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Abstract

Taking an odd, non-decreasing function f§, we consider the (nonlinear) stochastic differential
equation

1 t
X, =Xo+ B — E/Oﬁ*u(s,Xs)ds, t=0, (E)
P(X; €dx)=u(t,dx), >0,
and we prove the existence and uniqueness of solution of Eq. (E), where f§xu(s,x)= fR Plx —

y)u(s, dy) and (B; £>0) is a one-dimensional Brownian motion, By =0. We show that Eq. (E)
admits a stationary probability measure and investigate the link between Eq. (E) and the asso-
ciated system of particles. (© 1998 Published by Elsevier Science B.V. All rights reserved.

AMS classification: 60H10; 60K35; 60J60

1. Introduction

(1) Let f:R— R be an odd non-decreasing function. (B;, t>0) will denote a stan-
dard Brownian motion, By =0. We are interested here in the following system:

1 t
Xi=Xo+ B, — 5/ Pxu(s,X;)ds, t=0,
0
P(X; € dx) =u(t, dx).

(E)
where f*u denotes the convolution between f and u:

B u(s,x) = /R Blx — y)u(s.dy).

* Corresponding author.
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In Eq. (E) there are two unknown parameters: the process (X;; ¢=>0) and the family
of measures (u(t,.); t>0). Using the Ito6 formula, it is easy to show that u satisfies
the non-linear equation

U= %uxx + %[(ﬁ * U )uly,

u(0,dx) = P(X, € dx).

(F)
The system (E) can be reduced to the following stochastic differential equation (SDE):

X, =Xy + B, — % / b(s,X;)ds,
0
b(s,x) = E[B(x — X))

(E)

From now on we only deal with Eq. (E) instead of Eq. (F).

Similar processes have been considered in the following contexts:

(a) p is a bounded Lipschitz continuous function. Eq. (F) is a Mc Kean Vlasov
equation (Mc Kean, 1966).

(b) f is the Dirac measure at 0. Eq. (F) is the Burgers equation, modelling locally
interacting particles (Stroock and Varadhan, 1979).

(c) B is the derivative of the Dirac measure at 0. Eq. (F) is the Olschliger equation
remodelling locally interacting particles (Orelschlager, 1985).

(d) Funaki (1984) proved existence and uniqueness of weak solutions of Eq. (E),
in RY. However, the assumptions of Funaki are different from ours.

One-dimensional stationary Mc Kean—Vlasov-type equations (1966), are of the type

U + (B xv)v)x =0. (1.1)

Two natural questions are as follows.
(a) Consider the integro-differential equation

A

= =+ (B )0 (1.2)

Under which conditions on the kernel f do we have

w— tlim u(t,x)=uv(x). (1.3)

(b) Besides, consider the interacting particles system

¢ N
Xt xi+m—5 [ 35 Dot =i | pas

If the propagation of chaos holds, then the sequence of empirical measures
((1/N) vazl 0yin ), on the space C([0,T]; R) (T fixed), converges in law, as N goes to
infinity, to a deterministic probability measure u, and moreover one has that y,(dx)=
u(t,x)dx, V¢€[0,T]. Thus, if Eq. (1.3) holds, and if the approximation error of
u(t,x)dx by (1/N )(va:1 d,iv) can be controlled (in some reasonable sense) uniformly
with respect to 7 € [0, +oo[,[then a probabilistic numerical procedure to solve Eq. (1.1)
could consist in simulating the particles system (Xf’N ) for N and ¢ large enough. In
the present paper, we only address the question (a).
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(2) In this paper, we assume

f is an odd, increasing, locally Lipschitz continuous
function with polynomial growth.

(1.4)

Tamura (1984, 1987) (cf. also Dawson, 1983) analyzed an equation resembling
Eq. (E). However this author considered an Ornstein—Ulhenbeck process (converging
at infinity) altered by a bounded non-linear drift term. Our context is different: we
disturb a non-convergent process — the Brownian motion — by an unbounded non-
linear disturbance.

We claim that the two assumptions I and II of Funaki (1984) are not satisfied in our
context. Let u and v be two even functions. If we choose f(x)=x3, for instance, it is
not difficult to check that (2.1) of assumption I is not verified. If we take f(x)=x>,
then x — b(x,u) grows as x>, therefore assumption II(ii) of Funaki (1984) does not
hold.

(3) Section 2 is devoted to the easiest case: f(x)=ax + b. For this choice of S,
we can calculate X and u explicitly, and it is obvious that X; converges if and only
if a>0 and b=0. Moreover, the limit is a Gaussian distribution. This example shows
that X; converges if

p(0)=0; sgn(x)f(x)=0 VxeR.

We prove in Section 3 the existence and uniqueness of Eq. (E) when [ satisfies
moreover

pex) =P Zhix—y)+fo Vx=y (1.5)

where /1 >0 and fy € R.
Let (X, b) be a solution of Eq. (E). Assume for simplicity that the distribution of Xj
is symmetric (i.e. Xyo and —X, have the same law). Then b(z,.) is an odd function and

sgn(x) b(t,x)=0 VxR, Vi=0. (1.6)

This property plays a crucial role, and replaces the lack of bounds for f.
In the general case, we associate b with the solution X*) of the (classical) stochastic
differential equation

1 t
X" =Xy + B — E/ b(s, X)) ds. (1.7)
0

We set I'b(s,x)=E[f(x —Xs(b)]. We check that I' has a fixed point, this allows us to
prove that Eq. (E) admits a unique solution.

In Section 4, we investigate the existence of an invariant measure. The existence
requires the convexity of f§ only (we make use of a fixed point theorem based on
Schauder theorem). To prove the uniqueness, we assume in addition that f(x) = fo(x)+
ox, where fy is an odd, increasing function, Lipschitz continuous, with linear growth,
and « is positive and large enough. This hypothesis is not necessary, since there exists a
unique invariant probability measure in the two special cases: fo(x) =x> and Bo(x) =x>.
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In the last section we associate a system of particles with Eq. (E) and we prove
that the limit system has the propagation chaos property (we do not need to suppose
that Eq. (5) holds).

In this context, processes X solving Eq. (E) cannot be used to model the position
of interacting particles. If two particles are in x and y, the drift equals f(x — y), and is
an increasing function of x — y, which is not very physical. However, X can represent
the charge of ionized particles lying in a chemical or biological medium. Suppose that
two particles have charge x being greater than y. These particles interact, i.e. electrons
come from particle 2 to particle 1, therefore the charge of particle 1 (resp. 2) decreases
(resp. increases). Moreover, the flux of electrons is stronger if the difference of charges
is greater. It seems intuitive that this system tends toward have an equilibrium state.
This limit state is not given a priori, and depends only on the exchange of charges (i.e.
function f) and the initial data. More precisely, we prove that the equilibrium state
depends only on f and E(Xp).

