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Abstract

In these notes we introduce some mathematical material to define,
analyze, estimate and control model risk in Finance. We start with ex-
plaining why statistical and calibration techniques may not avoid facing
model risk. We then present a couple of model risk measures and con-
trol strategies. Finally, we propose a mathematical framework to rig-
orously study the performances of strategies which, based on technical
analysis, are not sensitive to model risk, and we compare these strate-
gies to those which are based on mathematical models and therefore are
subject to model risk.

1 Introduction
To price derivatives, or to construct portfolio management strategies, prac-
titioners use mathematical models or technical analysis techniques. Mathe-
matical models are introduced in order to derive prices and strategies from
the non arbitrage theory or the stochastic control theory combined with the
machinery of the stochastic calculus and the analysis of partial differential
equations. Technical analysis avoids models and proposes investment rules
deduced from historical observations of the behavior of the market. At a first
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glance, it seems that the use of mathematical models is much more suitable to
avoid risk than the use of recipes which are difficult to justify rigorously by a
standard mathematical approach. However the situation is far from being so
simple at it seems.

Indeed, to design perfectly hedging strategies one needs a lot of stringent
conditions on the market which are not guaranteed to be satisfied in practice:
in addition to non arbitrage conditions, one assumes that the dynamics of the
stock is a semi-martingale; in order to get numerical values for the quantities
of stocks or bonds to invest at each time, one usually restricts the model to the
class of solutions of stochastic differential equations, which allows one to ex-
press the perfectly hedging strategy in terms of solutions of partial differential
equations. If the model is extremely simple, such as the Black and Scholes
model, one gets explicit expressions for the desired strategies. Otherwise, nu-
merical approximations are necessary, which induces hedging errors because
of the time and space discretizations, the finite number of discretization steps,
and even the misspecified artificial boundary conditions which are necessary
to keep the discretization space into reasonable limits. Therefore, misspecifi-
cations of financial strategies are partially due to numerical errors. They are
also due to calibration errors. As we will see below, statistical procedures,
and calibration algorithms based on the observation of a lot of market prices
related to the particular financial object under study, may not avoid substantial
model misspecifications. These misspecifications do not only concern param-
eters in the model, or coefficients in the stochastic differential equations under
consideration: they also concern the nature of the driving noises (which may
be continuous or have jumps), and the dimension of these noises.

On the other hand, technical analysis does not prescribe to choose a par-
ticular model: the strategies derive from recipes based on indices which are
computed by observing more or less recent market prices only. As impor-
tant volumes are exchanged by following these rules, it seems worth study-
ing technical analysis mathematically. Recent papers propose to study the
efficiency of the rules when applied to trajectories of stochastic processes,
and to determine when they may become more efficient than strategies which
would be optimal if the models were perfectly known but are rather sensitive
to model misspecifications.

The notes below tackle all these issues in a coarse-grained way. Actually
model risk analysis requires various tools from numerical analysis, statistics,
stochastic control, stochastic analysis, optimization. We have chosen to in-
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troduce a few aspects; some of them are elementary but illustrative, the other
ones are rather advanced and original.

2 An Example of Model Risk: Hedging With Mis-
specified Securities

The contents of this section are elementary. We estimate the effects of mis-
specified volatilities on hedging strategies for European options, and express
the Profit and Loss process in terms of estimation errors on the volatility of
the underlying stock.

2.1 A laboratory example
Let T > 0 be the maturity of a European option.

Consider the Black and Scholes paradigm, that is, a portfolio consisting
in holding two assets: a non risky asset whose price at time t is denoted by S0

t

and solves the deterministic ordinary differential equation

S0
t = 1 +

∫ t

0

rS0
θdθ,

where r > 0 is the instantaneous interest rate; a risky asset, whose price at
time t is denoted by St and solves the linear stochastic differential equation

St = S0 +

∫ t

0

µSθdθ +

∫ t

0

σSθdWθ,

where S0, µ and σ are strictly positive constants, and (Wt) is a Brownian mo-
tion on some probability space (Ω,F ,P) equipped with the natural augmented
filtration of (Wt).

Define a strategy as a pair of continuous processes, (H0
t ) and (Ht), real

valued and (Ft)-adapted. The process H0
t represents the quantity of non risky

assets held by the investor at time t, and Ht represents the quantity of risky
assets held at time t; the values ofH0

t orHt may be negative: this occurs when
the investor borrows the amount H0

t S
0
t or, respectively, HtSt. The value Vt of

the investor’s portfolio at time t is

Vt := H0
t S

0
t +HtSt, ∀t ≤ T.
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The strategy is said self-financing if it satisfies the following condition:

Vt = V0 + r

∫ t

0

H0
θS

0
θdθ + µ

∫ t

0

HθSθdθ + σ

∫ t

0

HθSθdWθ, ∀t ≤ T. (1)

In order to ensure that the preceding integrals are well defined, we constrain
(H0

t ) and (Ht) to satisfy∫ T

0

|H0
t S

0
t |dt+

∫ T

0

|HtSt|2dt < +∞, P− a.s. (2)

A European option with pay-off function f is a contract which delivers
the quantity f(ST ) at the maturity T . By definition, a hedging portfolio for
such an option is the value at time t of a portfolio constructed by means of a
self-financing strategy and satisfying

VT = f(ST ), P-a.s.

To simplify our presentation, we suppose here that that the positive function
f is of class C∞(R), is bounded and has bounded derivatives. The celebrated
Black-Scholes formula tells us that a hedging portolio has value

Vt = F (t, St) for all 0 ≤ t ≤ T,

where F is the unique solution of class C1,2
b ([0, T ]× R) to

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

1

2
σ2x2∂

2F

∂x2
(t, x)− rF (t, x) = 0,

0 ≤ t < T, x ∈ R,
F (T, x) = f(x), x ∈ R.

(3)
Actually, given such a smooth solution, Itô’s formula implies that

Vt = V0 +

∫ t

0

∂F

∂θ
(θ, Sθ)dθ +

∫ t

0

(
∂F

∂x
(θ, Sθ)µSθ +

1

2

∂2F

∂x2
(θ, Sθ)σ

2S2
θ

)
dθ

+

∫ t

0

∂F

∂x
(θ, Sθ)σSθdWθ.

In view of the self-financing condition (1), we deduce that the process (Ht),
that is, the delta of the option, necessarily satisfies

Hθ =
∂F

∂x
(θ, Sθ) for all 0 ≤ θ ≤ T,

4



and that

HθµSθ + rH0
θ re

rθ =
∂F

∂θ
(θ, Sθ) +

∂F

∂x
(θ, Sθ)µSθ +

1

2

∂2F

∂x2
(θ, Sθ)σ

2S2
θ

=
∂F

∂x
(θ, Sθ)(µ− r)Sθ + rF (θ, Sθ),

since F solves the PDE (3). Consequently,

H0
θ = e−rθF (θ, Sθ)− e−rθ

∂F

∂x
(θ, Sθ)Sθ for all 0 ≤ θ ≤ T.

Reciprocally, since
Vt = H0

t e
rt +HtSt,

substituting H0
t and Ht with the above expressions leads to Vt = F (t, St) for

all 0 ≤ t ≤ T , and to

Vt = V0 +

∫ t

0

∂F

∂θ
(θ, Sθ)dθ +

∫ t

0

(
∂F

∂x
(θ, Sθ)µSθ +

1

2

∂2F

∂x2
(θ, Sθ)σ

2S2
θ

)
dθ

+

∫ t

0

∂F

∂x
(θ, Sθ)σSθdWθ

= V0 +

∫ t

0

HθdSθ +

∫ t

0

H0
θdS

0
θ ,

which means that the portfolio under consideration is self-financed. Notice
that our hypotheses on f imply smoothness properties on F which in turn
implies (2).

Now consider an investor who does not know σ exactly. She/he thus uses
a parameter σ̄ issued from a calibration procedure (e.g., σ̄ may be an implied
volatility or the result of a volatility estimator applied to historical data) and,
at all time t she/he buys or sells stocks according to the rule

H̄t :=
∂F̄

∂x
(t, St),

where F̄ is the solution of the PDE
∂F̄

∂t
(t, x) + rx

∂F̄

∂x
(t, x) +

1

2
σ̄2x2∂

2F̄

∂x2
(t, x)− rF̄ (t, x) = 0,

0 ≤ t < T, x ∈ R,
F̄ (T, x) = f(x), x ∈ R.

(4)

5



Let V̄t be the value at time t of the corresponding self-financing portfolio:

V̄t = H̄0
t S

0
t + H̄tSt.

The self-financing condition implies

V̄t = V̄0 +

∫ t

0

H̄0
θ rS

0
θdθ +

∫ t

0

H̄θµSθdθ +

∫ t

0

H̄θσSθdWθ.

We now aim to express V̄t without stochastic integral. Apply Itô’s formula to
u(t, St) := exp(−rt)F̄ (t, St). It comes:

e−rtF̄ (t, St) = F̄ (0, S0)− r
∫ t

0

e−rθF̄ (θ, Sθ)dθ +

∫ t

0

e−rθ
∂F̄

∂θ
(θ, Sθ)dθ

+

∫ t

0

e−rθ
∂F̄

∂x
(θ, Sθ)µSθdθ +

∫ t

0

e−rθ
∂F̄

∂x
(θ, Sθ)σSθdWθ

+
1

2

∫ t

0

e−rθ
∂2F̄

∂x2
(θ, Sθ)σ

2S2
θdθ.

As

e−rtV̄t = V̄0 + σ

∫ t

0

e−rθH̄θSθdWθ + (µ− r)
∫ t

0

e−rθ
∂F̄

∂x
(θ, Sθ)Sθdθ,

we have

e−rtV̄t = V̄0 + e−rtF̄ (t, St)− F̄ (0, S0) + r

∫ t

0

e−rθF̄ (θ, Sθ)dθ

−
∫ t

0

e−rθ
∂F̄

∂θ
(θ, Sθ)dθ −

1

2

∫ t

0

e−rθ
∂2F̄

∂x2
(θ, Sθ)σ

2S2
θdθ

− r
∫ t

0

e−rθ
∂F̄

∂x
(θ, Sθ)Sθdθ.

In addition, F̄ (T, x) = f(x) for all x. In view of (4), the value of the P& L at
time T of the portfolio is thus

P&LT := V̄T − f(ST )

= exp(rT )(V̄0 − F̄ (0, S0))

+
1

2
(σ̄2 − σ2)

∫ T

0

exp(r(T − θ))∂
2F̄

∂x2
(θ, Sθ)S

2
θ dθ. (5)
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Remark 2.1. If the function F̄ (θ, ·) is convex for all θ and if σ̄ > σ, then,
given an initial endowment V̄0 = F̄ (0, S0), one has V̄T > f(ST ). Apparently
a model misspecification may lead to an arbitrage. However it should be
difficult to find a buyer at the price F̄ (0, S0) which reflects an overestimation
of the volatility.

Remark 2.2. Notice that we have worked under the historical probability P.
So will we do in all the sequel. We actually are concerned by markets which
are intrinsically incomplete since the investor cannot have a perfect knowl-
edge of the market model. In such markets there is no a clear option price.
In all the sequel the investor is allowed to freely choose the methodology to
compute the initial value V0 of the portfolio and the investment strategies: for
example, when her/his objective is to hedge an option, she/he may suppose
that the true market is perfectly described by a complete model, or she/he
may prefer to follow the surreplication methodology, or to determine V0 by
mimimizing a certain risk measure, etc.

2.2 An extension of our laboratory example
Consider a primary asset with price process S and a deterministic saving ac-
count with price process F . To the saving account corresponds a change of
numeraire. We denote by SFt the price of the primary asset expressed in this
numeraire. For example, in the context of the Black and Scholes model, SF

is the discounted stock price and is a martingale under the risk neutral proba-
bility.

Consider an option on the primary asset with maturity TO and payoff func-
tion φ. Suppose that, in the real market, this option can be perfectly hedged
owing to a self-financing strategy; as above, denote byH0

t the number of units
of the saving account and by Ht units of the primary asset. Expressed in the
numeraire F the value of the hedging portfolio is

V F
t = H0

t +HtS
F
t ,

and the self-financing condition implies

V F
t = V F

0 +

∫ t

0

HθdS
F
θ .

The investor needs to compute (Ht). Therefore she/he chooses a model which
reflects the information available on the market and allows one to get explicit
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formulae, or to develop numerical approximation methods, for (Ht). In all
cases, a common choice consists in supposing that (SFt ) is a (possibly non
homogeneous) Markov process with infinitesimal generator L̄Ft such that the
following parabolic PDE has a smooth solution π̄(t, x):

∂π̄

∂t
(t, x) + L̄Ft π̄(t, x) = 0

with boundary condition (remember that V F
T = 1

FT
φ(FT S

F
T ) and that we have

supposed that (Ft) is deterministic)

π̄(T, x) =
φ(FTx)

FT
.

Notice that, in the classical Black and Scholes context, we have π̄(t, x) =
e−rtv(t, ertx), where v(t, x) is the solution of the standard Black and Scholes
PDE. The investor uses the strategy

H̄t =
∂π̄

∂x
(t, SFt ),

and the value of the portfolio satisfies

dV
F

t = H tdS
F
t .

Now define the model risk P&L function as

P&LFt = V
F

t − V F
t . (6)

Suppose that, in the true world, the process (SFt ) is a (not necessarily Markov)
Itô process whose dynamics under PF is

dV F
t = βtdt+ γtdW

F
t

for some adapted processes β and γ. Set

LFt π̄(t, Sft ) := βt
∂π

∂x
(t, SFt ) +

1

2
(γt)

2∂
2π

∂x2
(t, SFt ).

