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´THE EULER SCHEME FOR LEVY DRIVEN STOCHASTIC
DIFFERENTIAL EQUATIONS

BY PHILIP PROTTER1 AND DENIS TALAY

Purdue University and INRIA

In relation with Monte Carlo methods to solve some integro-differen-
nŽ . Ž .tial equations, we study the approximation problem of � g X by � g X ,T T

Ž .where X , 0 � t � T is the solution of a stochastic differential equationt
nŽ . Ž .governed by a Levy process Z , X is defined by the Euler discretiza-´ t t

Ž .tion scheme with step T�n. With appropriate assumptions on g � , we
nŽ . Ž .show that the error � g X � � g X can be expanded in powers of 1�nT T

if the Levy measure of Z has finite moments of order high enough.´
Otherwise the rate of convergence is slower and its speed depends on the
behavior of the tails of the Levy measure.´

1. Introduction.

1.1. Objectives. We consider the following stochastic differential equation:

t
1 X � X � f X dZ ,Ž . Ž .Ht 0 s� s

0

d Ž .where X is an � -valued random variable, f � is a d � r matrix-valued0
d Ž .function of � , and Z is an r-dimensional Levy process, null at time 0. For´t

background on Levy processes and stochastic differential equations governed´
� �by general semimartingales, we refer to Protter 29 . In this paper, we

Ž . Ž .consider the problem of computing � g X for a given function g � and aT
fixed nonrandom time T.

We have two main motivations. The first one is the numerical solution by
Monte Carlo methods of integro-differential equations of the type

� u
t , x � AAu t , x � u t , x � z � u t , xŽ . Ž . Ž . Ž .�H

d� t �2Ž .
² :� z , �u t , x � M x , dz ,Ž . Ž .4� � z � �1�
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where AA is an elliptic operator with Lipschitz coefficients and the measure
Ž . r � 4M x, � is defined as follows: let � be a measure on � � 0 such that

� � 2x � 1 � dx � �Ž .Ž .H
r�

Ž . dand let f � be a d � r matrix-valued Lipschitz function defined in � ; then,
for any Borel set B 	 � d whose closure does not contain 0, set

² :M x , B � � z ; f x , z 
 B .� 4Ž . Ž .
Our second motivation is the computation of the expectation of functionals

of solutions of SDE’s arising from probabilistic models, for example, the
calculation of the energy of the response of a stochastic dynamical system or

Ž .the price of a capital asset. Then, obviously the Markovian structure of X ist
important to develop simple algorithms of simulation; a result due to Jacod

� � Ž .and Protter 17 states that, under an appropriate condition on f � , the
Ž .solution of a stochastic differential equation of type 1 is a strong Markov

Ž .process if and only if the driving noise Z is a Levy process; this explains´t
our focus on this case.

Below we describe these examples of motivation in further detail.
� �When Z is a Brownian motion, Talay and Tubaro 35 have shown that

nŽ . Ž .when f � is smooth and if X is the process corresponding to the Eulert
Ž .scheme with step T�n see below for a definition , then for a smooth function

nŽ . Ž . Ž .g � with polynomial growth, the error � g X � � g X can be expandedT T
with respect to n:

C 1
n� g X � � g X � � OO .Ž . Ž .T T 2ž /n n

� �Using the techniques of stochastic calculus of variation, Bally and Talay 1
have shown that the result also holds for any measurable and bounded

Ž . Ž .function g � when the infinitesimal generator of X satisfies a uniformt
hypoellipticity condition.

� � Ž .Here we follow the strategy of 35 : we suppose that g � has derivatives up
Ž .to order 4 but we make no assumption on the generator of X . The prooft

used for the Brownian case does not carry through and needs to be adapted.
The changes in approach are commented on in detail in Section 4.3. The
nature of the results moreover is different. When the jumps of Z are bounded,

Ž .the order of convergence OO 1�n is preserved. When the jumps are un-
bounded the order of convergence depends on the tail of the Levy measure´
of Z. However if the jumps are well behaved, as reflected by the Levy´
measure having its first several moments finite, we sill have a rate 1�n of
convergence.

The discretization of Brownian driven SDE’s has been analyzed in many
� �papers for various convergence criteria: see Talay 34 or Kloeden and Platen

� �22 for reviews. The case of SDE’s driven by discontinuous semimartingales
� �has barely been investigated. Kurtz and Protter 24 have studied the conver-

gence in law of the normalized error for the path by path Euler scheme, and



´LEVY DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS 395

L p estimates of the Euler scheme error are given by Kohatsu-Higa and
� �Protter 23 .

An important point is the numerical efficiency of the Euler scheme com-
Ž .pared to other approximation methods of X . In particular the Euler schemet

supposes that one can simulate the increments of the Levy process Z.´
Actually, in practical situations, the law of Z � Z may be explicitly known:t s

� �for example, Stuck and Kleiner 32 have proposed a model for telephone
noise that could be interpreted as a symmetric stable Levy process of index �´
Ž .they found � � 1.95 . Section 3 presents algorithmic procedures for the
simulation of the increments of a class of Levy processes which are likely to´
include useful models arising from engineering applications.

In a forthcoming paper we will discuss three important problems related to
the present article. First, for more complex situations than those investigated
here, it is sometimes possible to approximate the law of Z � Z itself, whicht s
is desirable in view of simulation problems; we describe the effect of this
additional approximation on the convergence rate of the Euler scheme.
Second, we will study the convergence rate of another approximation method

Ž .of X , based upon the approximation of Z by a compound Poisson process:t
this approach allows the consideration of all the cases where one is given the
Levy measure of Z, which probably is more common than those for which one´

Žis given the law of the increments of Z which generally cannot be easily
.derived from the Levy measure . We also compare the numerical efficiency of´

this procedure to the Euler scheme when both can be used. It is worthwhile
nevertheless to announce here that frequently the Euler scheme is the more

Žefficient algorithm in terms of the number of computations to run to ensure a
.given accuracy . Finally, we will extend the latter numerical procedure and

its error analysis to the case of SDE’s driven by diffusion and Poisson random
measures, which thus includes Levy processes.´

We make a rather detailed presentation of results which are well known by
specialists of Levy processes but are perhaps not well known in general.´

1.2. Motivation. In stochastic finance theory, one of the principal subjects
is the capital asset pricing model, which includes a topic of current mathe-
matical interest, namely the fair pricing of options. The standard model is
that of Black�Scholes, where the security is assumed to follow a diffusion,

Ž .which is the solution of an often taken to be linear stochastic differential
equation driven by a Wiener process and Lebesgue measure. In such a model