In a second paper, we investigate the convergence of X;, in distribution, when ¢ goes
to infinity, to the stationary probability.

2. The case f(x)=ax + b
We observe that b(s,x)=E(f(x — X;)) =ax + b — am(s), where m(s) =E(X;). As a
result (E) is now equivalent to

! bt
X=X +B / (8 — mis))ds — 2.
0

We take the expectation of both sides
bt
m(t) =E(X1)=m(0) — —.

This means that m is known. We set
bt
X

Y satisfies the following linear stochastic differential equation:

Yi=X, —m(0)+ 2.1)

a t
Y, =Yy+B; — —/ Y, ds.
2 Jo
The explicit solution is given by

t
Y,=e “PYy+Z7; Z=e " / ¢®/? dB,.
0

Z, is a Gaussian r.v. with mean 0 and variance o(¢)> =(1 — e~ %)/a. It is now clear
that if a<0, Y; does not converge, in distribution, # — co. We assume that a>0.
Hence Z, converges to .4°(0,1/a). Consequently, X; converges if and only if 5=0.
Finally if a>0 and b=0, X; converges, in distribution, to the Gaussian distribution
A" (m(0),1/a), as t approaches infinity.
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It is interesting to note that the limit distribution depends on X, through m(0)=
E(Xp). If E(Xp)=0, we have

—at

E[(X, — e " Xp)™"] < (1 — ) E((B1)™).

Consequently,
sup E[1X; "] <cu(1 + E(1X ™). (22)

t=20

3. Existence and uniqueness of solutions of Eq. (E)

In this section we assume that f: R — R satisfies:
[ is increasing, (3.1)
fp is an odd function (f(x)=—p(—x)VxeR). 3.2)
There exist ¢>0, r € N*, >0, fy € R such that
1BC) = BODI<Ix =yl + [x[" + [y[") Vx,yeR, (33)
Bx) = B(y)ZPr(x — y)+ o Vx=y. (3.4)

If B is a polynomial function, then Eq. (3.3) holds. If § is an increasing and C!
function such that f'(x)>=f; >0, for |x| large enough, then Eq. (3.4) is satisfied. We
now state the main result of this section:

Theorem 3.1. Let Xy be a r.v. such that E [XO2 (V“)z] <oo. Then the non-linear SDE:

)(t :XO +Bt - %/ b(sa)(s)dsa
0
b(s,x) = E[p(x — X;)]

(E)

has a unique strong solution.

Remarks 3.2. (a) If f§ is a bounded and Lipschitz continuous function, Sznitzman and
Varadhan (1986) proved this theorem using the Vasertein metric. In our context, we
“replace” the boundedness of the coefficient by the fact that xf(x) is positive and large
as x goes to too.

(b) We observe that if E(|X;|)<oo, then

EX))=E(Xy) Vt=0, and X, — E(Xy) verifies Eq. (E).
To prove this, we take the expectation in Eq. (E):

B0 = B0 — 3 [ Bt X0 ds



178 S. Benachour et al. | Stochastic Processes and their Applications 75 (1998) 173-201

where X/ is an independent copy of X;. f§ being an odd function, E(S(X] — X;))=0.
Therefore E(X;) =E(Xp). It is easy to check that X; — E(Xj) solves Eq. (E). As a result
we can suppose that E(X;)=E(Xy)=0, V¢=0.

The first step in our proof of Theorem 3.1 consists in checking the uniqueness and
existence on an interval [0, 7], 7 being “small”. Then we extend these properties to
R;. In the following, we will need the classical result (see, for instance, Stroock and
Varadhan, 1979, Theorem 10.2.2, p. 255):

Proposition 3.3. Let b: R, x R— R be a function such that for ever n

max |b(s, 0)| < oo, (3.5)
s=0
|b(s,x) — b(s, y)| <culx — ¥, (3.6)

for every n, |x|<n, |y|<n and
sgn(x) b(s,x)=0 for |x| large enough. 3.7)

Then the (classical) SDE:
1 t

X" =X, + B, — 5 / b(s, X)) ds (Fp)
0

admits a unique strong solution, for any initial data Xj.

The idea of the proof of Theorem 3.1 is the following: we associate with a function
b, the solution X® of Eq. (Fp) and set

Tb(s,x)=E[B(x — X")].

We prove that I" has a fixed point 5. Consequently X®) is a solution of Eq. (E).

More precisely, we have to control the moments of X,(b) and to define an appropriate
functional space A7 such that the restriction of I to A7 is a contraction. The proof of
Theorem 3.1 is divided in five steps: Lemmas 3.4-3.8.

Notation.
1. If p satisfies Eq. (3.3), let 2¢>=r + 1, then there exists C>0 such that

B)I<CA + [x[*) VxeR. (3.8)

2. For any positive 7, and b:[0,7] x R— R we set

|b(s,x)| )
bllr= sup sup| —= |, 2¢9g=r+1. 3.9
H ”T OgsETxeg (1 + ‘x‘zq q ( )

3. Let Ar be the set of b:[0,7] x R— R such that

x — b(s,x) is a non-decreasing function, for every s € [0, T7], (3.10)
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e b(s,.) is a locally Lipschitz continuous function, uniformly with respect to s €[0, T]:

|b(s,x) — b(s, y)|<cplx — y|, Vs€[0,T], |x|<n, |y|<n, (3.11)
b(s,x) — b(s,y)=pi(x —y)+ o Vs€[0,T], Vx=y, (3.12)
|67 <oc. (3.13)

4. If b satsifies Eqs. (2.5)—(2.7), and X® is the solution of Eq. (Fy), we introduce

Vi) =E[1X|", (3.14)
P2()= sup V(s). (3.15)
0<s<t

5. From now on, ky,ky,ks,... are “universal” constants, this means that &, depends
only on the fixed function f. In the same way k;(.) denotes a universal function.

Lemma 3.4. Assume that b€ Ar, n=1, p(x)= Pox. Then b satisfies Eq. (3.5)—(3.7),
pE AT, V5 (T)<oco and

35,(T) <k (m)(5,(T) + (T||b = pl|7)*"(1 + 94,,(T))),

Proof of Lemma 3.4.
1. Let b be an element of Ay, then b verifies |b(s,0)|<||b||r and

sgn(x) b(s,x)= P |x| + fo — [|b]|r.

Consequently Egs. (2.5)—(2.7) holds.
2. Suppose b€ Ay, feEAr. X® and X(/) being solutions of Eq. (Fy) respectively
(£7), then

X® _ x /(b(s X®Y— (s, X)) ds.
For every o> 1, x — |x|* is a C'-function, hence | X" — X/)|* is equal to
t
o : _
= /O sgn(X”) — XINXD — XD oy (05, X)) = (5. X)) ds.

We take the limit, o — 1+,

b
|/Yt( ) _/Yl(ft)|

1 . .
— 5 [ s G - XX~ bl X D)

0 . )
+b(s, X)) — f(s. X)) ds.