Apply Itô’s theorem to π(t, SFt ). It comes:

dπ(t, SFt ) =
∂π

∂t
(t, SFt )dt+ LFπ(t, SFt )dt+

∂π

∂x
(t, SFt )γtdW

F
t

= (LFt − L
F

t )π̄(t, SFt )dt+ dV
F

t ,
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so that

V
F

t − V
F

0 = π(t, SFt )− π(0, SF0 ) +

∫ t

0

(LFθ − LFθ )π(θ, SFθ )dθ.

We thus have

P&LFt = V
F

t − V F
t

= V
F

0 − π(0, SF0 ) + π(t, SFt )− V F
t +

∫ t

0

(Lθ − Lθ)π(θ, SFθ )dθ.

At maturity T , this equality simplifies to

P&LFT = V
F

T − V F
T

= V
F

0 − π(0, SF0 ) +

∫ T

0

(LFθ − LFθ )π(θ, SFθ )dθ.

Notice that, if (SFt ) is a Markov process, that is, if βt = β(t, SFt ) and γt =
γ(t, SFt ) for some functions β and γ, then LFt is the infinitesimal generator of
(SFt ) and V F

t = π(t, SFt )/Ft where π(t, x) solves a parabolic PDE driven by
the operator LFt . For a more general discussion on such representations of the
P & L process and numerical simulations, see Bossy et al. [18].

Once the dynamics of the P & L process is identified, a natural issue con-
sists in estimating numerically related risk measures, or to develop worst case
analyses. Before tackling these issues, we explain why calibration errors can-
not be neglicted in finance.

3 Statistical Explanations for Model Risk
A huge literature exists on the statistics of random processes: see, e.g., the
textbooks by Prakasa Rao ([56] and [57]), Lipster and Shiryayev [49], Ku-
totants [46], the references therein, and the references below. We limit our-
selves to an introductive discussion aimed to explain why, were financial
prices perfectly described by diffusion processes, estimation procedures based
on historical data only should not be expected to provide good accuracies on
the unknown coefficients of the stochastic differential equations supposed to
model the prices. For the sake of simplicity, we distinguish the estimation
of volatilities and the estimation of trends; the simultaneous estimation of
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volatilities and trends is complex: see, e.g., the sudy of minimum contrast es-
timators by Génon-Catalot and Jacod [33], and of simulated moment methods
by Duffie and Singleton [28], Clément [21], Duffie and Glynn [27].

The classical framework in parametric Statistics is as follows.

Definition 3.1. A statistical model is a measurable space (S,S) and a col-
lection of probability measures {Qθ, θ ∈ Θ} on that space. The set Θ of the
possible values of the parameter θ is an open set in R`.

An estimator is a measurable functional defined on (S,S).

An estimation procedure is an algorithm which, given an observation π,
allows one to select one the possible values of θ.

Before studying properties of standard parametric estimation procedures
when applied to stock prices, we discuss a modeling issue which was tackled
in the literature recently only.

3.1 The Brownian dimension of a stochastic model
The contents of this subsection come from Jacod et al. [40].

When calibrating a diffusion model from historical data, the first step con-
sists in choosing the dimension of the diffusion matrix, that is, the dimension
of the Brownian motion driving the stochastic differential equation. This is
a difficult issue in practice which actually is an ill-posed problem since the
observations are made at discrete times and the diffusion coefficient is un-
known. We rather need to think of an explicative Brownian dimension, that
is, a minimal dimension of the noise process which allows one to explain in a
satisfying way the estimated quadratic variation of the observed process. For
example, the model

Xt = X0 +

∫ t

0

bsds+W 1
t + εW 2

t

where W 1 and W 2 are two independent Brownian motions and ε << 1 has
an explicative Brownian dimension equal to 1.

To be more specific, consider the model

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σs dWs,
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where W is a standard q–dimensional Brownian Motion, a is a predictable
Rd–valued locally bounded process, σ is a d × q matrix–valued adapted and
càdlàg process which is Hölder continuous with index ρ > 1/2:

sup
0≤s<t≤T

‖σt − σs‖
(t− s)ρ

<∞ a.s.

A particular case is the pure diffusion case where σs is of the type σ(Xs)
for some function σ. Set cs := σsσ

?
s . Thus cs = σσ?(Xs) in the pure dif-

fusion case. We aim to estimate the maximal rank of cs on the basis of the
observation of XiT/n for i = 0, 1, . . . , n, where T is some fixed time horizon
- or, more reasonably, we aim to estimate the number of eigenvalues of cs
which, during a large enough time interval, are significantly larger than the
other ones.

We need some linear algebra material. Let Ar be the family of all subsets
of {1, . . . , d} with r elements. For all K ∈ Ar and all d × d symmetric
nonnegative matrix Σ, denote by determinantK(Σ) the determinant of the r×r
sub–matrix (Σkl : k, l ∈ K), and set

determinant(r; Σ) :=
∑
K∈Ar

determinantK(Σ).

Observe that determinant(d; Σ) = determinant(Σ), and determinant(1; Σ) is
the trace of Σ.

Lemma 3.2. The matrix Σ has eigenvalues

λ(1) ≥ . . . λ(d) ≥ 0,

and, for r = 1, . . . , d:

1

d(d− 1) . . . (d− r + 1)
determinant(r; Σ)

≤ λ(1)λ(2) . . . λ(r) ≤ determinant(r; Σ).

In addition,

1 ≤ r ≤ d =⇒

{
r ≤ rank(Σ) =⇒ determinant(r; Σ) > 0

r > rank(Σ) =⇒ determinant(r; Σ) = 0,

11



and, for all 2 ≤ r ≤ d,

r!

d!

determinant(r; Σ)

determinant(r − 1; Σ)
≤ λ(r) ≤ d!

(r − 1)!

determinant(r; Σ)

determinant(r − 1; Σ)
.

Set

L(r)T :=

∫ T

0

λ(r)s ds.

Our aim is to determine the largest integer r such that L(r)T is significantly
larger than L(r + 1)T . For example, if, say, L(2)T is fifty times larger than
L(3)T , the explicative Brownian motion can reasonably be chosen as 2. We
cannot be more precise: the meaning of ’significantly’ actually depends on
each particular application and on the desired accuracy on the model. Any-
how, the issue is close to the following one: determine the largest integer r
such that

L̄(r)T :=

∫ t

0

λ(1)s . . . λ(r)s ds

is significantly larger than L̄(r + 1)T . From a numerical point of view, L̄(r)T
is not easier to approximate than L(r)T by using observations of a trajectory
of (Xt) because eigenvalues are difficult to compute with a good accuracy.
However, Lemma 3.2 shows that L̄(r)T has the same order of magnitude as

L(r)T :=

∫ t

0

determinant(r; cs) ds,

which is easier to estimate because determinants are easier to compute than
eigenvalues. However, in practice, one does not observe the process (ct):
we only observe the process (Xt) at discrete times iT/n. We thus need to
construct estimators of L(r)T which solely depend on such observations. To
this end we set

ζ(r)ni :=
r∑
j=1

(∆n
i+j−1X) (∆n

i+j−1X)∗,

with
∆n
iX := XiT/n −X(i−1)T/n.

Denoting by [x] the integer part of x we also set

L(r)nt :=
nr−1

T r−1 r

[nt/T ]−r+1∑
i=1

determinant(r; ζ(r)ni ).
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The following theorem shows that the estimator L(r)nt converges to L(r)t and
precises the convergence rate.

Theorem 3.3. The variablesL(r)nt converge in probability toL(r)t uniformly
in t ∈ [0, T ].

The processes
V (r)nt :=

√
n (L(r)nt − L(r)t)

converge stably in law to a non-homogeneous Brownian motion (V (r)t)1≤r≤d
defined on an extension of the original space.

The preceding theorem allows us to develop estimators of explicative
Brownian dimensions based on relative thresholds. Set

R(ω)t := sup
s∈[0,t]

rank(cs(ω)).

Consider the following scale invariant estimator of Rt:

Rn,t := inf
(
r ∈ {0 . . . , d− 1} : L(r + 1)nt < ρnt

−1/r(L(r)nt )(r+1)/r
)
,

where ρn is a given sequence of thresholds tending to 0 when n goes to infin-
ity. We have the following convergence theorem:

Theorem 3.4. For all r, r′ in {1, . . . , d}, provided P(Rt = r′) > 0, we have

P(Rn,t 6= r | Rt = r′) −→

{
1 if r 6= r′,

0 if r = r′.

From a practical point of view, this result is less useful as it seems to be
because, so far, the convergence rate of P(Rn,t 6= r | Rt = r′) is an open prob-
lem. In [40] one can find other examples of tests, all of them suffering from
similar lacks of knowledge on their accuracies, and some numerical examples
which illustrate the sensitivity of reasonable choices of explicative Brownian
dimensions to the frequency T/n of the observations. Consequently, the dif-
ficulty to extract the number of sources of randomness from historical data
must be taken into account when evaluating the robustness of strategies to
model uncertainties.
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3.2 Testing whether the noise has jumps
In all this paper, as in the preceding subsection, we will suppose that the
market and the market model obey dynamics driven by Brownian motions.
Of course, this hypothesis is questionable. A remarkable work by Aı̈t-Sahalia
and Jacod [3] allows one to test whether a price process observed at discrete
times is continuous or jumps. The observed process (Xt) is supposed to be of
the following type:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdBs +

∫ t

0

∫
R
κ ◦ δ(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
R
(δ(s, x)− κ ◦ δ(s, x))µ(ds, dx).

Here, B is a Brownian motion, µ is a Poisson random measure with an inten-
sity measure of the form ν(ds, dx) = ds ⊗ dx; the function κ is continuous
and locally equal to x around the origin; the processes (bs), (σs) are optional,
and the random function δ(s, ·) is predictable and uniformly bounded in ω and
time by a deterministic function γ such that

∫
R min(γ(x)2, 1)dx < ∞. The

authors require a few more technical conditions which are not limitative for
applications in Finance (for example, the process (σt) is supposed to be of the
same type as (Xt) itself).

Let ∆n be a sequence of time steps decreasing to 0. Given the observations
of (Xt) at the times i∆n, Aı̈t-Sahlia and Jacod’s test statistics is

Ĉ(p,∆n)t :=

∑t/∆n

i=1 |X2i∆n −X2(i−1)∆n|p∑t/∆n

k=1 |Xi∆n −X(i−1)∆n|p
.

Theorem 3.5. Under the above assumptions, for all t > 0 and p > 2 the
variables Ĉ(p,∆n)t converge in probability when n goes to infinity to

I{ω;s→Xs(ω) is continuous on [,t]} + 2
p
2
−1I{ω;s→Xs(ω) is discontinuous on [,t]}.

We deduce from this theorem that a reasonable decision rule consists in
accepting the hypothesis “the process (Xt) is discontinuous” when Ĉ(p,∆n)t <
1+2p/2−1

2
, and rejecting it when Ĉ(p,∆n)t ≥ 1+2p/2−1

2
. For precise critical re-

gions, asymptotic levels, power functions, and illustrative empirical studies,
see [3]. When applied to real historical data (Dow Jones Industrial Average
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stock prices in 2005), observations each 5 seconds lead to the conclusion that
most of the prices should be modelled by models with jumps. However, as
predicted by the theoretical results, observations each 30 seconds do not al-
low one to get a significant information from the test. Therefore, model risk
studies should include computations of sensitivities of portfolios w.r.t. jump
components in the driving noise of the model.

In conclusion, whereas Brownian models are commonly used to compute
prices and deltas, it seems that driving noises with jumps should also be con-
sidered – especially for prices or physical variables observed at low frequen-
cies since, in such a case, it is impossible to test the (dis)continuity hypothesis.

3.3 Estimation of constant volatilities
In this subsection we will see that, in the case of the log-normal model, es-
timators of the volatility have a relative quadratic mean error of order 1√

n
;

therefore the estimation error may be large with high probabilities when the
prices are observed hourly.

Given a time interval [0, T ] and a subdivision of the time interval [0, T ]
with step T

n
, the discrete quadratic variation of (Wt) between 0 and T is de-

fined as

V n
T :=

n−1∑
i=0

(W(i+1)T/n −WiT/n)2.

Proposition 3.6. For all T > 0, V n
T tends to T almost surely when n tends to

infinity.

Proof. In view of the Borel–Cantelli lemma, it is enough to prove that

∞∑
n=1

E(V n
T − T )4 <∞.

Let (Gi) be a sequence of independent Gaussian random variables with

15



zero mean and unit variance. Let αi := G2
i − 1. We have:

E(V n
T − T )4 =

T 4

n4
E

[
n∑
i=1

αi

]4

=
T 4

n4

 n∑
i=1

Eα4
i +

n∑
i,j=1
i 6=j

Eα2
iEα2

j


=
T 4

n4

(
nEα4

1 + n(n− 1)(Eα2
1)2
)

≤ CT 4

(
1

n2
+

1

n3

)
.

Now consider the Black and Scholes model with parameters µ and σ, and
lt Xµ,σ

t be the logarithm of the stock

Xµ,σ := log(S0) +

(
µ− 1

2
σ2

)
t+ σWt.

The statistical structure is the space C([0, T ],R) of continuous functions
equipped with its Borel sigma–field and the family of probability measures{

PXθ

T := PXµ,σ

T , θ := (µ, σ) ∈ Θ := R× R+

}
.

Denote by EXµ,σ

T the expectation under the probability law PXµ,σ

T .
The next proposition shows that the estimation of σ2 can be accurate only

when the price is observed at high frequencies.

Proposition 3.7. For all function π in C([0, T ],R), set

Σn
T (π) :=

1

n− 1

{
n

T

n−1∑
i=0

(π((i+ 1)T/n)− π(iT/n))2 − (π(T )− π(0))2

T

}
.

The estimator Σn
T is unbiased, that is,

∀(µ, σ) ∈ Θ, EXµ,σ

T (Σn
T ) = σ2.

16



In addition, the variance EXµ,σ

T |Σn
T − σ2|2 of the estimation error is equal

to
2σ2

n− 1
, which is the minimal error variance within the class of the estima-

tors of σ2 requiring n observations in the time interval [0, T ].
Finally, the estimation is strongly consistent: for PXµ,σ

T -almost all contin-
uous map π,

lim
n→∞

Σn
T (π) = σ2.

