x)¡∞

}
;

with n being large enough, and

A(u)(x)=
exp−(∫ x

0 (� ∗ u)(y) dy)
�(u)

:

We remark that if u=A(u), then u(x) dx, is a stationary distribution. We start with
an existence result. We have to show that the restriction of A to a subsequent subset
of D admits a �xed point u.

Theorem 4.1. We assume that � is a convex function on [0;+∞[ and veri�es
Eqs. (3.1)–(3.4).
1. There exists a symmetric density function � (i.e. �(x)= �(−x); ∀x∈R) satisfying
Lemma 4.3.

2. If � is the density of X0, and X is the unique solution of Eq. (E), with initial data
X0, then � is the density of Xt , for any t¿0.

Our approach is based on Schauder �xed point theorem (Gilburg and Trudinger,
1977, Corollary 11.2, p. 280):

Proposition 4.2. Assume that B is a Banach space; C a closed convex subset included
in B; A a map C→C such that
(i) A is continuous,
(ii) A(C) is compact. Then A admits a �xed point in C:
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In order to apply Proposition 4.2, we have to de�ne (B;C;A).

Notation.
1. B is the set of even continuous functions f :R→R, such that supx∈R(1+|x|p)|f(x)|

¡∞, where p¿4q (recall that 2q¿r + 1; � satis�es Eqs. (3.3) and (3.8)). B is
equipped with |:|∞ : |f|∞=supx∈R(1 + |x|p)|f(x)|.

2. Let M¿0. We set

CM =

f∈B; f¿0; f(x)=f(−x); ∀x∈R;
∫
R
f(x) dx=1;

sup
x
(1 + |x|p)f(x)6M

 : (4.5)

3. For any u in CM , we de�ne


k(u)=
∫
R
|x|ku(x) dx; 06k6p− 2 (4.6)

and

A(u)(x)=
1

�(u)
exp−

∫ x

0
(� ∗ u)(y) dy; (4.7)

�(u) being de�ned by Eq. (4.4).
It is clear that CM is a closed convex subset of B.

Lemma 4.3. Assume f is an odd function de�ned on R. Then f is convex on R+ if
and only if

f(x)6 1
2 (f(x − y) + f(x + y)) ∀x¿0; ∀y∈R: (4.8)

Lemma 4.4. Let u be an element of CM .
1. If C1 = 1 + max06k6p−2

∫
R[|x|k =(1 + |x|p)] dx; then


k(u)6MC1; 06k6p− 2: (4.9)

2. � ∗ u is an odd function and∫ x

0
�(y) dy6

∫ x

0
(� ∗ u)(y) dy6C2Mx2(1 + x2q); ∀x¿0 (4.10)

where C2 is a constant depending only an �, and M satis�es

M¿ sup(1; Cq
1 ): (4.11)

Proof of Lemma 4.4.
1. It is easy to check Eq. (4.9):


k(u)=
∫
R

|x|k
1 + |x|p (1 + |x|p)u(x) dx6MC1; 06k6p− 2: (4.12)
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2. It is clear that � ∗ u is an odd function. Let x¿0. We have

� ∗ u(x) = �(x) +
∫
R
(�(x − y)− �(x))u(y) dy

= �(x) +
∫ ∞

0
(�(x − y) + �(x + y)− 2�(x))u(y) dy:

� being an odd function,

� ∗ u(x)= �(x) +
∫ ∞

0
(�(x + y)− �(y − x)− 2�(x))u(y) dy: (4.13)

This identity will be used later (see the proof of Lemma 4.6).
Recall that � is a convex function on R+, using Lemma 4.3,

� ∗ u(x)¿�(x) ∀x¿0 (4.14)

We immediately deduce the lower bound in Eq. (4.10).
3. It is clear that

� ∗ u(x)=
∫ ∞

0
(�(x + y)− �(y))u(y) dy +

∫ ∞

0
(�(y)− �(y − x))u(y) dy: (4.15)

Eq. (3.3) implies

|� ∗ u(x)|6c1x(1 + xr)
(
1 +

∫ ∞

0
yru(y) dy

)
; x¿0: (4.16)

Since r + 162q and 2q6p− 2, by H�older inequality, we have


r(u) =
∫
R
|y|ru(y) dy6(
2q(u))r=2q6(MC1)r=2q

6(MC1)2q−1)=2q6M (1+1=q)(1−1=2q)6M:

By integration, we easily verify Eq. (4.10).