� Ž .4one wants to evaluate quantities of the form E f X , where X is thex T T
Ž .diffusion at a fixed time T, and f is a known usually convex function. When

the model is simple enough and f is simple enough, there are closed form
Žexpressions for the above expectation. Indeed, one can now even purchase

hand calculators with the appropriate formulas available by a dedicated
.button. While such models are an impressive achievement, the world is more

complicated, and models where the security price is allowed to have
jumps�both big and small�are desirable. Indeed, a modelling argument can
be made that the standard model of a diffusion is incorrect for a variety of
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reasons, and that one needs a model that has a large number of small jumps.
In the stock market, for example, prices are not continuous but change by
units of 12.5c; the stock market closes overnight and on weekends, and
opening prices often have jumps. Indeed, the New York Stock Exchange
employs specialists to try to smooth out inherently unstable or ‘‘jumpy’’ stock
prices. Aside from this, there occur with regularity external shocks, both
predictable and totally inaccessible. Predictable ones include earnings an-
nouncements, going ex-dividend, scheduled meetings of the Federal Reserve
Board to adjust interests rates, and so on. Inaccessible ones include unex-

Žpected events such as political assassinations, currency collapses such as the
.Mexican peso recently , and national disasters. In the government security

market alone there are often substantial jumps related either to central bank
� �intervention or to the release of significant macroeconomic information 26 .

Analogous considerations apply in the foreign exchange currency markets
� �and require models with jumps 28 .

There are serious problems in the loss of completeness for models with
Ž .jumps mathematically this is the martingale representation property , but

one can still nevertheless construct arbitrage-free models and attempt a
theory of option pricing in the same spirit as the Black�Scholes model.

ŽPioneering work in this direction has already begun see the work of Jarrow
� � � � � � � � .20 , Madan 28 , Rosenfeld 19 , and Navas 18 , for example, , which leads

� Ž .4again to the problem of evaluating E f X , but this time X is the solutionx T
Ž .of an SDE driven by Levy processes which have jumps .´

Ž �Efforts have been directed at finding closed form solutions e.g., 19,
�.Section 5 in analogy to the Black�Scholes paradigm but they are doomed to

Ž .limited usefulness since in general the laws of X and f X and theirT T
means are all unknown. The results in our paper solve that key step, at least
in the case where f is somewhat smooth and when one can simulate the
increments of the driving Levy process.´

Finally, as regards finance theory, we note that the idea of including Levy´
process driven security prices is not new, but goes back at least to 1963 when

� � � �Mandelbrot 25 and Fama 15 deduced that one needed models with infinite
variances; had modern tools been available, a likely construction would have
been SDE’s driven by symmetric stable processes.

As a second area of applied motivations, let us consider electrical engineer-
ing, and in particular telephone noise. It has long been known that telephone
noise is non-Gaussian and that in the short term the noise is modeled by a

� �Levy process. Indeed, the seminal 1974 article of Stuck and Kleiner 32´
proposes modelling telephone noise either by a stable process of index �
Ž .empirical data indicate 1.94 � � � 1.96 , or by a Levy process containing´
both jumps and a Wiener component. This second model is suggested by the
different sources of noise: the Wiener process comes from thermal noise and
‘‘electromagnetic crosstalk,’’ while the jump terms could arise from ‘‘switch

Ž .arcing and thunderstorms’’ page 1296 . Since the paper was written in 1974,
the semimartingale based theory of stochastic differential equations was not
yet available, but had it been so, it could have been used to rectify concerns
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such as those expressed ‘‘over longer time intervals . . . simple models might
Žbe inadequate while . . . complicated models might be more appropriate.’’ See

.also their discussion on page 1308. Indeed it is clear that other models
Žproposed to circumvent using SDE’s as models such as doubly stochastic

.stable processes are viewed as unnatural, rather desperate efforts by the
authors. Thus it seems reasonable to assume that telephone noise could be
modelled as

t
3 X � X � 	 s, X dZ ,Ž . Ž .Ht 0 s� s

0

where Z is a vector of Levy processes; either stable processes, or a combina-´
Žtion of a Wiener process and a mixture of Poisson processes i.e., a Levy´

.process .
It is worth noting that Stuck and Kleiner take the viewpoint of this paper:

that is, they consider the model specified if the mean and variance of the
Ž .Wiener process is specified and the Levy measure is given pages 1297�1298´

Žalthough they do not use these terms. Indeed, the authors cling to actual
Poisson processes rather than Levy processes�perhaps due to ignorance of´
the latter�and recognize implicitly their need for general Levy processes; see´

. Ž . � Ž .4page 1312. In the model 3 above, quantities such as E f X can representT
the average energy of the system at time T and be important to the design
and maintenance of telephone lines.

Another example of a stochastic differential equation driven by a Levy´
process comes from the modelling of an infinite capacity dam subject to an
additive input process and a general release rule. In a first approximation,
the input process is a Levy process with nonnegative increments Z and the´

Ž .rate of release is r x when the dam content is x, which leads to the
following dynamics for the content of the dam:

dX � r X dt � dZ .Ž .t t t

� �From real data, Moran 27 suggests that the Levy measure of Z is´



� dy � exp �� y dy�Ž . Ž . � y � 0�y

for some strictly positive constants 
 and � . While it is usually not possible
to determine the law of Z explicitly from knowledge of � , in this case we

Ž .know that Z is a gamma process see Section 3.4 . Therefore, Z has an
infinite jump rate. The properties of X and of its local time, the limit

Ž t Ž . .distribution of X, the law of the output process H r X ds , and so on, have0 s
� �been extensively studied in a series of papers by Çinlar 9, 10 and Çinlar and

� �Pinsky 12, 13 . Nevertheless, the law of X cannot be described explicitly sot
Žthat a numerical evaluation of statistics of this law the first moments,

� � . � �� X � � for some � � 0, etc. is necessary. According to Çinlar 8 , a moret
precise model would likely be of the type

dX � r X dt � 	 X dZ ,Ž . Ž .t t t t

which could permit describing the effects of the dam content to the inputs.
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Ž .1.3. Notation. We denote by �Z the jump of Z at time s: �Z �s t s
Z � Z .s s�

The Levy decomposition of Z is:´

4 Z � 	 W � 
 t � x N  , dx � t� dx � �Z � .Ž . Ž . Ž .Ž . ÝHt t t s � � � Z � �1�s
� �x �1 0�s�t

� � dFor a function � defined on 0, T � � , � � will denote the derivative0
with respect to the time variable, and � � will denote the derivative withi
respect to the ith space coordinate. In the same way, � � will denote the00
second derivative of � with respect to the time variable, and for a multiindex
I, � � denotes the derivative with respect to space coordinates.I

2. Rate of convergence of the Euler scheme. Let X be the solution
Ž .of 1 for a given and fixed Levy process Z.´
In general, the law of the random variable X is unknown. We propose toT

Ž .discretize 1 in time. Let T�n be the discretization step of the time interval
n n� � Ž .0, T and let X be the piecewise constant process defined by X � X andt 0 0

n n n5 X � X � f X Z � Z .Ž . Ž .ž /Ž p�1.T � n pT � n pT � n Ž p�1.T � n pT � n

From a practical point of view, this scheme requires that the law of the
stationary and independent increments Z � Z can be simulatedŽ p�1.T � n pT � n
on a computer. For considerations on this point, see Section 3.