The proof of the previous proposition easily results from

n−1∑
i=0

(Xµ,σ
(i+1)T/n −X

µ,σ
iT/n)2 =

(
µ− σ2

2

)2
T 2

n
+ 2

(
µ− σ2

2

)
σWT

T

n
+ σ2V n

T .

3.4 Estimation of non constant volatilities
In this subsection we present non parametric estimation procedures for stochas-
tic volatilies of Markov type.

Consider a Rr valued Brownian motion (Wt) and the Rd valued process
diffusion process

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(Xs)dWs.

We aim to approximate the function σ(·)2. From the observation of a single
trajectory in a fixed time interval [0, T ],

Let (hn) be a sequence of real numbers tending to 0. Consider the estima-
tor

Σn
T (π, x)

:= n

∑n−1
i=0 I[|π(iT/n)−x|<hn] [π((i+ 1)T/n)− π(iT/n)] [π((i+ 1)T/n)− π(iT/n)]∗

T
∑n−1

i=0 I[|π(iT/n)−x|<hn]

,

where ∗ stands for the transposition of a vector in Rd.

Theorem 3.8. Suppose that the function b and σ are Lipschitz, b is bounded,
and σ(x)σ(x)∗ is a bounded and invertible matrix for all x ∈ Rd. Suppose
that

lim
n→∞

nh4
n

(log(hn))2
= +∞.
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Set
Tx(ω) := inf{t > 0;Xt(ω) = x}.

Then

∀δ > 0, lim
n→∞

P [ω ∈ [Tx < T ]; |Σn
T (X·(ω), x)− σ(x)σ(x)∗| > δ] = 0.

The estimator is said weakly consistent. Its slow convergence rate is pre-
cised in the following statement

Theorem 3.9. Suppose that the function b and σ are Lipschitz, infinitely dif-
ferentiable, and bounded. Suppose that, for all x ∈ Rd, the matrix σ(x)σ(x)∗

is invertible with a bounded inverse matrix. Set

Nn :=
n−1∑
i=0

I[|π(iT/n)−x|<hn].

Assume that the sequence of windowings hn satisfies:{
limn→∞ nh

3
n = +∞ if d = 1,

limn→∞ nh
2
n = +∞ and limn→∞(nαnh

2
n) = 0 if d ≥ 2,

where

αn :=


2hn if d = 1,

h2
n ln

(
1
h2
n

)
if d = 2,

h2
n if d ≥ 3.

Then, conditionnaly to X0 = x,
√
Nn [{(σσ∗)(x)}−1Σn

T (π, x)− IdRd ] con-
verges in distribution to

√
2N (0, IdRd).

For proofs and limit theorems, see Florens-Zmirou [31] for the one-dimen-
sional case, and Brugière ([19], [20]) for the multi-dimensional case. Other
techniques exist, for example wavelet estimators whose convergence rate in a
minimax sense cannot be better as n−2 when observations are made at times
iT/n: see, e.g., Hoffmann ([36] and [37]).
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3.5 Introduction to the estimation of drift parameters
We have just seen that estimation procedures for the volatility have weak con-
vergence rates. In this subsection we will see that the situation is not better
when one aims to estimate drift parameters, which is an important issue for
optimal portfolio management problems, and also for option hedging prob-
lems since the simulation of P & L processes of the type (5) requires to know
the dynamics of (St) under the historical probability.

We briefly describe a classical statistical procedure, namely, the maximum
likelihood estimator (see, e,g. Lipster and Shiryayev [49] or Kutotants [46]).

Consider the case of a diffusion process whose diffusion coefficient is per-
fectly known but drift coefficient depends on an unknown parameter θ (think
of the instantaneous rate of return of an asset under the historical probability
measure, or of the drift parameters of a mean reverting model for short term
interest rates). Therefore we are given a family of functions {bθ(x), θ ∈ Θ}
and an observation time interval [0, T ]. The corresponding statistical structure
consists in the set S := C([0, T ],R) equipped with the Borel sigma–field BT
and the collection of probability measures {PXθ

T , θ ∈ Θ} where PXθ

T denotes
the law PXθ on the time interval [0, T ] of the unique solution of

Xt = X0 +

∫ t

0

bθ(Xs)ds+

∫ t

0

σ(Xs)dWs.

One is given an open set Θ ⊂ R`, a function b defined on Θ × R+ × R,
a function σ defined on R+ × R, a real number X0 and a standard Wiener
process (Wt), and

Xθ
t = X0 +

∫ t

0

b(θ, s,Xθ
s )ds+

∫ t

0

σ(s,Xθ
s )dWs, t ≥ 0.

Notice that, in this model, the diffusion coefficient σ does not depend on
the parameter θ. This hypothesis is necessary to construct maximum like-
lihood estimators because they are derived from Girsanov’s theorem. The
statistical structure is

{C(0, T ; R),BT , {PX
θ

T }, θ ∈ Θ}.

Construct a reference probability measure as follows: choose a particular
value θ0 ∈ Θ and set Yt := Xθ0

t ; the reference probability measure is the law
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P Y
T of the process (Yt) which, by definition, solves

Yt = X0 +

∫ t

0

b(θ0, s, Ys)ds+

∫ t

0

σ(s, Ys)dWs.

More generally one may choose (Yt) as the solution of

Yt = X0 +

∫ t

0

β(s, Ys)ds+

∫ t

0

σ(s, Ys)dWs,

where β is a function so simple as possible which may not be of the form
b(θ0, s, x): for example, one often chooses β ≡ 0.

Suppose thatX0 and the functions bY (t, x) := β(t, x), bX(t, x) := b(θ, t, x)
and σX(t, x) := σ(x) satisfy the hypotheses of Girsanov’s theorem for all θ
in Θ. Then PXθ

T is absolutely continuous with respect to PYT . The model is
said dominated by PYT .

For all fixed continuous function π of [0, T ] to R, the (possibly empty) set
of θ in Θ where the likelihood ratio

dPXθ

T

dPYT
(π)

reaches it maximum value, is denoted by

Argmax
θ∈Θ

{
dPXθ

T

dPYT
(π)

}
.

By definition, a likelihood estimator is a functional θ̂T from C(0, T ; R) to
Θ such that

∀π ∈ C(0, T ; R), θ̂T (π) ∈ Argmax

{
dPXθ

T

dPYT
(π)

}
.

From Girsanov’s theorem, for almost every π

dPXθ

T

dPYT
(π)

is strictly positive. Therefore it holds that

θ̂T (π) ∈ Argmax
θ∈Θ

{
log

dPXθ

T

dPYT
(π)

}
.
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The map

π −→ LT (π) := log
dPXθ

T

dPYT
(π)

is called the log–likelihood ratio.
In practice, to get an explicit expression for maximum likelihood estima-

tors, one may have to integrate by parts stochastic integrals. The mechanism
is as follows. Consider the S.D.E.

dXt = α(Xt)dt+ dWt.

Suppose that the drift α is such that there exists a strong solution Xt which
does not explode in finite time. Then the Girsanov theorem holds true: for all
T > 0, the law PX of (Xt, t ≤ T ) is absolutely continuous w.r.t. the law PW
of (Wt, t ≤ T ), and the Radon-Nikodym density dPX

PW is

ZT (W•(ω)) :=
dPX

dPW
(W•(ω))

= exp{
∫ T

0

α(Ws)dWs(ω)− 1

2

∫ T

0

α2(Ws(ω))ds}.

SetA(x) :=
∫ x

0
α(z)dz. Assuming that the function α is smooth, we have:

ZT (W•) = exp{A(WT )− A(0)− 1

2

∫ T

0

(α2(Ws) + α′(Ws))ds},

and thus one can define a map ZT on the whole space of continuous functions
by

ZT (π) = exp{A(πT )− A(0)− 1

2

∫ T

0

(α2(πs) + α′(πs))ds}.

Example 1: Lognormal model. Consider

Xt = log(S0) + (µ− 1

2
σ2)t+ σWt.

Suppose that the volatility σ is known. In view of an observation of the
stock price (or, equivalently, of the logarithm of the stock price), one wants to

estimate the parameter θ := µ− 1

2
σ2. The statistical structure is

{C(0, T ; R),BT , {PX
θ

T , θ ∈ R}},
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where PXθ denotes the law of the process Xθ:

Xθ
t = X0 + θt+ σWt.

A natural reference law is the law PYT of

Yt = X0 + σWt.

The corresponding likelihood ratio is

LT (π) =
θ

σ2
(π(T )− π(0))− θ2T

2σ2
,

since

dPXθ

T

dPYT
(Y·(ω)) = exp

{(∫ T

0

θ

σ2
dYs

)
(ω)− 1

2

∫ T

0

θ2

σ2
ds

}
P− a.s.

= exp

{
θ

σ2
(YT (ω)− Y0)− θ2T

2σ2

}
P− a.s.

Thus

θ̂T (π) :=
π(T )− π(0)

T

is a maximum likelihood estimator of θ = µ− σ2

2
. Notice that the estimation

error

θ̂T − θ =
Xθ
T −X0

T
= σ

WT

T
, PXθ

T − a.s

tends to 0 in view of the Iterated Logarithm Law for the Brownian Motion.
Notice also that, under PXθ

T ,
√
T (θ̂T − θ) converges in distribution to a Gaus-

sian law: the convergence rate is low.

Example 2: A simplified Vasicek model. Consider

Xθ
t = x− θ

∫ t

0

Xθ
sds+ dWt.

Set (Yt) := (Wt). The corresponding log-likelihood ratio satisfies

LT (Y·(ω)) = −θ
(∫ T

0

YsdYs

)
(ω)− 1

2

∫ T

0

θ2Y 2
s (ω)ds

= −θ
(∫ T

0

WsdWs

)
(ω)− θ2

2

∫ T

0

W 2
s (ω)ds P− a.s.
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Consequently,

θ̂T (W·(ω)) =
−
(∫ T

0
WsdWs

)
(ω)∫ T

0
W 2
s (ω)ds

=
T −W 2

T (ω)

2
∫ T

0
W 2
s (ω)ds

P− a.s.,

and

θ̂T (π) :=
T − π(T )2

2
∫ T

0
π(s)2ds

.

The estimation error satisfies

θ̂T − θ =

∫ T
0
Xθ
sdWs∫ T

0
(Xθ

s )2ds
, PXθ

T − a.s.

The a.s. convergence when T goes to infinity and the asymptotic normal-
ity of the normalized estimation error readily follow from the theorems 3.10
and 3.11 in the next subsection.

3.6 Convergence of maximum likelihood stimators
In the preceding subsections we have examined the convergence and the fluc-
tuations of maximul likelihood estimators when the observation time length
T goes to infinity. This point of view is open to criticism in finance where
models cannot remain unchanged during large periods. In addition, the anal-
ysis of the estimators require structure hypotheses such as linearity (as in the
last example in the preceding subsection) or ergodic properties (whose study
is far from the objective of the present notes and, except for interest rate mod-
els for which a kind a stationarity is natural, cannot reasonably be assumed):
these structure hypotheses are aimed to be in a position to apply the two fol-
lowing limit theorems for normalized Brownian stochastic integrals: see, e.g.,
Basawa and Prakasa Rao [13].

Theorem 3.10. Let (Wt) be a standard Wiener process on a filtered probabil-
ity space (Ω,F ,P, (Ft)). Let (ft) be a (Ft)-adapted process satisfying∫ T

0

f 2
t dt <∞ P− a.s for all T > 0,
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and ∫ ∞
0

f 2
t dt =∞ P− a.s.

Then

lim
t→∞

∫ t
0
fθdWθ∫ t

0
f 2
θ du

= 0 P− a.s.

Theorem 3.11. Let (Wt) be a m-dimensional standard Wiener process on a
filtered probability space (Ω,F ,P, (Ft)). Let (Ft) be a (Ft)-adapted process
taking values in the set of the matrices of dimension n×m and satisfying

E
∫ T

0

|F ik
t |2dt <∞ for all T > 0, i = 1, . . . , n, k = 1, . . . ,m.

Suppose that there exist constants cij such that

T−1

∫ T

0

m∑
k=1

F ik
t F

jk
t dt

P−→
T→∞

cij for all i, j = 1, . . . , n.

Then

lim
T→∞

T−1/2

∫ T

0

FsdWs = N ((0, . . . , 0), C := (cij)n,n),

where N ((0, . . . , 0), C) denotes the Gaussian law on Rn of zero mean and
covariance matrix equal to C.

For the statistical applications of the two preceding theorems, we refer to
the references at the beginning of this section.

We now focus on the vanishing volatilities asymptotics. Consider models
with small volatilities. Let Θ be an interval (α, β), and let (Xθ

t (ε)) be the one
dimensional process solution of

Xθ
t (ε) = x+

∫ t

0

b(θ, s,Xθ
s (ε))ds+ εWt,

where (Wt) is a one dimensional Wiener process and θ belongs to Θ.
Let (Yt(ε)) be the solution to

Yt(ε) = x+ εWt.

24



Denote by θ̂T (ε, π) the maximum likelihood estimator defined as a value of θ
which maximizes

dPX
θ(ε)

T

dPY (ε)
T

(π).

Denote by (Xθ
t (0)) the solution to the ordinary differential equation

Xθ
t (0) = x+

∫ t

0

b(θ, s,Xθ
s (0))ds,

and set

JθT :=

∫ T

0

∣∣∣∣ ∂∂θb(θ, s,Xθ
s (0))

∣∣∣∣2 ds.
The proof of the following result can be found, e.g., in Kutoyants [46].

Theorem 3.12. Suppose that the functions b(θ, t, x), θ → b(θ, t, x), and
∂
∂θ
b(θ, t, x) are smooth. In addition, suppose

(i) For all θ ∈ Θ, JT (θ) > 0.