Remark. In Eq. (4.10), it is important to have x2(1 + x2q). An upper bound of the
following type: 1 + x2q+2 is not su�cient (see, for instance, the proof of Lemma 4,
and especially Eq. (4.17)).

Lemma 4.5. There exists M depending only on � such that A(CM )⊂CM .

Proof of Lemma 4.5. We set v(x)= (1 + |x|p)Au(x), u belonging to CM . Using
Eq. (4.10), we obtain

06v(x)6
1

�(u)
(1 + |x|p) exp−

∫ |x|

0
�(y) dy:

Therefore supx∈R |v(x)|6c3=�(u), where

c3 = sup
x∈R
(1 + |x|p) exp−

∫ |x|

0
�(y) dy:
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Using Eq. (4.10) once more, and the de�nition of �(u),

�(u)¿
∫ +∞

0
e−C2Mx2(1+x2q)dx:

We set x
√
M =y in the integral

�(u)¿
1√
M

∫ +∞

0
e−C2y2(1+(y2=M)q) dy¿

c4√
M

; (4.17)

c4 =
∫ +∞

0
e−C2y2(1+y2q) dy:

Finally, we get

sup
x∈R

|v(x)|6c3
c4

√
M:

If we choose M¿max((c3=c4)2; 1; C
q
1 ) then supx(1 + |x|p)Au(x)6M . Since Au is an

even density function, the result is proved.

Lemma 4.6. A is a continuous operator.

Proof of Lemma 4.6.
1. Let u; v in CM . We introduce

�(x)= e−(
∫ x

0
(� ∗ u)(y) dy) − e−(

∫ x

0
(� ∗ v)(y) dy); x∈R:

Let x¿0. Using Eq. (4.13), we have

�(x)= e(−
∫ x

0
�(y) dy)[e−’u(x) − e−’v(x)];

’w(x)=
∫ x

0
�̃w(y) dy ; �̃w(y)=

∫ ∞

0
(�(y + t)− �(t − y)− 2�(y))w(t) dt;

w= u or v:

Since |e−a − e−b|6|a− b|; a; b¿0, and � veri�es Eq. (4.8),

|�(x)|6e(−
∫ x

0
�(y) dy)

∫ x

0
H (y) dy;

where

H (y) =
∣∣∣∣∫ ∞

0
(�(y + t)− �(t − y)− 2�(y))(u(t)− v(t)) dt

∣∣∣∣ ; y¿0

=
∣∣∣∣∫ ∞

0
(�(y + t)− �(t − y))(u(t)− v(t)) dt

∣∣∣∣ :
Then

H (y)6
∫ ∞

0
|�(y + t)− �(t − y)||u(t)− v(t)| dt:
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We have

|u(t)− v(t)|1=26
√
2M (1 + tp)−1=2:

Since |�(y + t)− �(t − y)|6cy(1 + yr)(1 + tr), and p¿4q,

H (y)6c1y(1 + yr)‖u− v‖1=2∞ :

After integration, we obtain

|�(x)|6ce−(
∫ x

0
�(y) dy)x2(1 + xr)‖u− v‖1=2∞ ; (4.18)

|�(x)|6c3‖u− v‖1=2∞ : (4.19)

2. We decompose Au(x)−Av(x) as follows:

Au(x)−Av(x)=
1

�(u)
�(x) + (�(v)− �(u))W (x); (4.20)

W (x)=
1

�(u)�(v)
exp−

∫ x

0
(� ∗ v)(y) dy:

By Eqs. (4.10), and (4.17),

06W (x)6
M
c24

; x¿0:

Since �(u) − �(v)=
∫∞
0 �(x) dx, using Eq. (4.18), it is now easy to check that A is

a continuous operator.

Proof of Theorem 4.1.
1. We claim that A(CM ) is compact. Using the de�nition of Au, the derivative of

this function is given by

(Au)′(x)=− 1
�(u)

(� ∗ u)(x)e−
∫ x

0
� ∗ u(y) dy:

By Eqs. (4.10), (4.16), (4.17) and (3.4), there exists c6¿0 such that

|(Au)′(x)|6c5(1 + |x|2q+1)e−c6x2 : (4.21)

Let (un)n¿1 be a sequence of functions belonging to CM . By the Ascoli theorem, there
exists a sub-sequence (for simplicity, we denoted it (un)n¿1) such that Aun converges
to v. By Eq. (4.21), it is easy to check that Aun converges to v in B. This shows that
A(CM ) is compact.
2. We are allowed to apply Proposition 4.2: There exists �∈CM such that A�= �.