We now state our rate of convergence results. The case where Z has
bounded jumps, or even simply where the Levy measure has all its moments´

Ž .up to k for some k large enough, allows us to relax the assumptions on f �
Ž .and g � , and we obtain a faster rate.

� 4For K � 0, m � 0 and p 
 � � 0 , set
m

2 2 2� � � � � �� m � 1 � 
 � 	 � z � dzŽ . Ž .Hp
�m

p�2m m
p p 2 p� � � � � � � �� 
 � 	 � z � dz � z � dz ,Ž . Ž .H Hž /�m �m

6Ž .

Ž .where � is the Levy measure as in 4 , and´
7 � m � exp K � m .Ž . Ž . Ž .Ž .K , p p

For m � 0 we define

� �� 48 h m � � x ; x � m .Ž . Ž . Ž .

THEOREM 2.1. Suppose we make the following hypotheses.

Ž . Ž . 4 Ž .H1 The function f � is of class CC ; f � and all derivatives up to order 4
are bounded.

Ž . Ž . 4 Ž .H2 The function g � is of class CC ; g � and all derivatives up to order 4
are bounded.

Ž . 4Ž .H3 X 
 L � .0
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Ž .Then there exists a strictly increasing function K � depending only on d, r
� Ž . Ž .and the L -norm of the partial derivatives of f � and g � up to order 4 such

that, for any discretization step of type T�n, for any integer m,

� mŽ .K ŽT . , 8n
� d� �9 � g X � � g X � 4 g 1 � exp �h m T � .Ž . Ž . Ž .Ž .Ž .Ž . L Ž� .T T n

Thus, the convergence rate is governed by the rate of increase to infinity of
Ž . Ž .the functions h � and � � . The proof is given in Section 4.K ŽT ., 8

Theorem 2.1 is probably far from being optimal. We include it in order to
provide at least some rate estimates for all Levy processes. Our main result is´
Theorem 2.2.

THEOREM 2.2. Suppose the following hypotheses.

Ž . Ž . 4 Ž .H1� The function f � is of class CC ; all derivatives up to order 4 of f �
are bounded.

Ž . Ž . 4 � Ž . � Ž� � M �.H2� The function g � is of class CC and moreover � g x � OO xI
� �for I � 4 and some M� � 2.

Ž . � �� Ž . Ž .H3� H x � dx � � for 2 � � � M�* � max 2 M�, 8 and X 
� x � �1 0
M �*Ž .L � .

Ž . � 4Then there exists an increasing function K � such that, for all n 
 � � 0 ,

� �Ž .K ŽT . , M �*n10 � g X � � g X � .Ž . Ž . Ž .T T n

Suppose now that the following hold.

Ž . Ž . 8 Ž .H1� The function f � is of class CC ; all derivatives up to order 8 of f �
are bounded.

Ž . Ž . 8 � Ž . � Ž� � M � .H2� The function g � is of class CC and moreover � g x � OO xI
� �for I � 8 and some M� � 2.

Ž . � �� Ž . Ž .H3� H x � dx � � for 2 � � � M�* � 2 max 2 M�, 16 and X 
� x � �1 0
M � *Ž .L � .

Ž . Ž .Then there exists a function C � and an increasing function K � such that,
for any discretization step of type T�n, one has

C TŽ .
n n11 � g X � � g X � � RŽ . Ž . Ž .T T Tn

2 � n � Ž .and sup n R � � � .n T K ŽT ., M � *

The proofs are given in Section 5.
Ž . Ž . Ž . Ž .The functions C � and K � depend on g � , f � and moments of X . They0
Ž .can be described we do this in the proofs of the theorems in Section 5 in

terms of the solution of a Cauchy problem related to the infinitesimal
Ž .generator of X and the derivatives of this solution.t
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Ž . Ž .We remark that if the first four resp. eight derivatives of g � are
bounded, then M� � M� � 0. Also, if the Levy process Z has bounded jumps´

Ž . Ž . Ž .and X is for example constant then H3� and H3� are automatically0
satisfied.

The main interest in establishing the expansion in the second half of
Ž .Theorem 2.2 compared with just an upper bound for the error is to be able to

apply the Romberg extrapolation technique.

n �2Ž . Ž . Ž .COROLLARY 2.3. Suppose H1� , H2� and H3� . Let X be the Euler
scheme with step size n�2. Then

K TŽ .
n �2 n� g X � 2� g X � � g X � .Ž . � 4Ž . Ž .T T 2n

Ž .The result is an immediate consequence of 11 . The numerical cost of the
Romberg procedure is much smaller than the cost corresponding to schemes

�2 � �of order n . See 35 for a discussion and illustrative numerical examples for
the case Z is a Brownian motion.

Ž . Ž .If f � and g � are smooth enough and � has moments of all orders larger
than 2, the arguments used in the proof can also be used to show that, for any
integer k � 0, there exists constants C , . . . , C such that1 k�1

C C C1 2 kn n� g X � � g X � � � ��� � � RŽ . Ž .T T T2 kn n n
k�1 � n �and sup n R � C .n T k�1

Finally, we underline that no ellipticity condition is required on the
infinitesimal generator of X.