Since x — b(s,x) is non-decreasing, sgn (x — y)(b(s,x) — b(s, y))=0. Then

. 1 [
IXz(b)—X,U)ISE/ (s, X)) — £(5,X)] ds.
0
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Eq. (3.9) implies
X — x| <%||b ~flr /0 1+ IXDP) s (3.16)
Moreover, using Holder inequalities, we have

E

t 2n
( / (1 + XV >|2‘1)ds> ] <k (m)T?"(1 +4,,(T)), (3.17)
0

for any 0<t<T.
3. We choose f(s,x)=p(x)=fox. Then f € Ar, and Eq. (1.2) tells us that 95 (7)<
oo. Using a convexity argument we easily obtain from Egs. (3.16) and (3.17),

E[(X"Y" <35(T) + ka(m)T*"(1 + 54, (T) b — p|7. O

If be Ar, we set
Ib(s,x)=E[B(x — X)), (3.18)
The function I'b is well defined since Eq. (3.8) holds.
Lemma 3.5.
1. I maps Ar in Ap (ie. I'(Ar)C Ar) and
ITBllr <ka(1+ $2,(T)). (3.19)

2. I' is Lipschitz continuous: there exists ks : [Rii—> Ry, ks(x,.), ks(.,x) being in-
creasing functions for every x>0, such that Vb€ Ay, Vf € Ar,

1T =T fllr <l = £l T ks (T), 93, (T)). (3.20)

Proof of Lemma 3.5.

1. We set I'b=c. Lemma 3.4 and (3.8) (resp. (3.3)) imply ||c||r <oco (resp. (3.11)
is satisfied). Since f is increasing, c(s,.)=E[f(. —Xs(b))] is also non-decreasing.
Suppose that x>y, since f§ satisfies Eq. (3.4), and that x x> ¥ — X, Then

e(s,x) = c(s, ) = E[Bx = X)) = f(y = X)) = fi(x — ») + Po-
We have verified I'b € Ar. By Eq. (3.8), we have
ITb(s. 0| < E[B(r = X< ka1 +2*DEC + XD,

Consequently, Eq. (3.19) is verified.
2. Let b, f in Ar. We set X =X® and Y =X for simplicity. Using Eq. (3.3), we
have

|Tb(s,x) = I'f(5,%)| <E[|B(x — X;) = Blx — ¥)]
<kET|X — Yo|(1+ x| + X" + Y]]
<kr(1+ [xDE(X, — Y|(1+ X7+ %))
<ks(1+ x| W{E(X: — Y (1 + E(X[7) + E((Y)™))} 2.
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Using Lemma 3.4, we obtain
[7b = I'fllr <ks(1 4 53,7+ 93,(T) P(E(X, — )"
Previous estimates (3.16) and (3.17) (with n=1) both yield
E((Xs = Y ) <hollb = FIFT>(1+ 94,(T)).
Moreover,

BATYS(5,(T)™, c=forb [

Lemma 3.6. Let K >2ky(1+ki(g))95,(c0) and NS = A7 0 {b; ||b||7 <K}. There exists
kio such that if T =kio(K; E(|Xo|"), 1 <i<8¢?). Then
(i) T(N§)C AK and the Lipschitz norm of T restricted to N§ is less than ;.
(ii) There exists a strong solution of Eq. (E) such that

sup E(|X|*) < oo. (3.21)

0<t<T
Proof of Lemma 3.6.
1. Using Eq. (3.19) and Lemma (3.4) successively, we have
7Bl <ke{1 + ki (@)[85,(00) + 229 T*(|[B]I77 + [|p]2) (1 + #4,2(c0))]}
where [|plloc =sup,...o [fox|/(1 + [x[*7), and
b/(c0) = sup E(|X/|").
120
If we choose T small enough such that
kaki (@)2°4(K*? + | plIZ) (1 + 972 (00)T* <K/2 (3.22)

then ||I'b||r <K, b being an element in AX. We have proved that I'(A\%) C AK.
2. Let k;; be the function defined by ky1(x)=4ks(x,x) (ks appears in Eq. (3.20)).
Eq. (3.20) and Lemma 3.4 both imply [||I'|||r <3 if T satisfies

Thii (k1 (2q){94,(00) + 2M(K™ + [|pl|IZ) (1 + 9. (0T} < 3. (3.23)

Since p(x)=Pox, (i) is a consequence of the above inequalities.

3. We assume that 7 = k1o(K; E(|Xo[¥), 1 <k <8¢?). We will now establish that Eq. (E)
admits a strong solution. Let by be an element of AX. By induction, we define the
sequence (b,):

bn+] - an

Since the Lipschitz norm of I is less than %, (b,) is a Cauchy sequence belonging
to AK. It converges, with respect to ||.|r to b, verifying Egs. (3.10), (3.12) and
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|lbl|r <K. We claim b € AK: we have to show that b satisfies the Lipschitz property
Eq. (3.11). Let X, =X®)_ Since b,y =Ib,,

1B 1(5,%) = bas1 (5, )| SE[|B(x — Xu(s)) — By — Xu(s))]]
<kp(N)(1+9(T))|x — ],

if x| <N, |y|<N.
Since ||b,]|7 <K, Lemma 3.4 implies

|b,,+1(s,x) - bn+l(sa y)l <k13(N, quZ(OO)’Ks T)|x - yl'
We can take the limit as #n — oo, and obtain
|b(s,x) - b(S5 .y)| <k13(N, ﬁqu(OO)aKa T)|x - y|

It is obvious that b=1Ih and X =X is a strong solution of Eq. (E). [J

As part (i) of Lemma 3.6 shows, the constants that appear depend on the moments
of Xj. Yet we are not able to construct a solution on [0, 4+0co[. We need to check that
these constants do not explode:

sup E(1X”|™") < oo,

t>0

We start with a preliminary result.

Lemma 3.7. Let f be a continuous and differentiable function defined on [0, +oco[, and
R-valued. We assume that there exists 1>0, such that {t; f(t)>1} C{¢; f'(t)<0}.
Then

sup f(x)< f(0)V I
x=0

Lemma 3.8. Let b€ Ay, and suppose I'(b)=b (i.e. X is a solution of Eq. (Fy) or
Eq. (E)) and E(Xy)=0. Then

0,(T) <kia(mi; 2<i<2n),

where my, = E(|Xo|).

Proof of Lemma 3.8.

1. Let Xy and X be two independent random variables, having the same distribution.
We consider two independent Brownian motions B and B’, X and X’ which are
solutions of

1 t
Xt=X0+Bt—5/ b(s, X,) ds,
0
and

1 t
X/ =X, + B, — 3 /0 b(s,X!)ds,
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respectively, where b(s,x) =E(f(x — X;))=E(f(x — X])). We set
Vi=X,— X/, w@=E(Y|"), n>2.