That shows point 1. of Theorem 4.1. Obviously, � is C1, and

�′(x)=−(� ∗ �)(x)�(x):
As a result, � satis�es Eq. (4.1). Suppose that P(X0 ∈ dx)= �(x) dx. Then P(Xt ∈ dx)=
�(x) dx, since

b(t; x)=E[�(x − Xt)]=E[�(x − X0)]= (� ∗ �)(x):
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We suppose that � :R+→R+ is a convex function. Hence x→ �(x)=x is an increasing
function on ]0;∞[, and �= limx→ 0+ �(x)=x exists and belongs to [0;∞[. We set

�(x)= �0(x) + �x: (4.22)

Obviously, �0 is convex, and limx→0+ �0(x)=x=0. We now investigate uniqueness in
Eq. (4.3). We suppose that � is convex on R+. Let Eq. (4.22) be the decomposition
of �, where �¿0, and �0 is an odd and increasing function, verifying Eq. (3.3).
Obviously, � is also an odd increasing function, and Lipschitz-continuous.

Theorem 4.7. Assume that � admits the decomposition (4.22) and limx→0+ �0(x)=x
=0. There then exists ��0¿0 such that; for any �¿��0 ; Eq. (4.3) admits at most
one solution.

Remark 4.8. If � is moreover a convex function on R+ (which is equivalent to �0 is
a convex function on R+), then Eq. (4.3) admits a unique solution.

To prove Theorem 4.8, a functional subspace of D (the de�nition of D is given in
Lemma 4.9 below) are de�ned. The restriction of A to this subspace is a contraction
operator. These results are stated in Lemmas 4.9–4.12.
Eq. (4.22) allows us to obtain a new lower bound for

∫ x
0 � ∗ u(y) dy. More precisely:

Lemma 4.9. Assume that Eq. (4.22) holds and u∈D, where

D=
{
� :R→R+;

∫
R
�(x) dx=1; �(x)= �(−x)∀x∈R; sup

x
(1 + |x|2n)�(x)¡∞

}
;

then
(i) �0 ∗ u(x)=

∫∞
0 (�0(x + y)− �0(y − x))u(y) dx¿0; ∀x¿0;

(ii) � ∗ u(x)= �0 ∗ u(x) + �x; � ∗ u(x)¿�x ∀x¿0:

Proof of Lemma 4.9. Since �0 (resp. u) is an odd (resp. even) function, (i) follows
immediately. As �0 is increasing, then �0 ∗ u(x)¿0 if x¿0.

Let u be a solution of Eq. (4.3). By Lemma 4.9,

u(x)6
1

�(u)
e−�x2=2; x¿0: (4.23)

Therefore u belongs to D�(A), where

D�(A)=
{
u :R→R+;

∫
R
u(x) dx=1; u(−x)= u(x) ∀x∈R; u verifying (4:23)

}
:

(4.24)

We equip D�(A) with the norm

Np(u)=
∫ ∞

0
x(1 + xp)|u(x)| dx; p¿4q: (4.25)
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Since A is an operator from D�(A) to D, the idea of the proof is to show that if
� is large enough, A is a contraction. As in the proof of Theorem 4.1, we need an
upper bound to 1=�(u).

Lemma 4.10. There exists a positive constant c�0 such that; for any u in D�(A):

1
�(u)

6�c�0 ∀�¿1:

Proof of Lemma 4.10. Replacing � by �0 in Eq. (4.16), we obtain

�0 ∗ u(y)6cy(1 + yr)
(
1 +

∫ ∞

0
tru(t) dt

)
; y¿0;

where c is a positive constant.
Since u veri�es Eq. (4.23), after integration we obtain∫ x

0
�0 ∗ u(y) dy6c′x2(1 + xr)

(
1 +

1
�(u)

)
; x¿0: (4.26)

Lemma 4.9 implies

�(u)¿2
∫ ∞

0
exp−

(
c′x2(1 + xr)

(
1 +

1
�(u)

)
+ �

x2

2

)
dx:

We set �=
√

�(u), and x= �y in the integral and easily see that

�¿h(�);

h(t)= 2
∫ ∞

0
exp−

{
c′y2(1 + (ty)r)(1 + t2) +

�t2

2
y2
}
dy:

(4.27)

Evidently, h is a decreasing function on [0;∞[; moreover,

−h′(t) 6 2
∫ ∞

0
{c′y2[ryrtr−1(1 + t2) + 2t(1 + (ty)r)] + �y2t}

× exp−y2
(
c′ +

�t2

2

)
dy:

Assume that t ∈ [0; 1]. Then

−h′(t)6c1 + 2�t
∫ ∞

0
y2 exp−y2

(
c′ +

�t2

2

)
dy;

with c1 depending only on r, c′.
We set x=y

√
c′ + �t2=2. Then

−h′(t)6c1 +
2�t

(c′ + �t2=2)3=2

∫ ∞

0
x2e−x2 dx6c1 + c2���(t);

where

��(t)=
t

c′ + �t2=2
:
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We observe that

��(t)6��

(
c

√
2
�

)
=

c3√
�
:

Therefore,

h(0)− h(t)6t(c1 + c4
√
�):

Since h(0)= c6, h(t)¿c7(1−t(1+
√
�)). As a result, if t¡ inf{1; c7(c7(1+

√
�)+1)−1},

then h(t)¿t. Eq. (4.27) implies that �=
√

�(u)¿c7(c7(1 +
√
�) + 1)−1, if � is large.

This ends the proof of Lemma 4.10.

Lemma 4.11. Let � :R→R be the even function de�ned by

�(x)= exp
(
−
∫ x

0
� ∗ u(y) dy

)
− exp

(
−
∫ x

0
� ∗ v(y) dy

)
; x¿0;

with u and v being two elements in D�(A). Then

|�(x)|6cx2(1 + xr)e−�x2=2Np(u− v):

Proof of Lemma 4.11. Using Lemma 4.9,

�(x)= e−�x2=2�0(x);

�0 is de�ned as �, � being replaced by �0. Our approach is similar to those developed
in the �rst part of the proof of Lemma 4.6:

|�0(x)|6
∫ x

0
H0(y) dy; x¿0;

H0(y)6
∫ ∞

0
|�0(y + t)− �0(t − y)||u(t)− v(t)| dt; y¿0:

Since t→ (1+ tr)=(1+ tp) is bounded, the Lipschitz continuous property of �0 implies

H0(y)6cy(1 + yr)Np(u− v):

The required result follows immediately.

Lemma 4.12. (1) A is an operator D�(A)→Dp. D�(A) (resp. Dp) being de�ned
by Eq. (4.24) (resp. Dp= {� :R→R+;

∫
R �(x) dx=1; �(x)= �(−x) ∀x∈R; supx[(1+

|x|2+p)�(x)]¡∞}).
(2) There exists ��0¿0, 0¡k�0¡1 such that

Np(Au−Av)6k�0Np(u− v);

for any u, v in D�(A), where Np(w)=
∫
R |x|(1 + |xp|)|w(x)|dx.
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Proof of Lemma 4.12. By Lemmas 4.10 and 4.11, we have

1
�(u)

Np(�)6c�Np(u− v)I1; |�(u)− �(v)|6cI2Np(u− v)

I1 =
∫ ∞

0
x3(1 + xr)(1 + xp)e−�x2=2dx; I2 =

∫ ∞

0
x2(1 + xr)e−�x2=2dx:

We set
√
�x=y and choose �¿1. Then

1
�(u)

Np(�)6
c
�
Np(u− v); |�(u)− �(v)|6 c

�3=2
Np(u− v):

In the same way,

Np(W )6c′�;

W being de�ned by Eq. (4.20). Therefore Eq. (4.20) implies

Np(Au−Av)6
c′′√
�
Np(u− v):

If � is large enough, A is a contraction.
The �xed point, if it exists, is unique. This ends the proof of Theorem 4.7.

Before ending this section, we would like to examine two cases: �(x)= x3 and
�(x)= x5. Obviously, Theorem 4.1 can be applied as there exists invariant probability.
However, Eq. (4.21) is not satis�ed, since we do not know, in theory that the invariant
probability is unique. We prove existence and uniqueness directly, and the proof in
these two speci�c cases is very di�erent from the general one. We could also analyze
�(x)= x7, but the proof is tedious.