(ii) For all θ1, θ2 ∈ Θ, if θ1 6= θ2 then∫ T

0

|b(θ1, s, Ys(ε))− b(θ2, s, Ys(ε))|2 ds > 0.

Then all maximum likelihood estimator of θ in Θ is weakly consistent:
δ > 0 and for all θ ∈ Θ,

lim
ε→0

PX
θ(ε)

T

[
π ∈ C([0, T ]; R); |θ̂T (ε, π)− θ| > δ

]
= 0.

In addition, for all y ∈ R and for all θ ∈ Θ,

lim
ε→0

PX
θ(ε)

T

[
π ∈ C([0, T ]; R);

θ̂T (ε, π)− θ
ε

≤ y

]
= F θ

T (y),

where F θ
T is the distribution function of the Gaussian law with zero mean and

variance equal to 1/JθT .

For expansions of the estimation error, see Yoshida [68].
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3.7 Cramer–Rao lower bounds
This subsection shows that, for all T > 0, there does exists a strictly positive
and universal lower bound for the quadratic norms of the estimation errors
resulting from estimators of drift parameters which are based on observations
during the time interval [0, T ].

We are given an open set Θ ⊂ R and a family of functions {b(θ, ·), θ ∈ Θ}
from R to R. Suppose that, for each θ ∈ Θ, the function x ∈ R → b(θ, x) is
Lipschitz.

Consider the model

Xθ
t = X0 +

∫ t

0

b(θ,Xθ
s )ds+Wt,

where (Wt) is a standard one dimensional Brownian motion.
Notice that here the diffusion coefficient is identically equal to 1. This

simplifies the notation and is not a restriction if the diffusion coefficient σ is
differentiable and satisfies

∃α > 0, σ(x) > α > 0 for all x ∈ R.

Indeed, it then suffices to transform the observations by means of the one-to-
one function

∫ x
0

1
σ(z)

dz.
Suppose that, for each θ ∈ Θ, the function x ∈ R → b(θ, x) is Lipschitz.

Let PXθ be the law of (Xθ
t ) and let EXθ

T denote the expectation corresponding
to PXθ

T . Suppose that the function

IT (θ1, θ2) := EXθ1

T

∫ T

0

∣∣∣∣∂b∂θ (θ2, π(s))

∣∣∣∣2 ds
is strictly positive and continuous in (θ, θ) for all θ in Θ.

Under some other weak technical conditions which we do not list here, for
all estimator θ̂T of θ based upon an observation between times 0 and T such
that the function

QT (θ) := EXθ

T (θ̂T − θ)2

is bounded on compact sets, the bias

βT (θ) := EXθ

T (θ̂T − θ)
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is differentiable w.r.t. Θ, and the quadratic estimation error is bounded from
below:

EXθ

T (θ̂T − θ)2 ≥ (1 + β′T (θ))2

IT (θ, θ)
+ βT (θ)2 for all θ ∈ Θ.

The right hand side is the Cramer–Rao lower bound. For a proof, see, e.g.,
Kutoyants [46].

Example. Consider
Xθ
t = X0 + θt+ σWt.

Set Zθ
t :=

Xθ
t

σ
, that is,

Zθ
t =

X0

σ
+
θ

σ
t+Wt.

The Cramer–Rao lower bound implies that the estimation of θ
σ

based upon
the observation of one trajectory of (Zθ

t ) in the time interval [0, T ], cannot
have an accuracy (in quadratic norm) better than σ√

T
. Therefore the values of

volatilities σ and maturities T which are used in practice imply that estimation
errors for drift parameters are large.

3.8 On calibration methods in Finance
So far, our discussion on the construction of financial models for stock prices
followed a purely statistical point of view: we thus considered that the history
of the stock price is the only available information on the market. Of course,
this is not true since one can also see on the market the prices of derivatives
based on the stock under consideration, the prices of stocks of companies
which belong to the same economic sector, etc. In this subsection we present
a few attempts to use all these informations to calibrate stochastic models.
The data set is now a sample χ of a random vector ξ which represents mar-
ket prices of products related to the asset under consideration (e.g., forward
contracts, derivatives,. . . ). Practitioners have developed complex numerical
procedures to make models fit such data sets. We here present a couple of
methods without comparing their efficiency, which seems to be an ill-posed
problem because of the transitory nature of models in finance. In addition,
the empirical results obtained par Schoutens et al. [59] show that calibration
methods based on vanilla option prices may not allow one to discreminate
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very different models substantially. Finally, the optimization steps involved
in calibration methods based on inverse PDE problems let the author think
that, when the practitioners do not agree on the value of the volatility of a
stock to price derivatives on this stock (for example, because of the nervosity
of the market), then the calibration methods do likely not allow one to derive
from the data models which are robust in the sense that hedging portfolios
have weak sensitivities w.r.t. the modelers’ degrees of freedom.

Let X be the state space of ξ. The set of calibration measures is

Pχ :=
{
Q probability on X equivalent to P, EQ[ξ] = χ

}
.

How to choose an ‘optimal’ element of Pχ? Different approaches have been
developed by various authors: inverse problem techniques for the PDEs as-
sociated to option prices, optimization techniques combined with the Dupire
PDE, optimisation techniques designed to fit the model and historical data,
entropy minimization techniques, etc. The short discussion below shows that,
in all cases, it is numerically difficult to obtain the solution(s) with good ac-
curacies.

Calibration from Dupire PDE (from Achdou and Pironneau [2]). Let
C(T,K) denote the price of a Call European option with maturity T and
strike K. Suppose than an asset has a local volatility σ(t, x).

The Dupire PDE is

∂C

∂T
− 1

2
σ2(T,K)K2 ∂

2C

∂K2
+ r K

∂C

∂K
= 0

with boundary condition

C(0, K) = (S0 −K)+.

Given observed option prices Pj , the choice of a local volatility model
may result from a minimizing procedure involving a parameter α and weights
ωj:

min
α

{∑
j

ωj|C(Tj, Kj)− Pj|2,

C solution of the Dupire PDE governed by σ2
α(t, x)

}
.
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For example, the parameter α may be defined by means of the Fourier decom-
position

σ2
α(t, x) = σ0 +

∑
`

Re(σ`e
2iπt) e−λ(x−ρ`),

where σ0, λ and ρj are suitably chosen constants. Numerically, the optimi-
sation procedure may be achieved by using gradient methods. We briefly
describe these methods.

Consider a functional J from RN to R. When J is lower semicontinuous,
bounded from below and coercive (i.e, lim|x|→∞ J(x) = +∞), J admits at
least one minimum. The minimum is unique when J is strictly convex. Sup-
pose that J is differentiable. Then each minimum a∗ satisfies ∇J(a∗) = 0.
The standard Gradient method is the induction

an+1 = an − ρn∇J(an),

where the weights ρn are chosen such that

J(an − ρn∇J(an))

is as small as possible: for example, one can solve a new minimization prob-
lem at each step n. Conjugate gradient methods are defined as follows. Set

an+1 := an + ρndn,

where
dn := −∇J(an) + γndn−1,

and ρn minimizes J(an + ρdn). Possible choices of γn are:

Fletcher-Reeves: γn :=
|∇J(an)|2

|∇J(an−1)|2
,

Polak-Ribières: γn :=
∇J(an) · (∇J(an)−∇J(an−1))

|∇J(an−1)|2
,

Hestenes-Stiefel: γn :=
∇J(an) · (∇J(an)−∇J(an−1))

dn−1(∇J(an)−∇J(an−1))
.
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Avellaneda and Samperi approach for volatility calibration (from Achdou
and Pironneau [2]). We briefly describe Avellaneda-Friedman-Holmes-Samperi’s
approach for the calibration of volatilities (for more details on this approach
and other approaches, see, e.g., Avellaneda et al. [6] and the volume edited by
Avellaneda [5], and references therein).

Consider an asset whose volatility process (σt) is progressively measur-
able and satisfies

0 < σ ≤ σt ≤ σ

for some deterministic constants σ and σ. The set of all such processes is
denoted byH.

Suppose that the market is complete and that various European options are
priced on the market, all the maturities belonging to the time interval [0, T ].
Avellaneda’s approach for calibration volatility consists in choosing a smooth
and strictly convex function H defined on R+ with minimal value 0 at at
given value σ0 (resulting, e.g., from statistics based on historical data), and
searching the process (σt) which solves

sup
(σt)∈H

−Eσ

∫ T

0

exp(−rθ)H((σθ)
2)dθ.

Denote the observed option prices by Pk, their maturities by Tk, and their
payoff functions by Φk. Then set

f(σ·) := −Eσ

∫ T

0

exp(−rθ)H((σθ)
2)dθ,

gk(σ·) := Eσ(exp(−rTk)Φk(STk)).

One aims to solve

sup
(σt)∈H

inf
µk

(f(σ·) +
∑
k

µk(gk(σ·)− Pk)).

Of course, one has

sup
(σt)∈H

inf
µk

(f(σ·) +
∑
k

µk(gk(σ·)− Pk))

≤ inf
µk

sup
(σt)∈H

(f(σ·) +
∑
k

µk(gk(σ·)− Pk)).
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The left hand-side is the primal problem, the right hand-side is the dual prob-
lem. The difference is the duality gap. So far, the dual program only is well
understood and solved by relying it to a family of stochastic control problems
(for fixed µ’s), and an optimisation algorithm to minimize w.r.t. µ. The global
accuracy of this numerical algorithm seems an open problem.

On El Karoui and Hounkpatin’s calibration method. Consider the en-
tropy

H(Q,P) :=

∫
log

{
dQ
dP

}
dQ if Q << P, +∞ otherwise.

Observe that H(Q,P) is positive, and that H(Q,P) = 0 iff P = Q. We
remind that

|P−Q|Var :=

∫ ∣∣∣∣ dPdR − dQ
dR

∣∣∣∣ dR,
where

R :=
P + Q

2
.

Observe also that P << R and Q << R; if Q ∼ P, then

|P−Q|Var =

∫ ∣∣∣∣dQdP − 1

∣∣∣∣ dP.
In addition, if Q and P are probabilities such that Q << P, then

|P−Q|2Var ≤ 2H(Q,P).

The following theorem is due to Csiszar [25].

Theorem 3.13. Let A be a convex set of probabilities on X. Suppose that A
is closed for the total variation norm topology, and

∃Q0 ∈ A, H(Q0,P) <∞.

Then there exists a unique Q∗ ∈ A such that

H(Q∗,P) = inf
Q∈A

H(Q,P).
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In addition, if

A :=

{
Q;

∫
fidQ = ai for all 1 ≤ i ≤ N

}
for some prescribed N , ai, fi, and if ∃Q ∈ A, Q ∼ P, then

dQ∗

dP
=

exp(
∑N

i=1 λ
∗
i fi)∫

exp(
∑N

i=1 λ
∗
i fi)dP

,

where λ∗ solves

max
λ∈RN

{
N∑
i=1

λiai − log

∫
exp(

N∑
i=1

λifi)dP

}
.

We may apply Csiszar’s theorem to calibrate the probability Q. Indeed,
suppose that the asset price solves

dXt = b(t,Xt)dt+ σ(t,Xt)dBt.

For ξ of the form φ(XT ), set

h(t, x, λ) := EP

{
exp(

∑N
i=1 λiξ

i
T )

EP exp(
∑N

i=1 λiξ
i
T )

∣∣∣Xt = x

}
.

Under Q∗, the dynamics of (Xt) is

dXt = (b(t,Xt) + σ(t,Xt)
2∂x log h(t,Xt, λ

∗))dt+ σ(t,Xt)dB
∗
t , t ≤ T,

where (B∗t ) is a Brownian motion under Q∗, and λ∗ solves

max
λ∈RN

{
N∑
i=1

λiχi − log EP exp(
N∑
i=1

λiξ
i
T )

}
.

Numerically, a crucial issue concerns the approximation of the unknown
λ∗, h(t, x, λ∗), ∂h

∂x
(t, x, λ∗). So far, this interesting question does not seem to

have been addressed in the literature.
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4 Approximation of Quantiles of Diffusion Pro-
cesses

We have just seen that it is a hard issue to calibrate financial models with a
good accuracy. Therefore Monte Carlo simulations are commonly used to
compute VaR indicators for P & L processes related to misspecified strategies
or, more generally, to develop risk analyses. In this section we discuss the
accuracy of these simulations when one aims to approximate quantiles of the
P & L at maturity. The results come from Talay and Zheng ([66], [65]).

Consider the stochastic differential equation

Xt(x) = x+

∫ t

0

A0(s,Xs(x))ds+
r∑
i=1

∫ t

0

Ai(s,Xs(x))dW i
s ,

driven by by a r-dimensional Brownian motion (Ws), and the Euler scheme

Xn
(p+1)T/n(x) = Xn

pT/n(x) + A0(pT/n,Xn
pT/n(x))

T

n

+
r∑
i=1

Ai(pT/n,X
n
pT/n(x))(W i

(p+1)T/n −W i
pT/n).

Here, the functionsA0, A1, . . . , Ar are smooth functions with bounded deriva-
tives. For technical reasons we consider the perturbed Euler scheme

X̃n
T (x) = Xn

T (x) + Zn,

We aim to get error estimates for the approximation by the perturbed Eu-
ler scheme of the quantile of level δ, ρ(x, δ), of the law of Xd

T (x). Notice that
we constraint themselves to consider the quantile of one component of a dif-
fusion process(Xt(x)) , and we do not suppose that the Malliavin covariance
matrix of (Xt(x)) is invertible. Actually, we are motivated by financial sit-
uations where (X1(t, x), . . . , Xd−1(t, x)) are stock prices (and possibly aux-
iliary processes involved in interest rate dynamics or stochastic volatilities),
and Xd(t, x) is the value at time t of a portfolio whose initial value is xd.
However, we start with the simpler case where the Malliavin covariance ma-
trix of the whole vector XT (x) has good properties. For a while, consider the
system with time homogeneous coefficients:

Xt(x) = x+

∫ t

0

A0(Xs(x))ds+
r∑
i=1

∫ t

0

Ai(Xs(x))dW i
s .
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For multi-indices α = (α1, . . . , αk) ∈ {0, 1, . . . r}k set A∅i = Ai and, for
0 ≤ j ≤ r, A(α,j)

i := [Aj, A
α
i ]. Also set

VL(x, η) :=
r∑
i=1

∑
|α|≤L−1

< Aαi (x), η >2,

and
VL(x) := 1 ∧ inf

‖η‖=1
VL(x, η).