Y is a semimartingale with decomposition
1 t
Y=o B~ Bl 5 [ (bsx) — bl X)) s
0

We apply the Ito formula and take the expectation and the derivative. We obtain
Hon() = n{2(2n — Dptan—(t) = E[Y" 7 (b(1.X,) — b(£,X]))]}-

Suppose that x> y. Since b satisfies Eq. (3.12): b(t,x) — b(t, y)=fi1(x — ») + Po,
then

(r = W) ((1.x) = b(t, 1)) = Pr(x — ») — |Bollx — v Vx>
As a result,
Ho(1) <n{2(2n — 1) (an(1))' ™" + | Bol(p2n(£)' ™" = Brpan(t)}-
There exists kys(n)>0, such that x >ks(n) implies
2(2n — Dx' =V 4 | Bo|x' 12" — Bix <0.
Consequently, {t; uon(2)>kis(n)} C{t; 15, (#)<0}. Applying Lemma 3.7, we have
E[(X, = X))"I<kis(n) VE(Xo — X3)*"),  n=1. (3.24)

2. Let ¢ and & be two independent r.v., & being a copy of &, such that E(¢)=E(&)
=0. We claim that

E(E")<kig(E(E = &P, E(E = EYM)). (3.25)

We will prove this identity by induction on n. If n=1, E((¢ —&")?)=2E(&?). Then
Eq. (3.25) holds. Assume that Eq. (3.25) is satisfied. Since E(¢)=E(¢')=0, we
have

2n
E«€—€VH%=QE@””)+§:(én;2>E@hE@m”Fh.
k=2

This equality implies Eq. (3.25), with n being replaced by n + 1.
3. We have observed in the Introduction that if E(Xy)=0, then E(X;)=0. It is suffi-
cient to use steps 1 and 2 now. [J

Remark 3.9. Assume X is a solution of (£), X’ an independent copy of X, b being
an element of A7. In general, E(X;)+# E(Xy). However, if 'b=5 (i.e. X is a solution
of Eq. (E)), E(X;) = E(Xy). This property, as the proof of Lemma 3.8 shows, is crucial
to the determination of an upper bound of the moments of X;. If X is a solution of
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Eq. (E), the drift term b(s,X) is equal to E(f(X; — X/)). Therefore, it is natural to
deal with X; — X/ .

Proof of Theorem 3.1. We can assume E(X;)=0 (see the remark in the Introduc-
tion). Let us introduce U =max{7T >0; Eq. (E) admits a unique solution X on [0, T],
Supg < téTE(thq)<oo}, with the convention max () =0.

1. We first check U >0. We choose K:

K =max{2ky(1 + k1(q))¥3,(00)), ka(1 + kra(my; 2<i<2q)))}. (3.26)

By Lemma 3.6, we know there exists T =kj7(m;; 1<i<8¢*) and a unique b € AX
such that b= I'(b). It is clear that X =X®) is a strong solution of Eq. (E) on [0, T].
Assume that Y is a solution of Eq. (E) on [0, T], such that sup0§,<TE(Y,2q)<oo.
We set c(t,x)=E(B(x — ¥;)]. As we check in step 1 of the proof of Lemma 3.5, ¢
belongs to Ay and

k@xn<ma+x”)0+amzxﬁ%>.
0<I<T
Since ¢=1Ic, Lemma 3.8 tells us
llellr <hka(1 + kia(m;; 2<i<2q))<K.
Hence ¢ € A%, therefore c=5b and ¥ =X.
2. We notice that 95 (00) = kig(m;; 2<i<2q). We set
m;=kia(mj; 2<j<i), i=2.
Let K’ be the positive number defined by Eq. (3.26), where m; is replaced by
m}. This K’ corresponds to T’ =kj(m}; 2<i<8¢?)>0. Suppose that U <oo. We
choose ¢<T'/2. There exists T, U — e<T <U, and a unique solution X on [0, 7]
verifying supOS,STE(X,Zq)<oo. We consider (£) on [7,+oo[ with initial data X7.
By Lemma 3.8,

sup E(X ) <kya(mi; 2<i<2q).

0<t<T

Then as in previous step, we can define a unique solution on [7,7 + T’]. But
T + T'>U, which generates a contradiction. This shows that U =oco. [J

We note that the proof of Theorem 3.1 implies the following result.
Proposition 3.10. Let X be the solution of Eq. (E). Suppose that E(X3")<oo. Then
sup E(|X; ") <00 Vn=1.

t=0

4. Existence of a stationary distribution

Let X be the solution of Eq. (E). Assume that u(x)dx is a stationary distribution.
Then u satisfies the Fokker—Plank equation

L+ S (B u)) =0. 1)
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Integrating this relation, we obtain
u(x):/lexpf/0 (B*xu)(y)dy. 4.2)

If f(x)=x, then fxu(y)= fR(y —z)u(z)dz = y — a; hence,
u(x)=ZLexp(— %xz + ax).

u being a density function, A is necessarily equal to e*"z/z/ V2.

We observe that we have a family of invariant distributions.

As we do in Section 3, we assume that f is a locally Lipschitz continuous, increasing,
odd function, and verifies Eq. (3.3).

We note that Eq. (3.2) can be written in the following fore:

_exp—(f (Bru)(»)dy)

u(x) 2 , (4.3)
where

i(u):/Rexp— (/(f(ﬁ*u)(y)dy)dx. 4.4)
We set

@—{V:RHRjL;/v(x)dx—l, v(x)=v(—x) Vx€R, sup(l+|x|2")v(x)<oo},
R X

with n being large enough, and

exp —(f (Bxu)(y)dy)

Mu) '
We remark that if u=.o/(u), then u(x)dx, is a stationary distribution. We start with
an existence result. We have to show that the restriction of .o/ to a subsequent subset
of & admits a fixed point u.

A (u)(x) =

Theorem 4.1. We assume that [ is a convex function on [0,+oco[ and verifies

Egs. (3.1)-(3.4).

1. There exists a symmetric density function p (i.e. p(x)=u(—x), Vx € R) satisfying
Lemma 4.3.

2. If w is the density of Xy, and X is the unique solution of Eq. (E), with initial data
Xo, then u is the density of X, for any t=0.

Our approach is based on Schauder fixed point theorem (Gilburg and Trudinger,
1977, Corollary 11.2, p. 280):

Proposition 4.2. Assume that % is a Banach space, € a closed convex subset included
in B, of a map € — € such that

(1) o/ is continuous,

(ii) /(%) is compact. Then </ admits a fixed point in 6.
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In order to apply Proposition 4.2, we have to define (%, %, .o/).
Notation.