Proposition 4.13. Assume that �(x)= x3 and X is the Markov process solution of
Eq. (E). Then X admits a unique invariant probability �(x) dx, � being symmetric.
Moreover,

�(x)=
exp−( x44 + 3x2m2

2 )∫
R exp−( x

4

4 +
3x2m2
2 ) dx

;

where m2 is the unique positive solution of∫
R
x2 exp−

(
x4

4
+
3x2m2
2

)
dx=m2

∫
R
exp−

(
x4

4
+
3x2m2
2

)
dx:

Proof of Proposition 4.13. � being an even function,

� ∗ �(y)=
∫
R
(y − x)3�(x) dx=y3 + 3ym2;

where

m2 =
∫
R
y2�(y) dy: (4.28)
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If �(y) dy is an invariant measure, it solves Eq. (4.3), i.e.

�(x)=
exp−( x44 + 3x2m2

2 )∫
R exp−( x

4

4 +
3x2m2
2 ) dx

: (4.29)

Therefore there exists a unique symmetric probability �(y) dy if and only if there exists
a unique m2¿0 verifying both Eqs. (4.28) and (4.29). We introduce

 (m)=

∫
R x2e−(

x4

4 +3
m
2 x2) dx∫

R e
−( x

4

4 +3
m
2 x2)dx

; m¿0:

The derivative of  is given by

 ′(m)=−3
2

[(∫
R
x4�(dx)

)
−
(∫

R
x2�(dx)

)2]
;

with

�(dx)=
1
c
exp−

(
x4

4
+
3m
2

x2
)
dx;

c=
∫
R
exp−

(
x4

4
+
3m
2

x2
)
dx:

The Schwarz inequality tells us  ′(m)¡0.  is a decreasing function, and  (0)¿0.
Therefore, there exists a unique m such that  (m)=m. That ends the proof of
Proposition 4.13.

Proposition 4.14. Assume that �(x)= x5, and X is the solution of Eq. (E). Then X
admits a unique invariant and symmetric probability measure �(x) dx, given by

�(x)=
exp−( x66 + 5

2m2x
4 + 5

2m4x
2)∫

R exp−( x
6

6 +
5
2m2x

4 + 5
2m4x

2) dx
; (4.30)

where (m2; m4) is the unique positive solution of

m2

∫
R
exp−

(
x6

6
+
5
2
m2x4 +

5
2
m4x2

)
dx

=
∫
R
x2 exp−

(
x6

6
+
5
2
m2x4 +

5
2
m4x2

)
dx (4.31)

m4

∫
R
exp−

(
x6

6
+
5
2
m2x4 +

5
2
m4x2

)
dx

=
∫
R
x4 exp−

(
x6

2
+
5
2
m2x4 +

5
2
m4x2

)
dx: (4.32)

Proof of Proposition 4.14.

1. Since �(x)= x5 and � is an even function

� ∗ �(x)= x5 + 10x3m2 + 5xm4;
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where

mk =
∫
R
yk�(y) dy:

By Eq. (4.3), � is uniquely given by Eq. (4.30), (m2; m4) verifying Eqs. (4.31) and
(4.32).
We have to check that (m2; m4) is unique. Let us introduce

�k(m2; m4)=
∫
R
xk exp−

(
x6

6
+
5
2
m2x4 +

5
2
m4x2

)
; (4.33)

�̂k =
�k

�0
: (4.34)

Taking the derivative and using H�older inequalities, we have

@�̂2k
@m2

=−5
2
(�̂2k+4 − �̂2k �̂4)¡0;

@�̂2k
@m4

=−5
2
(�̂2k+2 − �̂2k �̂2)¡0: (4.35)

Starting with �0 (resp. �2), an integration by parts easily furnishes the following rela-
tions.