Suppose

(UH) CL := infx∈Rd VL(x) > 0 for some integer L,

and

(C) The coefficients Aji , i = 0, . . . , r, j = 1, . . . , d are of class C∞b (Rd) (the
Aji ’s may be unbounded).

Under (UH) and (C), the law of XT (x) has a smooth density pT (x, x′),
so that the d-th marginal distribution of XT (x) also has a smooth density
pdT (x, y). strictly positive at all point y in the interior of its support (see, e.g.,
Nualart [52]).

For 0 < δ < 1 set

ρ(x, δ) := inf{ρ ∈ R; P[Xd
T (x) ≤ ρ] = δ}

and
ρ̃n(x, δ) := inf{ρ ∈ R; P[X̃n,d

T (x) ≤ ρ] = δ}.
The rate at which the distribution functions of Xn

T (x) converges to the
distribution function of XT (x) is a particular case of the following estimate.
Let (fn) be measurable and bounded functions. Then (cf. Bally and Talay [9]
under the above hypotheses, and, for extensions, Gobet and Munos [35] and
Kohatsu-Higa [43])

Efn(XT (x))− Efn(Xn
T (x)) = −Cfn(T, x)

n
+
Qn(fn, T, x)

n2
, (7)

and

|Cfn(T, x)|+ sup
n
|Qn(fn, T, x)| ≤ K(T )

T q
(1 + ‖x‖Q) sup

n
‖fn‖∞.

This result does not suffice to describe the convergence rates of quantiles of
Xn
T (x). However, it allows one to get the next theorem.
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Theorem 4.1. Under Conditions (UH) and (C) we have

|ρ(x, δ)− ρ̃n(x, δ)| ≤ K(T )

T q
· 1 + ‖x‖Q

pdT (ρ(x, δ))
· 1

n
,

where
pdT (ρ(x, δ)) = inf

y∈(ρ(x,δ)−1,ρ(x,δ)+1)
pdT (x, y).

We now turn to general stochastic differential equations. Let (X t
s(x
′), 0 ≤

s ≤ T − t) be a smooth version of the flow solution to

X t
s(x
′) = x′ +

∫ s

0

A0(t+ θ,X t
θ(x
′))dθ +

r∑
i=1

∫ s

0

Ai(t+ θ,X t
θ(x
′))dW i

t+θ.

We denote by M(t, s, x′) the Malliavin covariance matrix of X t
s(x
′).

We now suppose:

(C’) The functions Aji , i = 0, . . . , r, j = 1, . . . , d are of class C∞b ([0, T ] ×
Rd) (the Aji ’s may be unbounded).

and

(M) For all p ≥ 1 there exist a non decreasing function K, a positive real
number r, and a positive Borel measurable function Ψ such that∣∣∣∣∣∣∣∣ 1

Md
d (t, s, x′)

∣∣∣∣∣∣∣∣
p

≤ K(T )

sr
Ψ(t, x′)

for all t in [0, T ) and s in (0, T − t]. In addition, Ψ satisfies: for all
λ ≥ 1, there exists a function Ψλ such that

sup
t∈[0,T ]

E[Ψ(t,Xt(x))λ] < Ψλ(x),

and
sup
n>0

sup
t∈[0,T ]

E[Ψ(t,Xn
t (x))λ] < Ψλ(x).
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Under Condition (M), the d-th marginal distribution of XT (x) has a smooth
density pdT (x, y) is strictly positive at all point y in the interior of its support.

We have the following error estimate which is analogous to (7): let (fn)
be bounded functions of class C∞(R) such that

sup
n
‖fn‖∞ <∞.

Suppose that Conditions (M) and (C’) hold. Then

|Efn(Xd
T (x))− Efn(Xn,d

T (x))| ≤ K(T )

T q
(1 + ‖x‖Q)Ψλ(x) sup

n
‖fn‖∞ ·

1

n
.

Notice that we suppose that fn’s are smooth as in Talay and Tubaro [63] who
obtain an expansion of the error. What is new here, and technically demand-
ing, is the control of the error in terms of ‖f‖∞. To obtain (7), the functions
fn were supposed bounded and measurable only because Condition (UH) is
much more restrictive than Condition (M). This explains why an expansion
might not hold true under Condition (M) only. In spite of the limitation to
smooth functions f and an inequality instead of an expansion, the preceding
estimate provides the key result to get the desired convergence rate for the
approximation of quantiles.

Theorem 4.2. Under Conditions (M) and (C’), we have

|ρ(x, δ)− ρ̃n(x, δ)| ≤ K(T )

T q
· 1 + ‖x‖Q

pdT (ρ(x, δ))
·Ψλ(x) · 1

n
,

where
pdT (ρ(x, δ)) = inf

y∈(ρ(x,δ)−1,ρ(x,δ)+1)
pdT (x, y).

The proof of this theorem is based on the following two key lemmas. The
first one results from a Taylor expansion.

Lemma 4.3. It holds that

Ef
(
Xn,d
T (x)

)
− Ef

(
Xd
T (x)

)
= Ef

(
Xn,d
T (x)

)
− Ef

(
X
T−T/n,d
T/n (Xn

T−T/n(x))
)

+
T 2

2n2

n−2∑
k=0

EΦ

(
kT
n
, Xn

kT
n

(x)

)
+

n−2∑
k=0

Rn
k ,
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where Φ is a sum of terms, each of them being of the form ϕ[β(t, x)∂βu(t, x),
and Rn

k is a sum of terms, each of them being of the form

E
[
ϕ\α(kT/n, xnkT/n(x))∫ (k+1)T/n

kT/n

∫ s1

kT/n

∫ s2

kT/n

ϕ]α(s3, X
n
s3

(x))∂αu(s3, X
n
s3

(x))ds3ds2ds1

]
.

The second lemma resembles estimates obtained in Bally and Talay [9]
by using the Malliavin integration by parts formula and controling the inverse
of the Malliavin covariance matrix of (Xt(x)) owing to Condition (UH). In
our context, Condition (M) does not allow one to obtain such controls; how-
ever, Condition (UH) suffices to integrate by parts derivatives of functions of
X t,d
T−d(x

′).

Lemma 4.4. Set
u(t, x′) := E[f(X t,d

T−t(x
′))].

For all multiindex α whose order w.r.t t is no more than 3, and order w.r.t
x is no more than 6, and for any smooth function g with polynomial growth,

∀t ∈ [0, T ], |E[g(Xt(x))∂αu(t,Xt(x))]| ≤ K(T )

T q
(1 + ‖x‖Q)Ψλ(x)‖f‖∞

and

∀t ∈
[
0, T − T

n

]
, |E[g(Xn

t (x))∂αu(t,Xn
t (x))]| ≤ K(T )

T q
(1+‖x‖Q)Ψλ(x)‖f‖∞.

Proof. We observe that

E [g(Xn
t (x))∂αu(t,Xn

t (x))] = E
[
g(Xn

t (x))
{
∂αEf(X t,d

T−t(x
′))
} ∣∣

x′=Xn
t (x)

]
,

and

∂αE[f(X t,d
T−t(x

′))] =

|α|∑
i=1

E
[
f (i)

(
X t,d
T−t(x

′)
)

Θi(T − t, x′)
]
,

where f (i) is the i-th order derivative of f , and Θi(T − t, x′) are sums of
products of ∂β(X t,d

T−t(x
′)) where |β| ≤ |α| − i+ 1. Let X t,d

T−t(X
n
t (x)) denote
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the d-th component of the image of Xn
t (x) by the flow X t

· at time T − t, and
let Md

d (t, T − t;n, x) denote the Malliavin covariance of X t,d
T−t(X

n
t (x)):

Md
d (t, T − t;n, x) :=< D(X t,d

T−t(X
n
t (x)), D(X t,d

T−t(X
n
t (x)) > .

We now are in a position to sketch the proof of the theorem 4.2. Using
standard inequalities (see, e.g., Nualart [53]) one gets∣∣∣∣∣E

[
g(Xn

t (x))
α∑
i=1

E
[
f (i)(X t,d

T−t(x
′))Θi(T − t, x′)

]] ∣∣
x′=Xn

t (x)

∣∣∣∣∣
=

∣∣∣∣∣E
[
g(Xn

t (x))
α∑
i=1

f (i)(X t,d
T−t(X

n
t (x)))Θi(T − t,Xn

t (x))

]∣∣∣∣∣
≤ K(T )(1 + ‖x‖Q)‖f‖∞

∥∥∥∥ 1

Md
d (t, T − t;n, x)

∥∥∥∥`
k

for some integers Q, k and `. As X t,d
T−t(X

n
t (x)) is a good approximation of

Xd
T (x), we can adapt the technique used in Bally and Talay [9] and make use

of Condition (M) to obtain the conclusion of the theorem.
We now show examples where the condition (M) is satisfied. We start

with the partially strictly elliptic case, which concerns, e.g., some models
with stochastic volatilities of the type σ(t, Yt, St), where (Yt) is an auxiliary
diffusion process and σ a function bounded from below by a strictly positive
constant.

Theorem 4.5. Suppose that
∑r

i=1 |Adi (t, x)|2 ≥ a > 0 for some t in [0, T ]
and x in Rd. Then the d-th marginal law of Xt(x) has a smooth density and
satisfies Condition (M).

Our second example concerns the case of the VaR a portfolio. Consider
the following system, where the d − 1 first components are stock prices dy-
namics, and the last one is the value of a self-financing portfolio invested in
these stocks.

Xj
t (x) = xj +

∫ t
0
σj0(s,Xs(x))Xj

s (x)ds

+
∑r

i=1

∫ t
0
σji (s,Xs(x))Xj

s (x)dW i
s , j = 1, . . . , d− 1,

Xd
t (x) = xd +

∑d−1
k=1

∫ t
0
σd0,k(s,Xs(x))Xk

s (x)ds

+
∑r

i=1

∑d−1
k=1

∫ t
0
σdi,k(s,Xs(x))Xk

s (x)dW i
s .
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Suppose that ‖[σdi,k(t, x′)]ξ‖2 ≥ a‖ξ‖2 for all ξ in Rr, and [x1, . . . , xd−1] 6=
0. Then Condition (M) holds true if one uses the ‘modified Euler scheme’

Xn,j
(p+1)T/n(x) = Xn,j

pT/n(x) exp

(
(σj0 −

∑r
i=1

1

2
(σji )

2)(pT/n,Xn
pT/n(x))

T

n

+
∑r

i=1 σ
j
i (pT/n,X

n
pT/n(x))(W i

(p+1)T/n −W i
pT/n)

)
,

j = 1, . . . , d− 1,

Xn,d
(p+1)T/n(x) = Xn,d

pT/n(x) +
∑d−1

k=1 σ
d
0,k(pT/n,X

n
pT/n(x))Xn,k

pT/n(x)
T

n
+
∑r

i=1

∑d−1
k=1 σ

d
i,k(pT/n,X

n
pT/n(x))Xn,k

pT/n(x)

(W i
(p+1)T/n −W i

pT/n).

Finally, we examine a model risk problem. The trader desires to hedge
a European option Φ(B(T0, T )) with T0 < T . To hedge the trader uses the
bond of maturity T and the bond of maturity T0. Suppose that the bond prices
evolve accordingly to an HJM model governed by a deterministic function
σ(t, T ). The exact hedging strategy is

Ht =
∂πσ
∂x

(t, xt(x)),

where πσ solves
∂πσ
∂t

(t, x′) +
1

2
x′2(σ∗(t, T )− σ∗(t, T0))2∂

2πσ
∂x′2

(t, x′) = 0,

πσ(T, x′) = Φ(x′),

where σ∗(t, T ) :=
∫ T
t
σ(t, r)dr. Suppose that the trader chooses a determin-

istic model structure σ(t, T ). Easy calculations show that, for suitable u1(s),
u2(s), ϕ(s) depending on σ(t, T ) and σ̄(t, T ), the forward value of the trader’s
Profit & Loss is X2

t (x1, x2), where
X1
t (x1) = x1 +

∫ t
0
X1
s (x1)u1(s)ds+

∫ t
0
X1
s (x1)u2(s)dWs,

X2
t (x1, x2) = x2 +

∫ t
0
ϕ(s,X1

s (x1))X1
s (x1)u1(s)ds

+
∫ t

0
ϕ(s,X1

s (x1))X1
s (x1)u2(s)dWs

(8)

(see Bossy et al. [18]). One can check that, if

|ϕ(t, x1)u2(t)| ≥ a > 0 ∀t, ∀x1 > 0,

then Condition (M) is satisfied.
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A lower bound for a marginal density. If the quantile is approximated by
a Monte Carlo method with N simulations of the Euler scheme, the global
error on the quantile is of order

O
(

1

pdT (ρ(x, δ)n)

)
+O

(
1

p̃n,dT (x, ρ(x, δ))
√
N

)
,

where p̃n,dT (x, ξ) denotes the density of X̃n,d
T (x). One has (cf. Bally and Ta-

lay [10]) that p̃n,dT (x, ξ)− pdT (x, ξ) is of order 1/n. For practical applications,
one thus needs accurate a priori estimates from below of pdT (x, ρ(x, δ)). Such
estimates are available when the generator of (Xt) is strictly uniformly el-
liptic (see, e.g., Azencott [7]); partial extensions to more general generators
have been obtained by Kusuoka and Stroock [45], Bally [8], but the algebraic
conditions on the coefficients do not seem to be satisfied by financial models.
However financial models for portfolios values have an algebraic structure
which one can take advantage of. Let us see an example. For example, sup-
pose that one needs to approximate the quantile at a maturity date T of the P
& L process in our preceding example, that is, the second coordinate of the
solution to (8). Set

Λ(t) :=

∫ t

0

u2
2(s)ds and Υ(s, z) :=

∫ z

0

ϕ(Λ−1(s), α)dα.