Ž 1 r .REMARK 2.4. Theorems 2.1 and 2.2 are stated for a vector Z � Z , . . . , Z
of driving semimartingales where Z is a Levy process; however they also´
remain true if the driving semimartingales are strong Markov processes of a

� �certain type. Indeed, Çinlar and Jacod 11 have shown that up to a random
time change every semimartingale Hunt processes can be represented as the
solution of a stochastic differential equation driven by a Wiener process,

Ž � �Lebesgue measure, and a compensated Poison random measure see 11
.Theorem 3.35, page 207 . Our situation is more restrictive since we use Levy´

processes, themselves semimartingales, rather than random measures. The
difference is essentially this: the coefficient for the random measure term is of

Ž . Ž . Ž . Ž . Ž .the form k x, z ; if k x, z � f x h z i.e, if it factors , then the random
measure term becomes equivalent to considering Levy process differentials.´
We conclude then that a large class of semimartingale Hunt processes
Žessentially quasi left-continuous strong Markov processes with technical

.regularity conditions can be represented as solutions of SDE’s driven by
Levy processes. Hence if Z is such a Hunt process we can write´

t
Z � Z � g Z dY ,Ž .Ht 0 s� s

0
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Ž . Ž .where Y is a vector Levy process and equation 1 can be rewritten´
t

X � X � f X g Z dYŽ . Ž .Ht 0 s� s� s
0

and by passing to a larger system we obtain

t ˆX � X � f X dYŽ .Ht 0 s� s
0

Ž̂ .with a new coefficient f � .

˜EXAMPLE 2.5. Let Z be a real-valued Levy process with no Brownian part´
˜such that its Levy measure � has a finite second moment. Then � Z and´ t

˜ 2 ˜ ˜ 2Ž . Ž . Ž .� Z are finite. Set Z � Z � � Z , f x � x and g x � x . Assume X � 1.t t t t 0
An easy calculation shows that

t2 22� X � 1 � x � dx � X ds, 0 � t � T ,Ž . Ž . Ž .H Ht s
0

so that

2 2� X � exp x � dx T .Ž . Ž .HT ž /
Similarly, one has

nT2n 2� X � 1 � x � dx .Ž .Ž . HT ž /n

Thus, the rate of convergence is 1�n. We conclude that Theorem 2.2 is
optimal with respect to the rate of convergence, even with no Brownian
component. One cannot a priori hope this example is typical with Levy´

Ž .processes with finite second moments, since it is the linear or exponential
Ž .case, and thus the derivatives of � g X are zero for order 3 or higher:x t

indeed, in the proof of Theorem 2.2 one can use this fact to eliminate several
terms that effectively slow the rate.

EXAMPLE 2.6. Let Z be a Levy process which is a compound Poisson´
process with Levy measure´

1
� dx � � x dx .Ž . Ž .� 9� 1 � x

ŽThus � does not have a finite 8th moment and one cannot apply Theorem
. Ž .2.2 . Theorem 2.1 can still be used however and we have � m is of order8
Ž . Ž . 8log m as m tends to infinity. Also h m is of order 1�m . Therefore Theorem

2.1 gives us a rate of convergence

mK ŽT . 1
� .8n m
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We are free to choose m as a function of n, so let m � n�. The optimal choice
Ž Ž .. �8�Ž8�K ŽT ..of � is 1� 8 � K T and we obtain a rate of convergence of n ,

which may be only slightly worse than 1�n. Note, however, that if � were of
the form

1
� dx � � x dx ,Ž . Ž .� 8� 1 � x

which of course is farther away from having eight moments, analogous
Ž .�calculations yield a rate of convergence 1�log n for some � � 0.

3. A discussion on simulation. If one considers a stochastic differen-
tial equation of the type

t t
X � X � 	 X dW � b X dsŽ . Ž .H Ht 0 s s s

0 0

Ž .where W is a standard Wiener process, then to implement methods of thet
Ž .type considered here using the Euler scheme one needs to be able to

simulate the increments of the Wiener process W � W . Since theŽk�1.T � n kT � n
Wiener process has independent increments, this amounts to having to

Ž .simulate a finite i.i.d. sequence of normal random variables, for which
efficient methods are well known.

Ž .In contrast, simulation problems for equations of type 1 can be formi-
dable. It is perhaps first appropriate to discuss a little what a Levy process is.´
By the independence and stationarity of the increments, we can write

n

Z � Z � Z ,Ž .Ý1 Žk�1.� n k � n
k�1

and thus Z is the sum of n i.i.d. random variables for any n. Hence Z is1 1
Ž .infinitely divisible indeed, Z is infinitely divisible for all t � 0 . Thust

knowing Levy processes can be equated with knowing infinitely divisible´
distributions. Many familiar classical distributions are infinitely divisible
such as the normal, gamma, chi-squared, Cauchy, Laplace, negative bino-
mial, Pareto, logarithmic, logistic, compound geometric, Student, Fisher, and

Žlog-normal that the last three are infinitely divisible is nontrivial; see e.g.,
� �. � �31 . Goldie’s theorem 16 allows one to generate such at will: the product
UV of random variables is infinitely divisible if U is arbitrary but nonnega-
tive, V is exponential and U and V are independent.

From our standpoint, however, it is perhaps more appropriate to deal with
ŽFourier transforms. Indeed, using the Levy�Khintchine formula see, e.g,´

� �. Ž .29 , one can imagine a description of the process Z being given int
applications by a description of the diffusive constant 	 , a description of the

�drift constant 
 and a description of the behavior of the jumps remember
Ž .� Ž .4 . Since the Brownian component W and the jumps of the Levy process Z´t
are independent, we will treat here only the simulation of the jumps. Mathe-
matically speaking, being given a description of the jumps is tantamount to
being given the Levy measure.´
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3.1. A finite Levy measure � . The following is well known and elementary´
but we include a proof for the sake of completeness.

Ž .THEOREM 3.1. Assume Z is a Levy process with no Brownian term and´t
Ž r . Ž .no drift term and a finite Levy measure � . Let � � � � . Then, Z is a´ t

compound Poison process with jump arrival rate � and its jumps have
Ž .distribution 1�� � .

PROOF. Due to the independence and stationarity of the increments, the
Levy�Khintchine formula uniquely determines the distribution of the entire´

Ž .process Z . We havet

² :� exp i u , Z � exp �t� u ,Ž .Ž .Ž .t

where, for some a 
 � r,

² :� u � 1 � exp i u , x � dxŽ . Ž . Ž .Ž .H
� �x �1

² : ² : ² :� 1 � exp i u , x � i u , x � dx � i a, u .Ž . Ž .Ž .H
� �x �1

Ž . Ž .Let N be Poisson with arrival rate �, and let T j 
 � be its arrival times.t j
Ž . Ž . Ž . Ž .Let U be an i.i.d. sequence with LL U � � dx � 1�� � dx and letj j