�̂6 = 1− 5m4�̂2 − 10m2�̂4; (4.36)

3�̂2 = 5m4�̂4 + 10m2�̂6 + �̂8: (4.37)

2. Let m2¿0 be �xed. Since �̂2(m2; :) is decreasing, there exists a unique m4 =’(m2)
such that

�̂2(m2; ’(m2))=m2: (4.38)

if �̂2(m2; 0)¿m2. As �̂2(:; 0) is a decreasing function, if m2¡�, then �̂2(m2; 0)¿m2.
As a result, Eq. (4.38) holds if m2 is small enough.
In the same way, we easily prove the existence of a unique m4 =  (m2) such that

�̂4(m2;  (m2))=  (m2): (4.39)

If we di�erentiate Eqs. (4.38) and (4.39), we have

’′(m2)= (1 + �)
(

@�̂2
@m2

)−1
¡0;  ′(m2)=

1
1 + �

@�̂4
@m2

; (4.40)

where

�=
5
2
(�̂6 − �̂2�̂4)=− @�̂2

@m2
=− @�̂4

@m4
¿0: (4.41)

3. At this stage, we have to show that there exists a unique m2¿0 verifying

 (m2)=’(m2): (4.42)

Let m2¿0, verifying  (m2)=’(m2). We claim that

− ’′(m2)¿−  ′(m2): (4.43)
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By Eqs. (4.40), (4.43) is equivalent to

(1 + �)2¿
(

@�̂2
@m2

)(
@�̂4
@m2

)
:

We take the derivative of Eq. (5.36) with respect to m2 and m4. Recalling that
@�̂6=@m260; @�̂6=@m460, we have

−@�̂4
@m2

6− m4
2m2

�+
1
m2

�̂4;

−@�̂2
@m4

6
1
m4

�̂2 −
2m2
m4

�:

Therefore,(−@�̂2
@m2

)(
@�̂4
@m2

)
6
(
1− �

2

)
(1− 2�)6(1 + �)2;

since �̂4 =m4 and �̂2 =m2.
4. The last step of the proof consists in proving that if f : R+→R+, g :R+→R+ are

two decreasing functions of class C1 verifying {t¿0;f(t)= g(t)}⊂{t¿0;−f′(t)¿−
g′(t)}, then there exists at most one t such that f(t)= g(t). We set h(x)=f(x)−g(x).
If h(x)= 0, then h′(x)¿0 and h(y)¿0 belonging to ]x; x + �], for some �¿0.
Let t1¡t2, h(t1)= h(t2)= 0. We de�ne s := inf{u∈ ]t1; t2]; h(u)= 0}. Obviously,
h(t1)= h(s)= 0 and h(u)¿h(s), for any u∈ [t1; s[. Consequently h′(s)60, which gen-
erates a contradiction.

5. System of particles associated with Eq. (E)

For every integer N¿1, we consider the following N -dimensional SDE
X i;N
t =X i

0 + Bi
t −

1
2

∫ t

0

1
N

 N∑
j=1

�(X i;N
s − X j;N

s )

ds; t¿0

16i6N

(SN; �)

where B=(B1; : : : ; BN ) is a RN -valued standard Brownian motion. We assume that
X 1
0 ; : : : ; X

N
0 are independent and have the same distribution. � is as in Section 2, veri-

fying Eqs. (3.1)–(3.4).
If � is a bounded and locally Lipschitz continuous function, the system (SN; �) has

a unique strong solution for each N ; the propagation of chaos holds; and the limit
law of X 1; N is the law of the unique strong solution of a nonlinear SDE (Sznitman,
1989). Unfortunately, � is not bounded. The �rst di�culty is equivalent of showing that
Eq. (SN; �) admits a strong solution.

Proposition 5.1. (1) Eq. (SN; �) has a unique strong solution.
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(2) If we assume that E(|X0|p)¡∞ for every p¿1; then

sup
06t6T

E

[(
N∑
i=1

(X i;N (t))2
)p]

6c(p; T ): (5.1)

Proof of Proposition 5.1. (a) We de�ne

�n(x)=


�(x) if |x|6n;
�(n) if x¿n;
�(−n) if x¡n:

The drift term in (SN; �n) is actually bounded, and is a Lipschitz function. Therefore,
Eq. (SN; �n) has a unique strong solution Xn=(X 1

n ; : : : ; X
N
n ). Let us denote its �rst exit

time of {x; ‖x‖6n} by Tn:

Tn= inf{t¿0; |Xn(t)|¿n}:
As in the proof of Proposition 3.3, we have to show that sup Tn=∞. We apply the
Itô formula to

∑N
i=1 X

i
n(t)

2:

N∑
i=1

X i
n(t)

2 =
N∑
i=1

X i
n(0)