Suppose that there exist a > 0 and C > 0 such that

0 ≤ |ϕ(t, x)| ≤ C and |u2(t)| ≥ a > 0, ∀t ∈ [0, T ], ∀x1 > 0,

and ∣∣∣∣∣
∫ Λ(t)

0

∂Υ

∂s
(s, z)ds

∣∣∣∣∣ ≤ C

for all t in [0, TO] and z ∈ R+. Then, for some ‘explicit’ constant K and all
ρ(x, δ) > K, the density of the law of X2

T (x) satisfies

p2
T (ρ(x, δ)) ≥ E

[
gΛ(T )(H−1(ρ(x, δ)))J (ρ(x, δ))

]
.

In the preceding formula, gε denotes the Gaussian density N(0, ε), and we
have set

WΛ
t :=

√
Λ−1(t)WΛ−1(t) and h(s, z) :=

∂Υ

∂s
(s, z) +

1

2

∂ϕ

∂z
(Λ−1(s), z),
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and

H(x, z, ω) := x2 −Υ(0, x1) + Υ
(
Λ(t), x1 exp

(
U t + z

))
−
∫ Λ(t)

0

h

(
s, x1 exp

(
U s + W̃Λ

s −
s

Λ(t)
W̃Λ

Λ(t) +
z s

Λ(t)

))
ds,

where J is the Jacobian matrix of H−1(x, ·, ω).
We conclude this subsection by emphasizing the importance of methods

such as Kohatsu-Higa and Petterson’s method [44] to reduce the variance of
Monte Carlo simulations to approximate densities of diffusion processes.

5 Artificial Boundary Conditions
In this section we describe a numerical source of model risk. Obviously, the
numerical resolution of partial differential equations, or the time discretiza-
tion of stochastic dynamics combined with the use of Monte Carlo simula-
tions, lead to erroneous approximations of prices and hedgges. We do not
discuss here this issue which would deserve a long expository. We focus on a
numerical feature which is not so much investigated in the literature so far: the
uncertainties on the strategies due to the unavoidable introduction of artificial
boundary conditions cannot be avoided.

In practice, the construction of strategies uses numerical methods, partic-
ularly discretization methods for PDEs which are, e.g., the parabolic PDEs
for European options, the variational inequalities for American options, the
Hamilton-Jacobi-Bellman equations for portfolio management, etc. Since the
price models usually are processes which evolve in unbounded domains, the
integration domains of these PDEs are also unbounded. However, the nu-
merical resolution requires to introduce bounded integration domains and to
choose suitable Dirichlet or Neumann artificial boundary conditions. These
artificial boundary conditions cannot be exact since the exact solutions in
the whole domains are unknown. Therefore the misspecification of these
boundary conditions induce inaccurate option prices or sub-optimal strate-
gies. For linear PDEs and European options, see Lamberton and Lapeyre [47],
Crépey [24]. More involved estimates can be obtained from Costantini et al.’s
results [23]. In this section we are concerned by variational inequalities and
American options.
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In the sequel, the time origin t is arbitrary in [0, T ] and O is a bounded
domain in Rd with a smooth boundary.

Consider a d-dimensional Brownian motion (Ws, s ≥ 0) on a probability
space (Ω,F ,P) equipped with the augmented natural filtration (Fs, s ≥ 0)
of (Ws), and the following spaces of random variables and processes:

L2 := {ξ is FT −measurable and E|ξ|2 <∞},
S2 := {(ψs, 0 ≤ s ≤ T ) is a progressively measurable process s.t.

E sup
0≤s≤T

|ψs|2 <∞},

H2 := {(ψs, 0 ≤ s ≤ T ) is a progressively measurable process s.t.

E
∫ T

0

|ψs|2ds <∞}.

A laboratory example for nonlinear PDEs. Given the infinitesimal gener-
ator At of a diffusion process, consider the variational inequality

min (ũ(t, x)− L(t, x);

−∂ũ
∂t

(t, x)− Atũ(t, x)− f(t, x, ũ(t, x), (∇ũσ)(t, x))

)
= 0,

(t, x) ∈ [0, T )× Rd,

ũ(T, x) = φ(x) for all x ∈ Rd.
(9)

Notice that this equation extends the variational inequalities for American
option prices

min

{
v(t, x)− φ(t, x);−∂v

∂t
(t, x)− Atv(t, x)− rv(t, x)

}
= 0,

(t, x) ∈ [0, T )× R,
v(T, x) = φ(T, x), x ∈ R,

for which φ is the payoff function, A is the infinitesimal generator of the stock
price, and r is the instantaneous interest rate.

We localize (9) and choose unhomogeneous Neumann boundary condi-
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tions:

min {u(t, x)− L(t, x);

−∂u
∂t

(t, x)− Atu(t, x)− f(t, x, u(t, x), (∇uσ)(t, x))

}
= 0,

(t, x) ∈ [0, T )×O,
u(T, x) = φ(x), x ∈ O,
(∇u(t, x);n(x)) + g(t, x) = 0, (t, x) ∈ [0, T )× ∂O,

(10)
where, for all x in ∂O, n(x) denotes the inward unit normal vector at point x.

We aim to construct a Reflected Backward Stochastic Differential Equa-
tion (RBSDE) coupled with a reflected forward SDE, and to show that the so-
lution of the RBSDE provides the unique viscosity solution u(t, x) of (10); the
RBSDE will also allow us to estimate the localization error |u(t, x)− ũ(t, x)|.

We start with recalling the definition of a continuous viscosity solution for
nonlinear equations of the type

(P) F (t, x, v(t, x), Dtv(t, x), Dv(t, x), D2v(t, x)) = 0

Definition 5.1. • The continuous function v is a viscosity sub-solution of
(P) if

F (t̄, x̄, v(t̄, x̄), Dtϕ(t̄, x̄), Dϕ(t̄, x̄), D2ϕ(t̄, x̄)) ≤ 0

for all (t̄, x̄) and all functions ϕ C1,2 such that (t̄, x̄) is a local maximum
of v − ϕ.

• A continuous function v is a viscosity super-solution of (P) if

F (t̄, x̄, v(t̄, x̄), Dtϕ(t̄, x̄), Dϕ(t̄, x̄), D2ϕ(t̄, x̄)) ≥ 0

for all (t̄, x̄) and all functions ϕ C1,2 such that (t̄, x̄) is a local minimum
of v − ϕ.

• A continuous function v is a viscosity solution of (P) if it is both a
viscosity sub and super-solution.

For variational inequalities (9) viscosity sub-solutions are defined as fol-
lows. A function u(t, x) in C([0, T )×O) is a viscosity sub-solution if u(T, x) ≤
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φ(x) for all x in Ō and, for all function ϕ in C1,2([0, T ] ×O) such that (t, x)
is a global maximum of u− ϕ one has, for all (t, x) ∈ [0, T ]×O,

min {u(t, x)− L(t, x);

−∂ϕ
∂t

(t, x)− Atϕ(t, x)− f(t, x, u(t, x), (∇ϕσ)(t, x))

}
≤ 0,

and, for all (t, x) ∈ [0, T ]× ∂O,

min {−(∇ϕ(t, x);n(x))− g(t, x);

min(u(t, x)− L(t, x);

−∂ϕ
∂t

(t, x)− Atϕ(t, x)− f(t, x, u(t, x), (∇ϕσ)(t, x))

}
≤ 0.

Viscosity super-solutions are defined analogously, and viscosity solutions are
both viscosity sub-solutions and super-solutions. Viscosity solutions of quasi-
linear or semi-linear parabolic and elliptic problems have natural probabilistic
interpretations in terms of Backward Stochastic Differential Equations (BS-
DEs): for a nice introduction to the subject, we advise the reader to study
Pardoux’s course [54].

Reflected BSDEs with non reflected forward SDEs. Consider the forward
stochastic differential equation

X t,x
s = x+

∫ s

t

b(θ,X t,x
θ )dθ +

∫ s

t

σ(θ,X t,x
θ )dWθ, 0 ≤ t ≤ s ≤ T,

where b is a continuous function from [0, T ]×Rd to Rd and σ is a continuous
function from [0, T ]×Rd to Rd×d. Both b and σ are supposed Lipschitz w.r.t.
the x coordinates.

Consider a continuous function L satisfying

L(t, x) ≤ K(1 + |x|p), t ∈ [0, T ], x ∈ Rd,

L(T, x) ≤ φ(x), x ∈ Rd,
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and the BSDE with reflection on the obstacle (L(s,X t,x
s )):

Y t,x
s = φ(X t,x

T ) +
∫ T
s
f(r,X t,x

r , Y t,x
r , Zt,x

r )dr +Rt,x
T −Rt,x

s −
∫ T
s
Zt,x
r dWr,

Y t,x
s ≥ L(s,X t,x

s ), 0 ≤ t ≤ s ≤ T,

(Rt,x
s , 0 ≤ t ≤ s ≤ T ) is a continuous increasing process such that∫ T

t
(Y t,x

s − L(s,X t,x
s ))dRt,x

s = 0.

Suppose that φ is a continuous function with an at most polynomial growth
at infinity, f is a continuous function satisfying: there exist K > 0 and p ∈ N
such that

|f(t, x, 0, 0)| ≤ K(1 + |x|p),
and

|f(t, x, y, z)− f(t, x, y′, z′)| ≤ K(|y − y′|+ |z − z′|)
for all t ∈ [0, T ], x, z, z′ in Rd, and y, y′ in R. El Karoui et al. [29] have shown
existence and uniqueness of the triple (Y t,x

s , Zt,x
s , Rt,x

s ) of progressively mea-
surable processes with Y t,x in S2, Zt,x in H2, and KT in L2. The authors
also show that ũ(t, x) := Y t,x

t is the unique viscosity solution of the varia-
tional inequality (9) where A is the infinitesimal generator of the solution of
the forward SDE, and have applied this result to represent American option
prices.

One can prove that the same result still holds true when Lipschitz condi-
tions on f have been replaced by monotonicity conditions: for all t, x, y1, y2

,z, {
|f(t, x, 0, 0)| ≤ K(1 + |x|p), t ∈ [0, T ],

∃γ ∈ R, (y1 − y2)(f(t, x, y1, z)− f(t, x, y2, z)) ≤ γ|y1 − y2|2

(see [14]). Proceeding as in Ma and Cvitanić [50], one can readily get:

|Ỹ t1,x1
t1 − Ỹ t2,x2

t2 |2 ≤ C(|x1 − x2|2 + t2 − t1)

for all x1, x2 in Rd and t ≤ t1 ≤ t2 ≤ T .

Non reflected BSDEs with reflected forward SDEs. Now consider the for-
ward reflected SDE with generator still denoted by A:{
X t,x
s = x+

∫ s
t
b(θ,X t,x

θ )dθ +
∫ s
t
σ(θ,X t,x

θ )dWθ + ηt,xs , 0 ≤ t ≤ s ≤ T,

ηs =
∫ s
t
n(X t,x

θ )d|η|t,xθ with |η|t,xs =
∫ s
t

I{Xt,x
θ ∈∂O}

d|η|t,xθ .
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Thus, (ηt) is an increasing process which increases only when (Xt) hits the
boundary O. When the functions b and σ and the boundary O are smooth,
then there is a unique strong solution to the preceding equation: see, e.g.,
Menaldi [51], Lions and Sznitman [48].

Let φ be a continuous function from O (which we continue to suppose
bounded) to Rp, and suppose: there exists β > 0 such that

(y − y′, g(t, x, y, z)− g(t, x, y′, z)) ≤ β|y − y′|2,

for all t ∈ [0, T ], x ∈ Ō, y ∈ R, z ∈ Rd.
Pardoux and Zhang [55] have proven that there exists a unique pair (Y t,x, Y t,x)

of progressively measurable processes taking values in R×Rd and satisfying

E
(

sup
t≤s≤T

|Y t,x
s |2 +

∫ T

t

|Zt,x
s |2ds

)
<∞,

to the BSDE

Y t,x
s = φ(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr

+

∫ T

s

g(r,X t,x
r , Y t,x

r )dηt,xr , 0 ≤ t ≤ s ≤ T.

In addition, the authors have shown that

u(t, x) := Y t,x
t for all (t, x) ∈ [0, T ]×O,

is a viscosity solution of the quasi-linear PDE
∂u

∂t
(t, x) + Au(t, x) + f(t, x, u(t, x),∇uσ(t, x)) = 0, (t, x) ∈ [0, T )×O,

u(T, x) = φ(x), x ∈ Ō,
∂u

∂n
(t, x) + g(t, x, u(t, x)) = 0, (t, x) ∈ [0, T )× ∂O.

For uniqueness of the viscosity solution, see Barles [12].

Reflected BSDEs with reflected forward SDEs. Now consider a forward
reflected SDE and the unhomogeneous reflected BSDE with reflected forward
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SDE

Y t,x
s = φ(X t,x

T ) +
∫ T
s
f(θ,X t,x

θ , Y t,x
θ , Zt,x

θ )dθ −
∫ T
s

(Zt,x
θ ; dWθ)

+Rt,x
T −Rt,x

s +
∫ T
s
g(θ,X t,x

θ )d|η|t,xθ , t ≤ s ≤ T,

Y t,x
s ≥ L(s,X t,x

s ), t ≤ s ≤ T,

(Rt,x
s , t ≤ s ≤ T ) is an increasing continuous process s.t.∫ T

t
(Y t,x

θ − L(θ,X t,x
θ ))dRt,x

θ = 0.