1. 2 is the set of even continuous functions f: R — R, such that sup, cp(1+[x|?)] f(x)]
<00, where p>4q (recall that 2¢>=r + 1, f satisfies Egs. (3.3) and (3.8)). # is

equipped With |.[ec & [ f]oo = sUp,er(l + |x[7)]f(x)].
2. Let M >0. We set

Cyu=< feB; =20, f(x)=f(—x), Vxe[R,/f(x)dle,
R

sup(1 + |x|2)f(x)<M . (4.5)

3. For any u in %), we define

nw= [ Wfutodr osk<p-2 (4.6)
R
and
of = ! ' d 4.7
(”)(x)‘mexp_/o (B*u)(»)dy, @.7)

AMu) being defined by Eq. (4.4).
It is clear that %), is a closed convex subset of %.

Lemma 4.3. Assume f is an odd function defined on R. Then f is convex on R if
and only if

OIS =)+ fx+y) Vx>0, WeR (4.8)

Lemma 4.4. Let u be an element of 6.
1. IfC] =1 +max0<k<p,2 ﬁ[|x|k/(1 + |x|p)] dx, then

() <MCy, 0<k<p-—2. (4.9)

2. B*u is an odd function and

/X ﬁ(y)dy</x(ﬂ*u)(y)dy<C2Mx2(l +x¥); Vx>0 (4.10)
0 0

where C, is a constant depending only an 3, and M satisfies

M > sup(1,CY). (4.11)

Proof of Lemma 4.4,
1. It is easy to check Eq. (4.9):

k
yk(u):/ X p(1+|x|p)u(x)dx<MC1, 0<k<p-2 (4.12)
r 1+ [x]
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2. It is clear that ff*u is an odd function. Let x >0. We have
B u(x) = p(x) + / (B(x = y) = pGx)u(y) dy
R

— B + /0 (BGx— )+ Bx + ¥) — 28 () d.

B being an odd function,

P u(x) = px) + /0 (B + ») = B(y = x) = 2B(x))u(y) dy. (4.13)

This identity will be used later (see the proof of Lemma 4.6).
Recall that f§ is a convex function on R, using Lemma 4.3,

Bru(x)=p(x) Vx=0 (4.14)

We immediately deduce the lower bound in Eq. (4.10).
3. It is clear that

B u(x) = /0 (BG4 ) — BOu(r) dy + /O (B) — By — () dy. (4.15)

Eq. (3.3) implies

|f*u(x)| <cix(1 +x7) <l —|—/ y’u(y)dy) , x=0. (4.16)
0
Since r + 1<2q and 2¢ < p — 2, by Holder inequality, we have

) = [ I5uCr) dy < gta0) <
R
<S(MCy )2~ DR2a L pIHVA=120) < pp.
By integration, we easily verify Eq. (4.10). [
Remark. In Eq. (4.10), it is important to have x*(1 + x??). An upper bound of the

following type: 1+ x?7*2 is not sufficient (see, for instance, the proof of Lemma 4,
and especially Eq. (4.17)).

Lemma 4.5. There exists M depending only on [ such that </(€y) C €.
Proof of Lemma 4.5. We set v(x)=(1 + |x|?)</u(x), u belonging to %),. Using
Eq. (4.10), we obtain

x|
0<v(X)<4L(1 + [x]7) exp — B(y)dy.
Mu) 0

Therefore sup, . [v(x)| <c3/A(u), where

Ix|

c3 = sup(1 + [x[”) exp — B(y)dy.
xR 0
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Using Eq. (4.10) once more, and the definition of A(u),
+o0
Mu)= / o MRy
0
We set xv/M =y in the integral

1 +o0o
;L(M)Z\/ij\—l / 67C2y2(1+(y2/M)‘1) dy>\;74]v, (417)
0

o 14y%
cq= e~ Gy (I+y )dy.
0
Finally, we get

sup |v(x)| < S M.
xeR Cq4

If we choose M >max((c3/cs)?,1,C}) then sup (1 + |x|?).o/u(x)<M. Since .«/u is an
even density function, the result is proved. [J

Lemma 4.6. o/ is a continuous operator.

Proof of Lemma 4.6.
1. Let u,v in %),. We introduce
0(x) = e Brumd) _ ~([[Bd) p

Let x>0. Using Eq. (4.13), we have
0(x)=e'" I PN Ie=0ux) _ g=ou0],

o) = /0 B dys Bu(n) = /0 By + 1) — Bt — y) — 280 w(t)di;

w=u or .
Since [e™ —e~?|<|a — b|; a,b=>0, and B verifies Eq. (4.8),
~ [Tpoayy [T
ool <70 [
0
where

H(y) = ‘/0 By +1) = Bt —y) = 2B(»))(u(t) — v(¢))dt|;  y=0

/0 (B(y + 1) = Bt = y))(u(t) — v(1)) dt

Then

H)< /0 B+ 1) — Bt — w)llu(e) — v(r)] di.
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We have
lu(t) — v()| P <V2M(1 + 7)1
Since [B(y + 1) — B(t — y)|<ey(1 + y")(1 +1"), and p>4q,
H(y)<ery(I+ y)Ju— ol 2.
After integration, we obtain
1000)] <ce™ b FOD201 Ly — o] 12, (4.18)
00| <esllu— o]l . (4.19)

2. We decompose Zu(x) — o/v(x) as follows:

Au(x) — Av(x)= ﬁ0(x) + (Av) = Mu))W (x), (4.20)

1 X
W= S 9~ [ B0y
By Egs. (4.10), and (4.17),

0< W(x)<1:[7, x=0.

4

Since M(u) — A(v)= jéoo 0(x)dx, using Eq. (4.18), it is now easy to check that .o/ is
a continuous operator. [

Proof of Theorem 4.1.
1. We claim that .</(%),) is compact. Using the definition of .<Zu, the derivative of
this function is given by

(JZ(I/I) (x)__ﬁ(ﬁ*u)(x)e f B “(J/)dy

By Egs. (4.10), (4.16), (4.17) and (3.4), there exists ¢g>0 such that
|(Au) (x)] <es(1 + [x20H e (4.21)

Let (u,)s>1 be a sequence of functions belonging to %),. By the Ascoli theorem, there
exists a sub-sequence (for simplicity, we denoted it (u,),>1) such that .</u, converges
to v. By Eq. (4.21), it is easy to check that .o7u, converges to v in 4. This shows that
/(%)) 1s compact.

2. We are allowed to apply Proposition 4.2: There exists u € 6, such that o/u=p.
That shows point 1. of Theorem 4.1. Obviously, u is C', and

' (x) = —(f * p)(x)p(x).

As a result, u satisfies Eq. (4.1). Suppose that P(Xy € dx) = u(x)dx. Then P(X, € dx) =
w(x)dx, since

b(t,x) = E[p(x — X)] = E[B(x — Xo)] = (S * u)(x).
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We suppose that f: R, — R, is a convex function. Hence x — f(x)/x is an increasing
function on ]0, 0o[, and o = lim, _, o, f(x)/x exists and belongs to [0,c0[. We set

B(x) = Po(x) + ax. (4.22)

Obviously, fo is convex, and lim,_.o, fo(x)/x =0. We now investigate uniqueness in
Eq. (4.3). We suppose that 5 is convex on R,. Let Eq. (4.22) be the decomposition
of f, where >0, and fy is an odd and increasing function, verifying Eq. (3.3).
Obviously, f is also an odd increasing function, and Lipschitz-continuous.