�
�M � U� .Ýt j � t � T �j

j�1

Then

� �² : ² :� exp i u , M � � exp i u , M N � k � N � kŽ .Ž . Ž .Ýt t t t
k

� k

² :� � exp i u , U � N � kŽ .Ý Ý j tž /k�1 j�1

² :� exp �t 1 � exp i u , x � dx ,Ž . Ž .Ž .Hž /
and the result follows. �

Thus if � is a finite measure, we need only to simulate the increments of
Ž .compound Poisson processes, and this too is well understood. Let Z be at

compound Poisson process of the form

�
iZ � V � ,Ýt � t � T �i

i�1
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where T are Poison arrival times of intensity � and V are i.i.d. with lawi i
Ž . k� � 1�� � . Denote by �* the k-fold convolution of �. Then

�

� Z 
 A � � Z 
 A  N � k � N � kŽ . Ž . Ž .Ýt t t t
k�1

k� �tŽ .
k ��t� �* A e .Ž .Ý k!k�1

Therefore a method to simulate Z is first to simulate N � Ý� � and� t � T �t t i�1 i

get a value k; then simulate a random variable variable with law �*k. The
problem is reduced to the simulation of random variables having law �*k:
this is easy when � is Gaussian or Cauchy; in the general case, for example,

� � � �one can use a rejection method; see 5 or 14 . Observe that, when using the
Euler method one wants to simulate Z � Z which is identical inŽk�1.T � n T � n
law to Z . SinceT � n

1
lim � N � z � 0,Ž .t�tt�0

if n is significantly larger than �, most often to simulate Z one needs toT � n
Ž .simulate nothing, or a random variable with distribution 1�� � , or rarely

ŽŽ . . 2a random variable with distribution 1�� � * . One needs to simulate
ŽŽ . . k1�� � * for k � 3 almost never.

3.2. A Levy measure with a countable number of point masses. Here we´
assume the Levy measure is of the form´

�

12 � dx � � dx � � � dx ,Ž . Ž . Ž . Ž .Ý k 
k
k�1

Ž . Ž .where � dx denotes the point mass at 
 
 � of size 1; � dx is a finite
 kk
� 4measure on � not including any point masses at the 
 , and also wek k �1

assume

�
213 
 � � �.Ž . Ý k k

k�1

� �Note that without loss of generality we can assume 
 
 �� , � , all k, fork
Ž .some � � 0, since otherwise we can put the jumps into � dx . With this

Ž . Žassumption the hypothesis 13 is automatically satisfied and hence redun-
.dant since all Levy measures � satisfy´

x 2 � 1 � dx � �.Ž . Ž .H
�
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Ž . Ž . Ž k .THEOREM 3.2. Suppose 12 and 13 with � � 0. Let N be independentt
Poisson processes with parameters � . Thenk

�
kM � 
 N � � tŽ .Ýt k t k

k�1

is a Levy process with Levy measure � .´ ´

PROOF. Let
n

n kM � 
 N � � t .Ž .Ýt k t k
k�1

Ž n.Then M is a square integrable martingale, andt

n
2n 2� M � 
 � t .Ž . Ýt k k

k�1

n 2Ž .Then M � lim M exists as a limit in L � , and by Doob’s martingalen
n 2Ž .quadratic inequality lim M � M in L � , uniformly in t on compacts;n

moreover M is also a martingale and a Levy process. Finally note that´
n� exp iuM � lim � exp iuMŽ . Ž .t t

n

n k� lim � exp iuÝ 
 N � � tŽ .Ž .k�1 k t k
n

n
k� lim � exp iu
 N � � tŽ .Ž .Ł k t k

n k�1
n

� lim exp �t� u ,Ž .Ž .Ł k
n k�1

where

� u � exp iux � 1 � iux � � dx . �Ž . Ž . Ž .Ž .Hk k 
k

Ž . Ž .COROLLARY 3.3. Suppose 12 and 13 and set

� � � dx .Ž .H
Ž .Then the process Z has the formt

Z � H � J ,t t t

Ž . Ž . Ž .where H is a compound Poisson process with jumps having law 1�� � dxt
Ž . Ž .and arrival intensity �, and where J is independent of H and is of thet t

form
�

kJ � 
 N � � tŽ .Ýt k t k
k�1

Ž k .for N independent Poisson processes of intensities � .t k
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PROOF. This is simply a combination of Theorems 3.1 and 3.2.

The simulation problems here begin to get a little complicated. Clearly one
will have to truncate the infinite series expression for J . We hope to addresst
these issues in future work.

3.3. Symmetric stable processes. Recall that a real-valued Levy process´
Ž .Z is called stable if for every c � 0 there exists a � 0 and b 
 � such thatt

Ž . Ž .the process cZ has the same law as the process Z � bt . If one takest at
Ž .b � 0 then Z is strictly stable. It follows from the Levy�Khintchine formula´t

Ž . �that if Z is stable then a � c , for some � , 0 � � � 2. The constant � thust
determines the process and it is called the order of the process. In this case
the Levy measure takes the form´

� ��Ž1 �� .� dx � m � � m � x dxŽ . Ž .1 x � 0 2 x � 0

Ž .for 0 � � � 2, m � 0 and m � 0. If m � m , then Z is called a symmet-1 2 1 2 t
ric stable process.

If 0 � � � 1, then the densities of some stable random variables are known
Ž . � .explicitly. Indeed, let p �, � denote the density on 0, �� of a stable random

Ž � .variable with Laplace transform exp �s , for s � 0. The corresponding Levy´
processes are known as stable subordinators, and they have nondecreasing
sample paths. Note that if U , . . . , U are i.i.d. random variables with density1 n
Ž . Ž � . �1�� np �, � having Laplace transform exp �s , then n Ý U also hasj�1 j

Ž . Ž . Ždensity p �, � , whence p �, � is the density of a stable law of index � cf.
� �. Ž . Ž � �.page 110 in 30 . In this case for x � 0, p x, � is given by see 21 :

Ž .1� 1��1 � 1
p x , � �Ž . ž / ž /� 1 � � x

14Ž . Ž .�� 1��
� 1

� a z , � exp � a z , � dz ,Ž . Ž .H ž /ž /x0

where

Ž .1� 1��sin � z sin 1 � � zŽ . Ž .Ž .
15 a z , � � .Ž . Ž . ž / ž /sin z sin � zŽ . Ž .

Ž .THEOREM 3.4. Let Z be a vector-valued symmetric strictly stable processt
of index � , 0 � � � 2, and let � be a symmetric positive matrix such that

�² : ² :� exp i u , Z � exp �t �u , u .Ž .Ž .t

Then, if 0 � � � 1,

Ž .1� 2 � 1�2Law Z � Z � Law t � s V GŽ . Ž .Ž .t s
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Ž . Ž .where Law G � NN 0, � , V is independent of G and

Ž .2�� ��a U, ��2Ž .
V � ,ž /L

� �where U is uniform on 0, � , L is exponential of parameter 1, U and L are
Ž . Ž .independent and the function a �, � is given in 15 .