We make the same assumptions as above on φ, g, f and L(s, x). Berthelot
et al. [14] have shown that for all 0 ≤ t ≤ T there exists a unique triple
(Y t,x

s , Zt,x
s , Rt,x

s , t ≤ s ≤ T ) of progressively measurable processes which
solves the preceding BSDE, and that the function u(t, x) := Y t,x

t is a viscosity
solution of the localized PDE with Neumann boundary conditions.

Let ũ and u be as above. From the smoothness property and Rademacher’s
theorem we know that ũ is differentiable almost everywhere. Suppose that one
can find a smooth boundary ∂O such that∇ũ(t, ·) is a continuous function.

Then v(t, x) := ũ|O(t, x) is the unique viscosity solution of
min

{
v(t, x)− L(t, x);−∂v

∂t
(t, x)

−Atv(t, x)− f(t, x, v(t, x), (∇vσ)(t, x))} = 0, (t, x) ∈ [0, T )×O,
v(T, x) = φ(x), x ∈ O,
(∇v(t, x);n(x)) = (∇ũ(t, x);n(x)), (t, x) ∈ [0, T )× ∂O.

Under the above conditions and under the above assumption on ∂O, there
exists C > 0 such that, for all 0 ≤ t ≤ T and x ∈ O,

|u(t, x)− ũ(t, x)|

≤ C

{
E max
t≤s≤T

∣∣g(s,X t,x
s )− (∇ũ(s,X t,x

s );n(X t,x
s ))

∣∣4 I[Xt,x
s ∈∂O]

}1/4

.

In a recent paper, Bossy et al. [17] have extended the above analysis in the
one-dimensional case (d = 1), and got estimates on |∂u

∂x
(t, x)− ∂ũ

∂x
(t, x)|, and

therefore on hedging portfolios for American options subject to model risk
due to misspecified boundary conditions.
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6 A Stochastic Game to Face Model Risk
After having described various sources of model risk, we now examine two
extreme ways to manage this risk: in our last section we will study the tools
from technical analysis which avoids to choose a model; here we develop a
worst case analysis.

Cvitanić and Karatzas [26] have studied the following dynamic measure
of risks due to misspecifications on stock appreciation rates:

inf
π(·)∈A(x)

sup
ν∈D

Eν(F (Xx,π(T ))),

where A(x) denotes the class of admissible portfolio strategies issued from
the initial wealth x, and Eν denotes the expectation under the probability Pν
for all ν in a suitable set. All the measures Pν are equivalent to the same
risk-neutral martingale measure. Gao et al. [32] have developed numerical
algorithms to compute these measure of risks.

Another rsik measure appears in Cont [22], namely, a coherent risk mea-
sure compatible with market prices of derivatives. Here we present a different
approach which allows one to compute, by means of the numerical resolution
of a stochastic game PDE, the minimal amount of money that the financial
institution needs to contain the worst possible damage due to model uncer-
tainty.

Consider the market
dSit = Sit [b

i
tdt+

∑d
j=1 σ

ij
t dW

j
t ] for 0 ≤ i ≤ n,

dPt = Pt
∑n

i=1 π
i
t

[
bitdt+

∑d
j=1 σ

ij
t dW

j
t

]
+ rPt (1−

∑n
i=1 π

i
t) dt.

Here, the Si’s denote stock prices, the πi’s are prescribed strategies, and (Pt)
is the value of a portfolio invested in the stocks under consideration and in a
bank account with dterministic rate r. In order to take into account that the
calibration methods for b and σ are erroneous, and in order to develop a worst
case analysis, we consider u(·) := (b(·), σ(·)) as the market’s control process.

The trader acts as a minimizer of the risk; on the other hand, the market
is assumed to systematically behave against the interest of the trader, and acts
as a maximizer of the risk. Thus the model risk control problem can be set up
as a two players (Trader versus Market) zero-sum stochastic differential game
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problem. Notice that we include model risk on volatilities, stock appreciation
rates, yield curves, etc.

Given a suitable function F the cost function for this game is

J(t, x, p,Π, u(·)) := Et,x,pF (ST , PT ),

and the value function is

V (t, x, p) := inf
Π∈AdΠ(t)

sup
u(·)∈Adu(t)

J(t, x, p,Π, u(·)).

The next theorem comes from Talay and Zheng [64].

Theorem 6.1. Under an appropriate locally Lipschitz condition on F , the
value function V (t, x, p) is the unique viscosity solution in the space

S := {ϕ(t, x, p) is continuous on [0, T ]× Rn × R; ∃A > 0,

lim
|p|2+x2→∞

ϕ(t, x, p) exp(−A| log(|p|2 + x2)|2) = 0 for all t ∈ [0, T ]}

to the Hamilton-Jacobi-Bellman-Isaacs equation
∂v

∂t
(t, x, p) +H−(D2v(t, x, p), Dv(t, x, p), x, p) = 0 in [0, T )× Rn+1,

v(T, x, p) = F (x, p),

where

H−(A, z, x, p) := max
u∈Ku

min
π∈Kπ

[
1

2
Tr (a(x, p, σ, π)A) + z · q(x, p, b, π)

]
.

Sketch of the proof. We start with proving the existence of a viscos-
ity solution. If the controlled system had bounded coefficients and F were
a bounded Lipschitz function, the theorem would result from Fleming and
Souganidis [30]. Here we need to use localization techniques.

Set Bk := {(p, x) ∈ Rn+1, |p|2 + x2 < k2}. Choose a function φk in
C∞b (Rn+1) such that φk(p, x) = 1 on Bk, and φk(p, x) = 0 outside Bk+1, and
the Lipschitz constant of φk is less than 2. Multiply F and all the coefficients
of the SDE by φk. You get a new SDE with solution (kSt,

kWt), a new cost
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function, a new value function V k, a new HJBI equation. Apply Fleming and
Souganidis’s results, and then use the linear structure of the SDE to obtain

V̄ k(t, p, x) = inf
Π∈AdΠ(θ)

sup
u(·)∈Adu(θ)

Eθ,p,xF (kST ,
kWT ).

Lions’stability lemma for viscosity solutions allows one to conclude.
To prove uniqueness, we adapt a result and a proof designed by Barles,

Buckdahn and Pardoux [11] for other families of PDEs. The objective is to
show the following comparison result: suppose that there exist a viscosity
subsolution v(t, p, x) and a viscosity supersolution w(t, p, x) to such that

lim
|p|2+x2→∞

v(t, p, x) exp(−A| log(|p|2 + x2)|2) = 0 for all t ∈ [0, T ],

and

lim
|p|2+x2→∞

w(t, p, x) exp(−A| log(|p|2 + x2)|2) = 0 for all t ∈ [0, T ]

for some A > 0; suppose that v(T, p, x) ≤ w(T, p, x) for all (p, x) ∈ Rn+1;
then v(t, p, x) ≤ w(t, p, x) for all (t, p, x) ∈ [0, T ]× Rn+1.

The key step consists in proving that, if v(t, p, x) be a viscosity subsolu-
tion and w(t, p, x) a viscosity supersolution, then v := v − w is a viscosity
subsolution to

∂v

∂t
(t, p, x) +H+(D2v(t, p, x), Dv(t, p, x), p, x) = 0 in [0, T )× Rn+1,

where

H+(A, z, p, x) := max
u=(b,σ)∈Ku

max
π∈Kπ

(
1

2
Tr (a(p, x, σ, π)A) + z · q(p, x, b, π)

)
,

for all (n+ 1)× (n+ 1) symmetric matrix A and all vector z in Rn+1.

7 When One Does Not Control Model Risk
In the financial industry one follows the fundamental approach, where strate-
gies are based on fundamental economic principles, the technical analysis ap-
proach, where strategies are based on past prices behavior, the mathematical
approach, where strategies are based on mathematical models.
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The main advantage of technical analysis is that it avoids model specifica-
tion. On the other hand, technical analysis techniques have limited theoretical
justifications. See Achelis [1] for a presentation of technical analysis indices
and rules, and [58], [61] for mathematical studies. It might be useful to com-
pare the performances obtained by using erroneously calibrated mathematical
models and the performances obtained by techniques issued from technical
analysis.

Our purpose is to present the mathematical complexity of this question,
and some preliminary results issued from Blanchet et al. [15].

Here we consider the case of an asset whose instantaneous expected rate of
return changes at an unknown random time. We compare the performances of
traders who have a logarithmic utility function and respectively use: a strat-
egy which is optimal when the model is perfectly specified and calibrated;
strategies derived from statistics of random processes; an investment strategy
based on technical analysis.

The real market consists in two assets whose prices obey the following
dynamics: {

dS0
t = S0

t rdt,

dSt = St
(
µ2 + (µ1 − µ2)I(t≤τ)

)
dt+ σStdBt.

Notice that

St = S0 exp

(
σBt + (µ1 −

σ2

2
)t+ (µ2 − µ1)

∫ t

0

I(τ≤s)ds

)
=: S0 exp(Rt),

where the process (Rt)t≥0 is defined as

Rt = σBt +

(
µ1 −

σ2

2

)
t+ (µ2 − µ1)

∫ t

0

I(τ≤s)ds.

This model was considered by Shiryaev ([60], [61], [62]) who studied the
problem of detecting the change time τ as early and reliably as possible when
one only observes the process (St)t≥0.

Let FSt := σ (Su, 0 ≤ u ≤ t) be the σ algebra generated by the obser-
vations, (Bt)t≥0 be a Brownian motion independent of the time of change τ
whose law is the exponential law with parameter λ, and Wt be the value of
the portfolio at time t. Suppose:

µ1 −
σ2

2
< r < µ2 −

σ2

2
.
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The technical analysis strategy. Consider the time partition

0 = t0 < t1 < . . . < tN = T, tn = n∆t.

Denote by πt ∈ {0, 1} the proportion of the agent’s wealth invested in the
risky asset at time t, and by M δ

t the moving average indicator of the prices.
Therefore,

M δ
t =

1

δ

∫ t

t−δ
Su du.

At time 0, the agent knows the history before time 0 and has enough data to
computeM δ

0 . As proposed by technical analysis, at each tn, n ∈ [1 · · ·N ], the
agent invests all his/her wealth into the risky asset if Stn > M δ

tn . Otherwise,
he/she invests all the wealth into the riskless asset. Consequently,

πtn = I(Stn≥Mδ
tn).

The technical analylist’s wealth at time tn+1 is

Wtn+1 = Wtn

(
Stn+1

Stn
πtn +

S0
tn+1

S0
tn

(1− πtn)

)
,

from which (W0 = x)

WT = x
N−1∏
n=0

[
πtn
(
exp(Rtn+1 −Rtn)− exp(r∆t)

)
+ exp(r∆t)

]
,

and

E log(WT ) = log(x) + rT +

(
µ2 −

σ2

2
− r
)
Tp

(1)
δ

+∆t

(
µ2 −

σ2

2
− r
)

1− e−λT

1− e−λ∆t
(

(p
(2)
δ − p

(1)
δ )eλδ + p

(3)
δ

)
−∆t(µ2 − µ1)(e−λ∆t − λ∆t) 1− e−λT

1− e−λ∆t
p

(3)
δ ,
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where

p
(1)
δ =

∫ ∞
0

∫ ∞
y

zµ2−3/2

2y
e
−

(µ2/σ−σ/2)2δ
2

−
(1+z2)
2σ2y iσ2δ/2

(
z

σ2y

)
dzdy,

p
(2)
δ =

∫ δ

0

∫
R4

I(
δy2≥

z1

y1

+z2

) zµ2−3/2
2

2y2

e
−

(µ2/σ−σ/2)2(δ−v)
2

−
(1+z2

2)

2σ2y2

iσ2(δ−v)/2

(
z2

σ2y2

)
z
µ1−3/2
1

2y1

e
−

(µ1/σ−σ/2)2v
2

−
(1+z2

1)

2σ2y1 iσ2v/2

(
z1

σ2y1

)
e−λvdy1dz1dy2dz2dv,

p
(3)
δ =

∫ ∞
0

∫ ∞
y

zµ1−3/2

2y
e
−

(µ1/σ−σ/2)2δ
2

−
(1+z2)
2σ2y iσ2δ/2

(
z

σ2y

)
dzdy,

iy(z) =
zeπ

2/4y

π
√
πy

∫ ∞
0

e−z cosh(u)−u2/4y sinh(u) sin(πu/2y)du.

The tedious calculation involves an explicit formula, due to Yor [67] for
the density of (

∫ t
0

exp(2Bs)ds,Bt):

Theorem 7.1. Let B be a real Brownian Motion. Let σ > 0 and ν be in R.
Let V be a geometric Brownian Motion:

Vs = eσ
2νs+σBs .

Then

P
(∫ t

0

Vsds ∈ dy ; Vt ∈ dz
)

=
zν−1

2y
e
−ν

2σ2t
2
−

(1+z2)
2σ2y iσ2t

2

(
z

σ2y

)
dydz,

(11)
where

iy(z) :=
zeπ

2/4y

π
√
πy

∫ ∞
0

e−z coshu−u2/4y sinhu sin(πu/2y)du.

Thus the law of Φt := Ft
1−Ft is explicitly known since

Φt = λ exp

(
µ2 − µ1

σ
B̃t +

(
λ− (µ2 − µ1)2

σ2

)
t

)
×
∫ t

0

exp

(
−µ2 − µ1

σ
B̃u −

(
λ− (µ2 − µ1)2

σ2

)
u

)
du.
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The optimal portfolio allocation strategy. Our aim is to explicit the opti-
mal wealth and strategy of a trader who perfectly knows the parameters µ1,
µ2, λ and σ, and thus can get optimal financial performances. We impose con-
straints: a technical analyst is only allowed to invest all his/her wealth in the
stock or the bond. Therefore the proportions of the trader’s wealth invested in
the stock are constrained to lie within the interval [0, 1].