2 + 2
N∑
i=0

∫ t

0
X i
n(s) dB

i
s + Nt

− 1
N

∫ t

0

 N∑
i; j=1

X i
n(s)�(X

i
n(s)− X j

n (s))

ds:
With � satisfying Eqs. (3.1) and (3.2), we observe that

N∑
i; j=1

xi�(xi − x j) =
∑

16i¡j6N

(xi�(xi − x j) + x j�(x j − xi))

=
∑

16i¡j6N

(xi − x j)�(xi − x j)¿0:

Therefore,

|X i
n(t)|26|Xn(0)|2 + 2

N∑
i=0

∫ t

0
X i
n(s) dB

i
s + Nt:

As in the proof of Proposition 3.3, the above inequality implies that sup Tn=∞. a.s.
(b) We now check Eq. (5.1). As N is �xed, we set X i=X i;N , 16i6N for sim-

plicity. We apply the Itô formula to
∑N

i=1 X
i(t)2p+2:

N∑
i=1

X i(t)2p+2 =
N∑
i=1

X i(0)2p+2 − p+ 1
N

∫ t

0

 ∑
16i; j6N

X i(s)2p+1�(X i
s − X j

s )

ds
+(p+ 1)(2p+ 1)

∫ t

0

(
N∑
i=1

X i(s)2p
)
ds+Mt;

where M is a continuous local martingale.
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As in step (a),∑
16i; j6N

(xi)2p+1�(xi − x j)=
∑

16i¡j6N

((xi)2p+1 − (x j)2p+1)�(xi − x j)¿0:

Therefore, if we set ’p(t)=E[
∑n

i=1 X
i(t)2p], ’p satis�es

’p+1(t)6’p+1(0) + (p+ 1)(2p+ 1)
∫ t

0
’p(s) ds: (5.2)

Since ’0(t)= n, it is easy to check by induction on p that cp(T )= sup06t6T ’p(t)
¡∞:

Remark 5.2. We observe that we do not use the fact that � veri�es Eq. (3.4) in the
proof of Proposition 5.1.
Let X i be the solution of Eq. (E) with initial data X i

0:

X i
t =X i

0 + Bi
t −

1
2

∫ t

0
b(s; X i

s ) ds;

b(s; x)=E[�(x − X i
s )]:

(5.3)

We now state the main result of this section:

Theorem 5.3. Assume that E(|X0|2(r+1)2)¡∞. Then there exists C(T )¿0, such that

E
[
sup

06s6T
|X i;N

s − X i
s |2
]
6

c(T )
N

: (5.4)

(We recall that r is a constant associated with � and is de�ned by Eq. (3.3).)

Theorem 5.3 will be proved in two steps.

Lemma 5.4. There exists a constant C¿0 such that for every N¿1

sup
06s6T

E(|X i;N
s − X i

s |2)6
CT 2

N
; (5.5)

sup
06s6T

E(|X i;N
s − X i

s |4)6
CT 4

N 2 : (5.6)

Proof of Lemma 5.4. Since X i;N (resp. X i) is a solution of SN; � (resp. Theorem 5.3),

X i;N
t − X i

t =− 1
2N

∫ t

0

 N∑
j=1

{�(X i;N
s − X j;N

s )− b(s; X i
s )}
 ds: (5.7)

(1) Using the Itô formula, we obtain

N∑
i=1

(X i;N
t − X i

t )
2 =− 1

N

∑
16i; j6N

∫ t

0
(�(1)i; j (s) + �(2)i; j (s)) ds; (5.8)
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where

�(1)i; j (s)= [�(X
i;N
s − X j;N

s )− �(X i
s − X

j
s )](X

i;N
s − X i

s );

�(2)i; j (s)= [�(X
i
s − X j

s )− b(s; X i
s )](X

i;N
s − X i

s ):

Analyzing the �rst sum involving �(1)i; j , we have∑
16i; j6N

�(1)i; j (s)=
∑

16i¡j6N

�(3)i; j (s); (5.9)

�(3)i; j (s)= �(1)i; j (s) + �(1)j;i (s):

Since � is an odd function,

�(3)i; j (s)= (�(X
i;N
s − X j;N

s )− �(X i
s − X j

s ))(X
i;N
s − X i

s − (X j;N
s − X j

s )): (5.10)

If x−y¿x′ −y′ (resp. x−y6x′ −y′), then x− x′¿y−y′ (resp. x− x′6y−y′) and

[(x − y)− (x′ − y′)][�(x − x′)− �(y − y′)]¿0: (5.11)