Ž .PROOF. It is well known that Z has the representationt

Z � W ,Ž . Ž .t Yt

Ž .where Y is a stable subordinator of index ��2, and W is an independentt
Ž � �.standard Wiener process see, e.g., page 111 in 30 . As Herman Rubin

Ž � � . Ž . �observed see Corollary 4.1 of 21 , page 703 , the function p �, ��2 sub-
Ž . �stitute ��2 to � in 14 and observe that 0 � ��2 � 1 is the density of

Ž Ž . .Ž2�� .� � Ž . Ž . � �a U, ��2 �L where a �, � is given in 15 ; U is uniform on 0, � ; L
is exponential of parameter 1; U and L are independent. Therefore

Ž .2�� ��Law Y � Law a U, ��2 �L ,Ž . Ž .Ž .Ž .1

and by scaling we have

�1�� �1��Law Y � Law t � s Y � Law t � s Y � Y .Ž . Ž . Ž . Ž .Ž . Ž .1 t�s t s

Since

Law Z � Z � Law W � WŽ . Ž .t s Y Yt s

� Law WŽ .Y �Yt s

� Law Y � Y G'ž /t s

1��'� Law t � s V G ,Ž .ž /
we are done. �

Note that Theorem 3.4 implies that in order to simulate the increments of
a strictly stable symmetric process of index � , it is enough to simulate three
independent random variables: a Gaussian, an exponential and a uniform.

Ž . Ž .3.4. The case � � � �. We have already treated two cases where � � �
�: first, the case where the infinite mass comes only from the contribution of

Ž .point masses Section 3.2 ; and second, the case of symmetric stable pro-
cesses. In certain cases, one knows what process corresponds to an infinite
Levy measure, and also one knows how to simulate the increments of such a´
process. Such examples are rare. The most well known is the gamma process:

Ž .a Levy process Z is called a gamma process if´ t

Law Z � � 1, t , � t � 0.Ž . Ž .t
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That is, the law of Z has densityt

x t�1e�x

p x � � .Ž . x � 0� tŽ .

Its characteristic function is

1
� exp iuZ � ,Ž .t t1 � iuŽ .

which is clearly infinitely divisible since
n

1 1
� , � n � 1.t t�nž /1 � iu 1 � iuŽ . Ž .

One can then calculate the Levy measure to be´
1

�x� dx � e � dx .Ž . x � 0x

Thus, reasoning backwards, if one knows

1
�x� dx � e � dx ,Ž . x � 0x

Ž .one can simulate the increments of Z by simulating gamma randomt
variables. For such random variables many techniques are known. See, for

� �example, page 379 in 4 .

4. Proof of Theorem 2.1.

4.1. Preliminary remarks. In order to avoid having to treat the case
Ž � �.where Z reduces to being continuous which was the case studied in 35 ,

from now on we suppose the following.

Ž .H0 the discontinuous part of Z is not the null process.

� �A naive copy of the arguments in 35 would involve estimates on the
moments of the increments of Z which, were they to hold, would imply by
Kolmogorov’s lemma that Z had continuous paths. Since we are assuming Z
has jumps, such estimates do not exist.

We introduce an intermediate process Zm defined by

Zm � Z � �Z � .Ýt t s � � Z � � ms
0�s�t

m Ž � � .Note that Z is a Levy process see Theorem 36 of Chapter 1 in 29 , e.g. ,´
Ž � � . Ž m.therefore see Chapter 6 in 29 , e.g. the process X which is a solution tot

dX m � f X m dZmŽ .t t� t
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Ž m.is also a Markov process. Applying the Euler scheme to X , we define at
Ž m , n.discrete time process X .t

Decompose the global discretization error into three terms:
n m m m , n� g X � � g X � � g X � � g X � � g X � � g XŽ . Ž .Ž . Ž . Ž . Ž .T T T T T T

m , n n� � g X � � g XŽ . Ž .T T16Ž .
� A � A � A .1 2 3

Before bounding from above the A ’s, we need some intermediate results.i
� �We start by a technical lemma. It appears in a more general setting in 3

with a proof for Q � 2 i, i an integer, and a slightly different result is proven
� �in 2 , page 536. We give a detailed proof here for the sake of completeness.

� �For a result related to the Bichteler�Jacod inequality below, see 6 , page 39.

Ž .LEMMA 4.1. Let Q be a real number with Q � 2. Let LL Q be the class of
Levy processes L such that L � 0 and Levy measures � have moments of´ ´0 L

Ž .order q with 2 � q � Q. Let HH Q be the class of predictable processes H such
that

T Q� �17 � H ds � �.Ž . H s
0

Ž . Ž .For L 
 LL Q we rewrite 4 as follows:

L � 	 W � b t � x N  , dx � t� dxŽ . Ž .Ž .Ht L t L t L
� �x �1

� � L � .Ý s � � � L � �1�s
0�s�t

18Ž .

Ž .There exists an increasing function K � depending on the dimension of LQ
Ž . Ž .such that, for any L 
 LL Q , for any H 
 HH Q ,

Q
t

sup H dLH s s
00�t�T

Q�2
Q Q 2 Q� � � � � � � �� K T b � 	 � z � dz � z � dzŽ . Ž . Ž .H HQ L L L Lž /19Ž .

T Q� �� � H ds.H s
0

PROOF. We give the case for L one dimensional.
�It is clear that without loss of generality we can suppose 	 � 0 for

Ž . �Brownian stochastic integrals the inequality 19 is classical . Since � has aL
� �2second moment, we know that � L � �. Let 
 be such that � L � 
 t.t L t L

Ž . Ž .Then L � 
 t is a martingale. For L � 
 t the inequality 19 obviouslyt L t L
holds. Thus we consider the case 
 � 0, that is, L is a martingale.L

Ž .In the computations below, the constants C and the functions K � varyp p
from line to line.
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Choose the integer k such that 2 k � p � 2 k�1. Applying Burkholder’s
inequality for p � 2, we have

p p�2
t tp 2� � � �20 � H dL � 4 p � H d L, L .Ž . Ž .H H ss s s

0 0

Set

2 2� �� �� � � L, L � � � L � x � dx � �.Ž . Ž .Ý H1L s L½ 5
s�1

� � � �Since L, L is also a Levy process, we have that L, L � � t is also a´ t L
Ž .martingale. Therefore 20 becomes

p p�2
t t 2� � � �� H dL � C � H d L, L � � sŽ .H H ss s p s L

0 0
21Ž .

p�2
t 2p�2 � �� K t � � H ds .Ž . Hp sL

0

We apply Burkholder’s inequality again to the first term on the right-hand
Ž .side of 21 to obtain

p p�2p�4t t4 2 p� � � � � �� H dL � C � H � L � K t x � dx � H ds.Ž . Ž .ÝH H Hs s p s s p L s½ 5 ž /0 0s�t

We continue recursively to get

k� 1p p�2
k� 1t 2� �� H dL � C � H � LÝH s s p s s½ 5

0 s�t
22Ž .