Theorem 4.7. Assume that f admits the decomposition (4.22) and lim,_,o, Po(x)/x
=0. There then exists ag,>0 such that, for any oa>ag, Eq. (4.3) admits at most
one solution.

Remark 4.8. If  is moreover a convex function on R, (which is equivalent to fy is
a convex function on R, ), then Eq. (4.3) admits a unique solution.

To prove Theorem 4.8, a functional subspace of & (the definition of & is given in
Lemma 4.9 below) are defined. The restriction of .o/ to this subspace is a contraction
operator. These results are stated in Lemmas 4.9—4.12.

Eq. (4.22) allows us to obtain a new lower bound for fg p xu(y)dy. More precisely:

Lemma 4.9. Assume that Eq. (4.22) holds and u € &2, where
9= {v R—Ry; / v(x)dx=1,v(x)=v(—x)Vx € R, sup(l + x2”)v(x)<oo} ,
R X

then

(i) Boxu(x)= [ (Bolx + ) = fo(y — x)u(y)dx=>0, Vx>0,
(i) fru(x)=Poxulx)+ox; Pru(x)=ax Vx=0.

Proof of Lemma 4.9. Since f (resp. u) is an odd (resp. even) function, (i) follows
immediately. As fy is increasing, then fo*u(x)>=0 if x>0. [

Let u be a solution of Eq. (4.3). By Lemma 4.9,
1
u(x) < me—wz/z, x>0. (4.23)
Therefore u belongs to Z,(.</), where

Qa({sz/):{u: R— R+,/ u(x)dx=1lLu(—x)=u(x) VxeR,u verifying (4.23)}.
R
(4.24)

We equip Z,(.«/) with the norm

N,(u)= /Ooox(l +x2)|u(x)| dx, p>4q. (4.25)
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Since o/ is an operator from Z,(.</) to &, the idea of the proof is to show that if
o is large enough, ./ is a contraction. As in the proof of Theorem 4.1, we need an
upper bound to 1/A(u).

Lemma 4.10. There exists a positive constant cg, such that, for any u in Z,(oA):

1
—— <oacg, Vo=l.

Au)
Proof of Lemma 4.10. Replacing f by fy in Eq. (4.16), we obtain

Boxuly)y<cy(l + y7) (1 4 /000 rrumdt) .20,

where ¢ is a positive constant.
Since u verifies Eq. (4.23), after integration we obtain

/xﬁo*u(y)dysdxz(l—i—xr) (l—i—L), x=0. (4.26)
0 Au)

Lemma 4.9 implies

e} 1 .X2
/l(u)>2/ exp— (X*(1+x) (14— ) +o—= ] dx.
We set pt=+/A(u), and x =uy in the integral and easily see that

u=h(w),

> 2
h(t)=2 /0 exp — {c’y2<1 + ()1 + )+ %yz} dy. (4.27)

Evidently, 4 is a decreasing function on [0, oco[; moreover,

o0
K < 2 / (P (1 + )+ 2601+ (19))] + ay’t)
0
t2
X exp —)* (c’ + O;) dy.
Assume that ¢ €[0, 1]. Then

0o tZ
—H(t)<er + 2at/ y*exp —y? (c' + %) dy,
0

with ¢; depending only on r, ¢’.
We set x = y\/c¢’ + at?/2. Then

2ot

—H()< _—
)<+ (@ + a2y

o0
2
/ xre ™ dx<ci + crop,(t),
0
where

t
A= ——.
pal0) c + ar?/2
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We observe that

2
pa(1) < py <c\/;> = %

Therefore,
h(0) — h(t) <t(c1 + cav/a).
Since h(0) = cg, h(t)=c7(1—t(14++/2)). As a result, if < inf{1,c7(c7(1++/a)+1)"1},

then A(t)>t. Eq. (4.27) implies that = +/A(u)=c7(c7(1 + o) + 1), if « is large.
This ends the proof of Lemma 4.10. [

Lemma 4.11. Let 0:R— R be the even function defined by

0) = exp ( /0 ﬁ*u(y)dy)eXP ( /0 ﬁ*v(y)dy>, >0,

with u and v being two elements in 9,(.</). Then

10(x)| <cx®(1 +x")e™ ™ PN, (u — v).

Proof of Lemma 4.11. Using Lemma 4.9,
0x) =00 (x),

0y is defined as 6, § being replaced by fy. Our approach is similar to those developed
in the first part of the proof of Lemma 4.6:

|90(x)|</ Hy(y)dy, x>0,
0

Hy(y)< /OOO [Bo(y + 1) = Bo(t = Y)fu(t) —v()|dz,  y=0.

Since t — (1 4¢")/(14¢?) is bounded, the Lipschitz continuous property of f; implies
Ho(y)<ey(l+ yINy(u = v).

The required result follows immediately. [

Lemma 4.12. (1) o/ is an operator () — D . Do(H) (resp. D)) being defined
by Eq. (4.24) (resp. Z,={v:R—R; fR v(x)dx=1,v(x)=v(—x) Vxe€R,sup[(1+
X[ P ()] < oo}).

(2) There exists og, >0, 0<kp, <1 such that

Ny(tu — Av) <kg Ny(u — v),

for any u, v in D,(A), where Ny(w)= [5 |[x[(1 + |x?|)|w(x)|dx.
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Proof of Lemma 4.12. By Lemmas 4.10 and 4.11, we have

e )N L(0) < caNy(u — v)I1, |A(u) — A(v)| <chN,(u — v)
L= / P+ +x)e ™ dx, L= / K21+ )e ™ .
0 0

We set \/&x: y and choose o> 1. Then

N ()<~ N pu—v),  |A(u) — Av)| < (u—0).

3/2

( )’
In the same way,
N,(W)<c'o,

W being defined by Eq. (4.20). Therefore Eq. (4.20) implies

//

VA

If o is large enough, .o/ is a contraction.

Ny(:Au — A0) < “=N,(u — v).

193

The fixed point, if it exists, is unique. This ends the proof of Theorem 4.7. [

Before ending this section, we would like to examine two cases: f(x)=x> and
B(x)=x>. Obviously, Theorem 4.1 can be applied as there exists invariant probability.
However, Eq. (4.21) is not satisfied, since we do not know, in theory that the invariant
probability is unique. We prove existence and uniqueness directly, and the proof in
these two specific cases is very different from the general one. We could also analyze

B(x)=x", but the proof is tedious.

Proposition 4.13. Assume that f(x)=x> and X is the Markov process solution of
Eq. (E). Then X admits a unique invariant probability p(x)dx, u being symmetric.