We use the martingale approach developed by Karatzas, Shreve, Cvitanić,
etc. Notice that the drift coefficient of the dynamics of the risky asset is not
constant over time (since it changes at the random time τ ). Notice also that we
must face some subtle measurability issues since the trader’s strategy needs
to be adapted with respect to the filtration generated by (St) which, because
of τ , is different from the filtration generated by (Bt).

Let πt be the proportion of the trader’s wealth invested in the stock at time
t; W x,π

· denotes the corresponding wealth process. LetA(x) denote the set of
admissible strategies, that is,

A(x) := {π· −FSt − progressively measurable process s.t.
W x,π

0 = x, W x,π
t > 0 for all t > 0, π· ∈ [0, 1]}.

The value function thus is

V (x) := sup
π·∈A(x)

EU(W π
T ).

As in Karatzas and Shreve [42], we introduce an auxiliary unconstrained
market defined as follows. We first decompose the process R in its own filtra-
tion as

dRt =

(
(µ1 −

σ2

2
) + (µ2 − µ1)Ft

)
dt+ σdBt,

where B· is the innovation process, i.e., the FSt - Brownian motion defined as

Bt =
1

σ

(
Rt − (µ1 −

σ2

2
)t− (µ2 − µ1)

∫ t

0

Fsds

)
, t ≥ 0,

where F is the conditional a posteriori probability (given the observation of
S) that τ has occurred within [0, t]:

Ft := P
(
τ ≤ t/FSt

)
.
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Let D the subset of the {FSt }− progressively measurable processes ν :
[0, T ]× Ω→ R such that

E
∫ T

0

ν−(t)dt <∞ , where ν−(t) := − inf(0, ν(t)).

The bond price process S0(ν) and the stock price S(ν) satisfy

S0
t (ν) = 1 +

∫ t

0

S0
u(ν)(r + ν−(u))du,

St(ν) = S0 +

∫ t

0

Su(ν)
(
(µ1 + (µ2 − µ1)Fu + ν(u)− + ν(u))du+ σdBu

)
.

For each auxiliary unconstrained market driven by a process ν, the value func-
tion is

V (ν, x) := sup
π·∈A(ν,x)

ExU(W π
T (ν)),

where

dW π
t (ν) = W π

t (ν)
(
(r + ν−(t))dt+ πt (ν(t)dt+ (µ2 − µ1)Ftdt

+(µ1 − r)dt+ σdBt

))
.

Karatzas and Shreve have proven: If there exists ν̃ such that

V (ν̃, x) = inf
ν∈D

V (ν, x)

then there exists an optimal portfolio π∗ for which the optimal wealth (for the
constrained admissible strategies) is

W ∗
t = W eπ∗

t (ν̃).

An optimal portfolio allocation strategy is

π∗t := σ−1

(
µ1 − r + (µ2 − µ1)Ft + ν̃(t)

σ
+

φt

Heν
tW

∗
t e
−rt−

R t
0 eν−(s)ds

)
,

where Ft satisfies

Ft =
λeλtLt

∫ t
0
e−λsL−1

s ds

1 + λeλtLt
∫ t

0
e−λsL−1

s ds
,
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and Heν
t is the exponential process defined by

Heν
t = exp

(
−
∫ t

0

(
µ1 − r + ν̃(s)

σ
+

(µ2 − µ1)Fs
σ

)
dBs

−1

2

∫ t

0

(
µ1 − r + ν̃(s)

σ
+

(µ2 − µ1)Fs
σ

)2

ds

)
,

and φ is a FSt adapted process which satisfies

E
(
Heν
T e
−rT−

R T
0 eν−(t)dt(U ′)−1(υHeν

T e
−rT−

R T
0 eν−(t)dt) /FSt

)
= x+

∫ t

0

φsdBs.

Here, v is the Lagrange multiplier which makes the expectation of the left
hand side equal to x for all x.

If U(·) = log(·) then

W ∗,x
t =

xer(T−t)+
R T
t eν−(t)dt

Heν
t

,

π∗t =

(
µ1 − r + (µ2 − µ1)Ft + ν̃(t)

σ2

)
,

where

ν̃(t) :=


− (µ1 − r + (µ2 − µ1)Ft) if

µ1 − r + (µ2 − µ1)Ft
σ2

< 0,

0 if
µ1 − r + (µ2 − µ1)Ft

σ2
∈ [0, 1],

σ2 − (µ1 − r + (µ2 − µ1)Ft) otherwise,

and, as above,
ν̃−(t) := − inf (0, ν̃(t)) .

Thus the optimal strategies for the constrained problem are the projections on
[0, 1] of the optimal strategies for the unconstrained problem.

Using again Yor’s formula (11), one can obtain an (horrible) explicit for-
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mula for the value function corresponding to the optimal strategy. As

V (x) = V (ν̃, x)

= log(x) + rT

+ EP

[∫ T

0

(
µ1 − r + (µ2 − µ1)Ft −

σ2

2

)
I
Ft>

σ−(µ−r)
µ−µ

ffdt
]

+
1

2
EP

[∫ T

0

(
µ1 − r + (µ2 − µ1)Ft

σ

)2

I µ−r
µ−µ<Ft<

σ−(µ−r)
µ−µ

ffdt
]
,

we deduce, denoting by g(a, t) the density of Φt
λ

, that the value at time T of
the optimal portfolio, W ∗

T , satisfies

E log(WT ) = log(x) + rT

+

∫ T

0

∫ ∞
0

[(
µ1 − r + (µ2 − µ1)

a

1 + a
− σ2

2

)
I
a>

σ2−µ1+r
µ2−σ2+r

ff
1

σ2

(
µ1 − r + (µ2 − µ1)

a

1 + a

)2

I
−µ1−r
µ2−r<a<

σ2−µ1+r
µ2−σ2+r

ff
]

e−λt(1 + a)g(λa, t)λda dt.

A model and detect strategy. We now consider the case of a trader who
chooses a mathematical model and wants to reinvest the portfolio only once,
namely at the time where the change time τ is optimally detected owing to
the price history. We suppose that the reinvestment rule is the same as the
technical analyst’s one: at the detected change time from µ1 to µ2, all the
portfolio is reinvested in the risky asset.

We consider the optimal stopping rule ΘK which minimizes the expected
miss

R(Θ) := E|Θ− τ |

over all stopping rules Θ, where τ is a positive random variable (see Shiryayev [61]
and Karatzas [41]). One has: The stopping rule ΘK which minimizes the ex-
pected miss E|Θ− τ | over all the stopping rules Θ with E(Θ) <∞ is

ΘK := inf

{
t ≥ 0

∣∣∣λeλtLt ∫ t

0

e−λsL−1
s ds ≥ p∗

1− p∗

}
,
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where (Lt)t≥0 is the exponential likelihood-ratio process

Lt := exp

{
µ2 − µ1

σ2
Rt −

1

2σ2

(
(µ2 − µ1)2 + 2(µ2 − µ1)(µ1 −

σ2

2
)

)
t

}
,

and p∗ is the unique solution in (1
2
, 1) of the equation∫ 1/2

0

(1− 2s)e−β/s

(1− s)2+β
s2−βds =

∫ p∗

1/2

(2s− 1)e−β/s

(1− s)2+β
s2−βds

with β := 2λσ2/(µ2 − µ1)2.
The value of the portfolio at maturity T is

WT =
xS0

θK

SθK
ST I(θK≤T ) + xS0

T I(θK>T ).

For a logarithmic utility function, one can again exhibit an exact formula for
E(log(WT )) which we do not write here.

It remains an open problem to mathematically compare the exact values
of the logarithmic utilities of the portfolios based on technical analysis, opti-
mal allocations, or model and detect strategies. However we can numerically
compare them. Fig. 1 illustrates that, when the model is perfectly calibrated,
the strategies based on mathematical models have significantly better perfor-
mances than the technical analyst method.

The performances of the strategies based on misspecified models. In
practice, it is extremely difficult to know parameters exactly. If one may hope
to calibrate µ1 and σ relatively well owing to historical data, the value of µ2

cannot be determined a priori, and data concerning τ miss.
Consider a trader who believes that the stock price is

dSt = St (µ2 + (µ1 − µ2)It≤τ ) dt+ σStdBt,

where the law of τ is exponential with parameter λ.
Set:

Lt := exp

{
1

σ2 (µ2 − µ1)Rt −
1

2σ2

(
(µ2 − µ1)2 + 2(µ2 − µ1)(µ1 −

σ2

2
)

)
t

}
,

F t :=
λeλtLt

∫ t
0
e−λsL

−1

s ds

1 + λeλtLt
∫ t

0
e−λsL

−1

s ds
.
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Figure 1: No misspecification

On the misspecified optimal allocation strategy. The trader computes a
pseudo optimal allocation by using the erroneous parameters µ1, µ2, σ and τ .
Thus the value of his/her misspecified optimal allocation strategy is

π∗t = proj[0,1]

(µ1 − r + (µ2 − µ1)F t)

σ2 ,

and the corresponding wealth is

W
∗
t = ert exp

(∫ t

0

π∗ud(e−ruSu)

)
.

On misspecified model and detect strategies. The erroneous stopping rule
is

Θ
K

= inf

{
t ≥ 0, λeλtLt

∫ t

0

e−λsL
−1

s ds ≥ p∗

1− p∗

}
,

where p∗ is the unique solution in (
1

2
, 1) of

∫ 1/2

0

(1− 2s)e−β/s

(1− s)2+β
s2−βds =

∫ p∗

1/2

(2s− 1)e−β/s

(1− s)2+β
s2−βds,

with β = 2λσ2/(µ2 − µ1)2.
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The value of the corresponding portfolio is

W T = xS0

Θ
K

ST
S

Θ
K

I
(Θ

K≤T )
+ xS0

T I
(Θ

K
>T )

.

A comparison between misspecified strategies and the technical analysis
technique. Our main question is: Is it better to invest according to a math-
ematical strategy based on a misspecified model, or according to a strategy
which does not depend on any mathematical model?

Unfortunately, the analytical representations for the portofolios respec-
tively corresponding to the optimal strategy, the model and detect strategy, or
the chartist strategy, are too complex to allow one to easily deduce precise
comparisons. Getting such comparisons, for example in the asymptotics of
large volatilities, are an open question so far. However Monte Carlo simula-
tions lead to interesting results. Consider the following study case:

Parameters of the model µ1 µ2 λ σ r
True values −0.2 0.2 2 0.15 0.0

Parameters used by the trader µ1 µ2 λ σ r
Misspecified values (case I) −0.3 0.1 1.0 0.25 0.0
Misspecified values (case II) −0.3 0.1 3.0 0.25 0.0

Other cases can be exhibited, where the technical analyst overperforms
the misspecified optimal allocation strategies. For example, consider the case
where the true values of the parameters are in Table 1. Table 2 must be read
as follows. For the misspecified values µ2 = 0.1, σ = 0.25, λ = 1, if the
trader chooses µ1 in the interval (−0.5,−0.05) then the misspecified optimal
strategy is worse than the technical analyst’s one.

Other numerical studies show that a single misspecified parameter is not
sufficient to allow the technical analyst to overperform the Model and Detect
traders. Astonishingly, other simulations show that the technical analyst may
overperform the misspecified optimal allocation strategy but not the misspec-
ified model and detect strategy. One can also observe that, when µ2/µ1 de-
creases, the performances of well specified and misspecified model and detect
strategies decrease. Theoretical estimates and explanations for these effects
are open issues so far.
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Table 1: True values of the parameters

Parameter True Value
µ1 -0.2
µ2 0.2
σ 0.15
λ 2

Table 2: Misspecified values and range of the parameters

µ1 (-0.5,-0.05) µ1 -0.3 µ1 -0.3 µ1 -0.3
µ2 0.1 µ2 (0,0.13) µ2 0.1 µ2 0.1
σ 0.25 σ 0.25 σ (0.2,→) σ 0.25
λ 1 λ 1 λ 1 λ (0,1.5)

We have just considered the case where the change of trend occurs at one
random time only. In a more realistic situation, several changes of trend may
occur at random times τn: the trend process is

µ(t) :=

{
µ1 if τ2n ≤ t < τ2n+1

µ2 if τ2n+1 ≤ t < τ2n+2.
(12)

The trader should rebalance his/her portfolio at each change of trend. How-
ever the times τn cannot be detected exactly. In addition, the filtration gener-
ated by the observed prices of the stock is strictly smaller than the filtration
generated by the filtration generated by the Brownian motion and the τn’s.
Taking also into account transaction costs, Blanchet et al. [16] recently ex-
tended the above comparison between strategies subject to model risk and
strategies derived from technical analysis.

A lot of mathematical analysis remains to be done to better understand the
practical success of technical analysis, and the effects on the market resulting
from the common belief that a lot of agents take their investment decisions by
applying the technical analysis rules.
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[17] BOSSY, M.; CISSÉ, M. ; TALAY, D. (2009): Stochastic representa-
tions of derivatives of solutions of one dimensional parabolic variational
inequalities with Neumann boundary conditions, submitted for publica-
tion.

[18] BOSSY, M.; GIBSON, R.; LHABITANT, F-S.; PISTRE, N.; TALAY,
D. (2006): Model misspecification analysis for bond options and Marko-
vian hedging strategies, Review of Derivatives Research 9(2), 109-135.
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Malliavin calculus and martingales, and application to stochastic opti-
mal control, SIAM J. Control Optim. 43(5), 1676-1713.

[36] HOFFMANN, M. (1999): Adaptive estimation in diffusion processes,
Stoch. Proc. Appl. 79(1), 135-163.

[37] HOFFMANN, M. (1999): Lp estimation of the diffusion coefficient,
Bernoulli 5(3), 447-481.

[38] HOUNKPATIN, O. (2002): Volatilité du Taux de Swap et Calibrage
d’un Processus de Diffusion, Thèse de l’université Paris 6.
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