�ik p2
i t2 p� � � �� K t x � dx H ds.Ž . Ž .Ý H Hp L sž / 0i�1

� � qNext we use the fact that, for any sequence a such that a is finite,l
� � 2 � � q Ž k .a � a for 1 � q � 2. As 1 � p�2 � 2, we getl l

k� 1 Ž .Ž k .1�2 p�2p�2 2k� 1 k2 2� � � �H � L � H � LÝ Ý ž /s s s s½ 5 ½ 5
s�t s�t

� �p� H � LÝ s s
s�t

whence

p�2 k� 1
k�12 p� � � �� H � L � � H � L .Ý Ýs s s s½ 5

s�t s�t
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� �pNote that Ý � L is an increasing, adapted, cadlag process, and itss� t s
� �p Ž . � �pcompensator is t H x � dx , which is finite by hypothesis. Since H is aL

predictable process,

t p p p� � � � � �H d � L � s x � dxŽ .ÝH Hs r Lž /ž /0 r�s

Ž .is a martingale with zero expectation. Therefore 22 yields
�ip k p2

it tp 2 p� � � � � �� H dL � C x � dx � K t x � dx � H ds.Ž . Ž . Ž .ÝH H H Hs s p L p L sž /0 0i�1

It remains to show that, for any 1 � i � k,
�i p�2p2

i2 2 p� � � � � �x � dx � x � dx � x � dx .Ž . Ž . Ž .H H HL L Lž / ž /
� �2 Ž .Let � � H x � dx , so thatL L

1 2� �� dx � x � dxŽ . Ž .L L�L

is a probability measure. Denote 2 i by q. One has to show
p�q

q�2 p�2p� q p�2� � � �23 � x � dx � � � � x � dx .Ž . Ž . Ž .H HL L L L Lž /
If

p�q
q�2 p�2�p� q� �x � dx � � ,Ž .H L Lž /

Ž .the inequality 23 is obvious. On the other hand, if
Ž .2� q�2

q�2� �� � x � dxŽ .HL Lž /
then it is sufficient to prove that

p�q
q�2 p�2p� q�1 � � � �� x � dx � x � dx .Ž . Ž .H HL L Lž /

But the bound on � and Jensen’s inequality give the result. �L

The preceding lemma leads to bounds for the derivatives of the flows
mŽ .x � X x, t,  .

Ž .LEMMA 4.2. We assume H1 .
mŽ .For any multiple index I denote by � X �,  the derivative of order I ofI t

mŽ .the flow x � X x,  . Then, for any integer p, there exists a strictly increas-t
Ž . � �ing function K � such that for any multiindex I with length I � 4,p

� m �2 p24 � � X x , t ,  � � m .Ž . Ž . Ž .I K ŽT . , 2 p � I �p
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PROOF. Let � m be the Levy measure of the process Zm.´
m mŽ . ŽLet DX denote the Jacobian matrix of the stochastic flow X �,  . Seet t

� � .Theorems 39 and 40 in Chapter 5 of 29 , e.g. It solves:
r

t �m m m mDX � Id � �f X DX d Z .Ž . Ž .Ý Ht � s� s� s
0��1

Ž .Lemma 4.1 shows that there exists an increasing function K � dependingp
� Ž .only on d, r, p and the L -norm of the first derivatives of f � such that

2 pim� DXŽ .t k

p
2 p 2 p 2 m� � � � � �� 1 � K T 
 � 	 � z d� zŽ . Ž .Hp ž /

2 pt i2 p m m� �� z d� z � DX ds.Ž . Ž .H H s k
0

Gronwall’s lemma leads to

i 2 pm� �� sup DX � � mŽ .Ž .s K ŽT . , 2 pk p
0�s�t

� Ž .�with a possible change of the function K � .p
We then write the stochastic differential system satisfied by the flow

mŽ .X �,  and its derivatives up to order 2. The preceding estimate and a newt
� �application of Gronwall’s lemma provide the estimate for I � 2.

The conclusion is obtained by successive differentiations of the flow. �

Ž . Ž .COROLLARY 4.3. Assume H1 and H2 .
Set

25 vm t , x � � g X m .Ž . Ž . Ž .x T�t

Ž .Then, there exists an increasing function K � such that for any multiindex I
� �with I � 4,

� m �26 � v t , x � � m .Ž . Ž . Ž .I K ŽT . , 8

� 4PROOF. For I � i 
 1, . . . , d one has
m m m27 � v t , x � � DX � g XŽ . Ž . Ž .i x T�t T�t

from which
2m m m� � � � � �'� v t , x � C� DX � C � DX ,Ž .i x T�t x T�t

� �where � stands for any of the equivalent norms on the space of d � d
Ž . � �matrices. Thus, Lemma 4.2 induces 26 for I � 1.

Ž .The conclusion is then obtained by successive differentiations from 27 . �

� Ž . Ž m. � � Ž n.4.2. An upper bound for A � A � � g X � � g X � � g X �1 3 T T T
Ž m , n. �� g X . The objective of this subsection is to prove the following prop-T

osition.
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Ž . Ž .PROPOSITION 4.4. Suppose H1 and H2 . Then

� � � d28 A � A � 4 g 1 � exp �h m T ,Ž . Ž .Ž .Ž .L Ž� .1 3

Ž . Ž .where the function h � is as in 8 .

PROOF. For m � 0 define
m � �29 T � inf t � 0: �Z � m .� 4Ž . t

One has, since X m � X for t � T ,t t m

m
mA � � g X � g X �Ž . Ž .Ž .1 T T �T � T �

� � � d
m� 2 g � T � TŽ .L Ž� .

m , n n
mA � � g X � � g X �Ž . Ž .Ž .3 T T �T � T �

� � � d
m� 2 g � T � T .Ž .L Ž� .

The conclusion follows from the next proposition. �

PROPOSITION 4.5. Let L be a Levy process with Levy measure � . Set´ ´ L

m � �T � inf t � 0: � L � m .� 4t

For all m � 0, it holds that
m � �� 430 � T � T � exp �T� x ; x � m .Ž . Ž . Ž .L

PROOF. We recall that T is a fixed nonrandom time denoting the endpoint
of our time interval.