Moreover,

4 2
exp—(% + %)
foexp—(& 4 3my dy
r OXP —g 2

pwx)=

where my is the unique positive solution of
4 2 4 2
3 3
/szexp— (2-&- x2m2> dx:mz/Rexp— <);+ x2m2> dx.

Proof of Proposition 4.13. u being an even function,

B u(y) = /R (v — P u(x)dx =y + 3ymy,
where

my = /R y2u(y)dy.

(4.28)



194 S. Benachour et al. | Stochastic Processes and their Applications 75 (1998) 173-201

If p(y)dy is an invariant measure, it solves Eq. (4.3), i.e.

pu(x) = ST —
Jaexp —Cq +25%) dx

(4.29)

Therefore there exists a unique symmetric probability u(y)dy if and only if there exists

a unique m, >0 verifying both Egs. (4.28) and (4.29). We introduce

4
LB ame
Jox?e (a2 dx
X4 m_,
Jre ey

The derivative of i is given by

, m>0.

Y(m)=

Vmy=—3 [( / x‘*v(dx)) - ( /R x2v<dx))2] ,

with

3m ,

1 x*
v(dx)= L exXp— (4 + - ) dx,

x* 3m
= =+ = dx.
c /Rexp (4+2x>x

The Schwarz inequality tells us /(m)<0. y is a decreasing function, and (0)>0.
Therefore, there exists a unique m such that y(m)=m. That ends the proof of

Proposition 4.13. [

Proposition 4.14. Assume that p(x)=x>, and X is the solution of Eq. (E). Then X
admits a unique invariant and symmetric probability measure p(x)dx, given by

6
5 5
exp —( + §m2x4 + §m4x2)

Jw exp —(% + Smox* + §m4x2)dx’

wx)=
where (mp,my) is the unique positive solution of
X5 .05
—|—=+= = d
mz/Rexp (6 +2m2x +2m4x> X

6 5 5
= /sz exp — (% + §m2x4 + §m4x2) dx

6 5 5
my /[R exp — (% + 5m2x4 + 5m4x2> dx
6 5 5
= /Rx4 exp — (% + Em2x4 + Em4x2) dx.
Proof of Proposition 4.14.

1. Since B(x)=x> and u is an even function

B u(x)=x> + 10x°my + 5xmy,

(4.30)

(4.31)

(4.32)
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where
my = /Ry"u(y)dy.
By Eq. (4.3), u is uniquely given by Eq. (4.30), (my,m4) verifying Eqgs. (4.31) and

(4.32).
We have to check that (m;,my4) is unique. Let us introduce

P X5 .05
We(my,ma)= [ x“exp— | — + —mpx" + —mgx” |, (4.33)
R 6 2 2
LM
A, == (4.34)
Ho

Taking the derivative and using Holder inequalities, we have

o 5 . . i 5. O
sz = _§(M2k+4 = forfly) <05 WZ: = _E(ﬂ2k+2 — [l 1) <0. (4.35)

Starting with o (resp. u), an integration by parts easily furnishes the following rela-
tions.

fig =1 — Smafl, — 10my,, (4.36)
31y = Smafly + 10my g + g (4.37)

2. Let my >0 be fixed. Since f1,(my,.) is decreasing, there exists a unique my = @(my)
such that

flo(ma, p(m2)) = m,. (4.38)

if fi,(my,0)>m,. As f[i,(.,0) is a decreasing function, if my <o, then fi,(mz,0)>m,.
As a result, Eq. (4.38) holds if m, is small enough.
In the same way, we easily prove the existence of a unique my4 =y(m;) such that

fiy(ma, Y(my)) = h(my). (4.39)
If we differentiate Eqs. (4.38) and (4.39), we have

oh, \ ! 1 on
7 _ 2 ’ — 4
o= (S2) <o pom= O (4:40)
where
P N
A*E(ﬂéfﬂzﬂﬂ**aﬁmz**aﬁm>0~ (4.41)

3. At this stage, we have to show that there exists a unique m; >0 verifying

Y(my) = @(my). (4.42)

Let my >0, verifying y(my) = @(my). We claim that

— ¢'(m)> — Y/ (my). (4.43)
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By Egs. (4.40), (4.43) is equivalent to
o o
(1+4)> (ﬁ> <ﬂ>
6m2 (3m2

We take the derivative of Eq. (5.36) with respect to m, and my4. Recalling that
0Ofig/0my <0, Ofiz/0ms <0, we have

—ﬁﬁ4 WI4 1 ~
< _7A 5
Bmz 27}12 + my Ha
76/22 1 n 2H12A
6m4 nmy mgy ’
Therefore,

—0y\ [ Oy 4 )
( o ) (a_m) < <1—E>(1—2A)<(1+A),

since fi, =my4 and fi, =my.

4. The last step of the proof consists in proving that if /' : Ry — R, g: Ry — R, are
two decreasing functions of class C' verifying {t=0; f(t)=g(¢t)} C {t=0,—f"(t)> —
g'(t)}, then there exists at most one ¢ such that f(¢)=g(¢). We set A(x) = f(x)—g(x).
If A(x)=0, then #'(x)>0 and A(y)>0 belonging to ]x,x + ¢], for some ¢>0.

Let 1 <t, h(t;)=h(t;)=0. We define s:= inf{u€]t,t];h(u)=0}. Obviously,
h(t;)="h(s)=0 and h(u)>h(s), for any u € [f;,s[. Consequently A'(s)<0, which gen-
erates a contradiction. [J

5. System of particles associated with Eq. (E)

For every integer N >1, we consider the following N-dimensional SDE

, R Y . .
XN=xi+B —- | = XEN — XMVYy [ds, =0
t 0 + t 2/0 N jz:l:ﬁ( S s ) S, = (SN’[})
I<i<N
where B:(Bl,...,BN ) is a R¥-valued standard Brownian motion. We assume that
X{,...,X} are independent and have the same distribution. f8 is as in Section 2, veri-

fying Eqgs. (3.1)—(3.4).

If B is a bounded and locally Lipschitz continuous function, the system (Sy,p) has
a unique strong solution for each N; the propagation of chaos holds; and the limit
law of X'V is the law of the unique strong solution of a nonlinear SDE (Sznitman,
1989). Unfortunately, f is not bounded. The first difficulty is equivalent of showing that
Eq. (Sw,p) admits a strong solution.

Proposition 5.1. (1) Eq. (Sx,3) has a unique strong solution.
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(2) If we assume that E(|Xy|?)<oo for every p=1, then

N p
(Z(X"=N<r))2> ] <c(p,T). (5.1)
i=1

Proof of Proposition 5.1. (a) We define

Bx) if |x[<n,
Pu(x)=1< B(n) if x>n,
p(—n) if x<n.

sup E

0<t<T

The drift term in (S p,) is actually bounded, and is a Lipschitz function. Therefore,
Eq. (Sn,p,) has a unique strong solution X, = (X,!,...,X"). Let us denote its first exit
time of {x; ||x||<n} by T,:

T, = inf{t=0; | X,(2)| >n}.