Consequently, �(3)i; j (s)¿0, and∑
16i; j6N

�(1)i; j¿0: (5.12)

On the other hand, using the Schwarz inequality, we obtain

− E

 N∑
j=1

�(2)i; j (s)

6{E((X i;N
s − X i

s )
2)�i(s)}1=2; (5.13)

�i(s)=E




N∑
j=1

[�(X i
s − X j

s )− b(s; X i
s )]


2
 :

Developing �i(s), we get

�i(s) =
N∑

j=1

�j; j(s) + 2
∑

16j¡k6N

�j; k(s);

�j; k(s) = E((�(X i
s − X j

s )− b(s; X i
s ))(�(X

i
s − X k

s )− b(s; X i
s ))):

If j 6= k, X
i
, X

j
, X

k
are three independent copies of X

1
, recall that b(s; x)=E(�(x −

X 1
s )) therefore

�j; k(s)= 0 if j 6= k:

Since � satis�es Eq. (3.8), Proposition 3.10 tells us that �j; j is bounded. Hence

�i(s)6c1N; (5.14)

where c1 is a constant depending only on �.
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By symmetry, it is clear that

E((X i;N
s − X i

s)
2)=E((X 1; N

s − X 1
s )
2): (5.15)

As a result, if we take the expectation in Eq. (5.8) by Eqs. (5.9), (5.12), (5.13) and
(5.14), then

N
(
sup

06t6T
E((X 1; N

t − X 1
t )
2)
)
6
√

NC1T
{
sup

06t6T
E((X 1; N

t − X 1
t )
2)
}1=2

;

and Eq. (5.5) follows immediately.
The proof of Eq. (5.6) is very similar to the above. Brie
y, the changes are

N∑
i=1

(X i;N
t − X i

t )
4 =− 2

N

∑
16i6j6N

∫ t

0
(�(4)i; j (s) + �(5)i; j (s)) ds

�(4)i; j (s)= �(1)i; j (s)(X
i;N
s − X i

s )
2;

�(5)i; j (s)= �(2)i; j (s)(X
i;N
s − X i

s )
2:

Analogous to Eqs. (5.12) and (5.13), we have∑
16i6j6N

�(4)i; j¿0

and

−E

 N∑
j=1

�(5)i; j (s)

6{E[(X i;N
s − X i

s )
4]}3=4�̂i(s)1=4;

respectively, where

�̂i(s)=E


 N∑

j=1

{�(X i
s − X j

s )− b(s; X i
s )}
4
 :

As in step 1,

�̂i(s)6N 2C2:

It is now easy to see that Eq. (5.6) holds.

Proof of Theorem 5.3. By Eq. (5.7), we have

(X 1; N
t − X 1

t )
2 =− 1

N

N∑
j=1

∫ t

0
(�(1)1; j(s) + �(2)1; j(s)) ds:

Consequently,

sup
06t6T

(X 1; N
t − X 1

t )
26

1
N

N∑
j=1

∫ T

0
(|�(1)1; j(s)|+ |�(2)1; j(s)|) ds: (5.16)
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We start with the sum involving �(2)1; j . By Eq. (5.13),

E

 N∑
j=1

|�(2)1; j(s)|
6{E[(X i;N

s − X i
s )
2]�i(s)}1=2:

Using Eqs. (5.5) and (5.14), we obtain

E

 N∑
j=1

|�(2)1; j(s)|
6C3T; 06s6T: (5.17)

The Schwarz inequality implies:

E(|�(1)1; j(s)|)6{E[(X 1; N
s − X 1

s )
2]E[(�(X 1; N

s − X j;N
s )− �(X 1

s − X j
s ))

2]}1=2: (5.18)

Using Eq. (3.3), Propositions 5.1, 3.10, and the Schwarz inequality again, we have

E[(�(X 1; N
s − X j;N

s )− �(X 1
s − X j

s ))
2]6c4(T ){E[(X 1; N

s − X 1
s )
4]}1=2 (5.19)

Eq. (5.4) now follows easily from Eqs. (5.16)–(5.19).

Remark 5.5. There is classical proof (Sznitman, 1989) that the chaos propagation is
a consequence of Theorem 5.3. This means that, for every �xed i, the distribution of
(X 1; N ; X 2; N ; : : : ; X i;N ) converges to (X

1
; X

2
; : : : ; X

i
).
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