As in the proof of Proposition 3.3, we have to show that sup 7,, = co. We apply the
1t6 formula to SN | Xi(1)%:

N N N t
ZX;(zf:ZX;(O)ZHZ/ X/(s)dB! 4+ Nt
i=1 i=1 i=0 70

O R , ,
v | xemee - oy |as

ij=1

With f satisfying Egs. (3.1) and (3.2), we observe that

N
STHped —xy= Y (PG — )+ BT — xT))

ij=1 1<i<j<N
= Z (' = x)B(x" — x7)=0.
1<i<j<N
Therefore,

N t
DOR <O +23 [ i) a4 e
i=0 70
As in the proof of Proposition 3.3, the above inequality implies that sup 7, = occ. a.s.

(b) We now check Eq. (5.1). As N is fixed, we set X' =X"*N 1<i<N for sim-
.. A N i .
plicity. We apply the It6 formula to >~." | X (1) +2:

N N t
ZXi(Z)2p+2 _ ZXi(0)2p+2 _ b +1 Z Xi(S)ZIH-lﬂ()(Si _)(Sj) ds
i=1 i=1 0

N —
I1<i,j<N

t N
+(p+ D(2p + 1)/0 (ZX"(S)2P> ds + M,,
i=1

where M is a continuous local martingale.
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As in step (a),

@ —x)= > (PTG - xT)>0.

1<i,j <N 1<i<j<N

Therefore, if we set ¢,(1)=E[> i, X'(1)*], ¢, satisfies

Pp+1(1) < Pp11(0) + (p+ D(2p + 1)/0 @p(s)ds. (5.2)

Since @o(¢)=n, it is easy to check by induction on p that c,(T)= supy, <7 @p(¢)
<oo. UJ

Remark 5.2. We observe that we do not use the fact that § verifies Eq. (3.4) in the
proof of Proposition 5.1.
Let X' be the solution of Eq. (E) with initial data X{:

vi__ vi i 1 ' vi
X, =X, + B, > /0 b(s,X,)ds, (53)
b(s,x) = E[f(x — X)].

We now state the main result of this section:

Theorem 5.3. Assume that E(|Xo[2"*)")<oo. Then there exists C(T)>0, such that

E [ sup XN —X:‘P] < (5.4)

0<s<T

oT)
N

(We recall that v is a constant associated with [ and is defined by Eq. (3.3).)
Theorem 5.3 will be proved in two steps.

Lemma 5.4. There exists a constant C >0 such that for every N>1

CT?

sup E(JXY = X[ <—, (5.5)
0<s<T N

E Xi,N y[4 <CT4
S (X — X )\W' (5.6)

Proof of Lemma 5.4. Since X"V (resp. X') is a solution of Sy s (resp. Theorem 5.3),

1

N
XV =X = [ ST = XIY) — b5, XD} | ds. 57)
=1

(1) Using the It6 formula, we obtain

Z(X’N Xy / (0)(s) + pPA(s)) ds, (58)

1<lj<N
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where
P ) = [BOCY = X2y = BT = XN = XD,
p2)(s) = [BX! — X)) — b(s, XDIXEY — X)),

Analyzing the first sum involving pg}, we have

o= > s, (5.9)

1<i,j<N 1<i<j<N

pL)(s)= P () + pl (o).
Since f is an odd function,

pi) = (BOCY —XPN) — X = XY =X = (Y =X)). (5.10)
Ifx—y=x'—y (resp. x —y<x’'— '), then x —x' =y — ' (resp. x —x' <y — ') and

[(x = ») = " = YDIBCx —x) — By — ¥)]=0. (5.11)
Consequently, p?}(s) >0, and

Ve (5.12)
1<i,j<N

On the other hand, using the Schwarz inequality, we obtain

N
—E [ > 02)s) | <{EEY = X)0:()} 2, (5.13)
j=1

2

N
0i(s)=E | { D _IBX] — X)) — b(s, X))]

j=1
Developing 0;(s), we get

N
0i(s)=D_&()+2 Y. &),

j=1 1<j<k<N
() =E((BX{ — X)) — b(s. X)) (PX] — X ) — b(s.X)))).

If j#k, )?i, )?‘j, X"* are three independent copies of )?1, recall that b(s,x)=E(f(x —
X)) therefore

&u($)=0 if j#k
Since f satisfies Eq. (3.8), Proposition 3.10 tells us that £;; is bounded. Hence
0:(s)<ciN, (5.14)

where ¢ is a constant depending only on f.
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By symmetry, it is clear that
E((XN = X)) = E((XN = X)), (5.15)

As a result, if we take the expectation in Eq. (5.8) by Egs. (5.9), (5.12), (5.13) and
(5.14), then

1/2
N( sup E((X:’N—)?:f)) < Nclr{ sup E((X#N—)?:)Z)} :

0<t<T 0<t<T

and Eq. (5.5) follows immediately.
The proof of Eq. (5.6) is very similar to the above. Briefly, the changes are

N

i i 2 '
S -xt=-t Y [+ aends
i=1 0

I<i<j<N

4 1 i vi
i) =p )XY = XY,

2 i Vi
pNs) = pP U)X — X2

Analogous to Egs. (5.12) and (5.13), we have

S 920

1<i<j<N

and
N
—E o)) | LB = XD 0:)",
j=1

respectively, where

4

N
O0(s)=E | | D B = X)) —b(s, X))}

j=1
As in step 1,
0:(s)<N*C,.

It is now easy to see that Eq. (5.6) holds. [J

Proof of Theorem 5.3. By Eq. (5.7), we have
1 [
R DY /0 ()5 + p)(s)) ds.
j=1

Consequently,

0<t<T

N T
— 1
sup (XM XY <) /0 (10| + o)) ds. (5.16)
J=1
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We start with the sum involving p(lzj) By Eq. (5.13),

N
E S 102 | <{EXGHY - X))P10:()} 2.
j=1
Using Egs. (5.5) and (5.14), we obtain
N
E{ D 1pAs) | <GT. 0<s<T. (5.17)
j=1

The Schwarz inequality implies:

E(|py J)D < B[R = XIPIEIROGY = X0 = B = X)P 2 (5.18)
Using Eq. (3.3), Propositions 5.1, 3.10, and the Schwarz inequality again, we have
E[(BX = XN) = B — XDPI<ea DHEIXY — X' (5.19)

Eq. (5.4) now follows easily from Egs. (5.16)—(5.19). O

Remark 5.5. There is classical proof (Sznitman, 1989) that the chaos propagation is
a consequence of Theorem 5.3. This means that, for every fixed i, the distribution of
(XN, X2V XN converges to (Yl,yz,...,)?l).
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