We truncate the jumps of L from below. For m � 0 and 0 � � � 1 we
define

ˆ� mL � � L � .Ýt s � � � L � � � m �s
0�s�t

Set
ˆ� m ˆ� m� �T � inf t � 0; � L � m .� 4t

Then,
m ˆ� m� � � �� T � T � � T � T .

ˆ� mTheorem 3.1 implies that L is a compound Poisson process with jump
arrival rate

� m � �� 4� � � x ; x � � m .L

We set
�

� m � mˆ � mL � U �Ýt i �T � t �i
i�1

and
�

� m
� mN � � .Ýt �T � t �i

i�1
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Thus N� m is a standard Poisson process with arrival rate �� m. Set

1
� m � m� � � �� 4� � � U � m � � x ; � m � x � m .1 L� m�

Thus,

k
m � m � m � m� �� �� T � T � � U � m N � k � N � kÝ � i T T

k i�1

k� mk � TŽ .
� m � m� �� � U � m exp �� TŽ .Ý � i k!k i�1

k� m � m� � TŽ .
� m� exp �� TŽ . Ý k!k

� exp ��� mT 1 � � � mŽ .Ž .
� �� 4� exp �T� x ; x � m ,Ž .L

which is independent of the choice of � . �

Ž .Note that in this subsection the boundedness of the function g � was
essential. This is not surprising: except when the jumps of Z are bounded or
have finiteness properties reflected by � having finite moments, in general
the law of X has no moments. A contrario we will not use the boundednessT

Ž .of g � to bound A from above.2

� Ž m. Ž m , n. �4.3. An upper bound for A � � g X � � g X . The objective of2 T T
this section is to prove the following

Ž . Ž . Ž .PROPOSITION 4.6. Assume H1 , H2 and H3 hold.
Ž .Let m 
 �, m � 1 and p 
 �. Then for some increasing function K �

depending only on X , the dimensions d, r and on the L�-norm of the partial0
Ž . Ž .derivatives of f � and g � up to order 4, one has

� 4 � 4� m , n 
 � � 0 � � � 0 ,Ž . Ž . Ž .
� m31 Ž .Ž . K ŽT . , 8m m , n� �A � � g X � � g X � ,Ž . Ž .2 T T n

Ž . Ž .where the function � � is as in 7 .K ŽT ., 8

Ž � � � �.PROOF. It is useful see 33 , 35 to modify the original approximation
m m m m , nŽ . Ž .problem in the estimation of the difference � v T, X � � v T, X inT T

terms of

m m m m , n� v T � T�n, X � � v T � T�n, X .Ž . ž /T�T � n T�T � n
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mŽ .It can be checked using the Meyer�Ito formula that the function v t, �ˆ
Ž .defined in 25 solves

� � Am v m t , x � 0, 0 � t � T ,Ž .Ž .032Ž .
v m T , � � g � ,Ž . Ž .

m Ž m. mwhere A is the infinitesimal generator of the process X ; A is like thet
Ž . moperator in the right side of 2 with � instead of � .

Ž . mŽ . mŽ m mŽ .. Ž .In view of 32 , � v t, x � A A v t, x , so that, by 26 ,00

� m � � d� v t , x � � m .Ž . Ž .L Ž�0, T ��� .00 K ŽT . , 8

Therefore, one has

T
m m , n m m , n m m , n� v T , X � � v T � T�n, X � � � v T � T�n, XŽ . Ž . Ž .T T 0 Tn

� Rm , n
T�T � n

33Ž .
T

m m , n m m m , n� � v T � T�n, X � � A v T � T�n, XŽ . Ž .T Tn
� Rm , n

T�T n

with

� mŽ .K ŽT . , 8m , n� �R � .T�T � n 2n

m , nŽ .We now are going to expand the right side of 33 around X in orderT�T � n
to prove:

m m , n m m , n m , n� v T , X � � v T � T�n, X � SŽ . ž /T T�T � n T�T � n

with

� mŽ .K ŽT . , 8m , n� �S � .T�T � n 2n

If Zm were a Brownian motion, this could be done by simply making a Taylor
� �2 pexpansion using the fact that, for p � 1, � W � W is smaller thanT T�T � n

n�2 . In the general case, this does not apply: any moment of Zm � Zm isT T�T � n
Žof order 1�n otherwise Z would of necessity have continuous paths by

.Kolmogorov’s lemma . We proceed in a different way, using the Markov
property of Zm.

˜m m mŽ .Let Z denote the Levy process Z � Z , 0 � s � T�n and´ s�T�T � n T�T � n
˜m Ž .let G denote its infinitesimal generator. For any function � � of class
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2Ž d .CC � , Dynkin’s formula holds:b

T�nm m m˜ ˜ ˜�� Z � � 0 � �G � Z dsŽ . Ž .Hž /T � n s
0

T�n m˜� � 0 � 
 � � � Z dsŽ . Ž .Ý Hi i s
0i

T�ni1 m˜� 		 * � � � Z dsŽ . Ž .jÝ H i j s2
0i , j

34Ž .

T�n m m˜ ˜� � � Z � y � � ZŽ . Ž .H H s s½r0 �

˜m m� � � Z y � � dy ds.Ž .Ž .Ý j s j � � y � �1� 5
j

Now, each subexpression of the right side of the above equality is consid-
˜m 4 dŽ . Ž .ered as a function of Z and, supposing that � � is of class CC � , we makes b

Ž .a first-order Taylor expansion around 0; remembering the definition 6 , we
observe that

˜m� � � � � �35 � Z � s 
 � z � dz � � m sŽ . Ž . Ž .Hs 2ž /� � � �1� z �m

and that

˜m 2 2� �36 � Z � � m s � s .Ž . Ž . Ž .s 2

We thus obtain

T
m m m , n˜ ˜ ˜37 �� Z � � 0 � G � 0 � R ,Ž . Ž . Ž .ž /T � n n

with

� mŽ .K ŽT . , 2m , n˜ � d� � � �38 � R � � �Ž . Ý L Ž� .I2n � �1� I �4

Ž . Ž .for some increasing function K � uniform with respect to � � , 
, 	 , � and n.
Choose

m m m , n m , n� z � v T � T�n, X � f X z .Ž . ž /ž /T�T � n T�T � n

mŽ . 4Ž d .This function � � of course is of class CC � as a consequence of theb
Ž .hypotheses, and 37 can be used. We get

m m , n m m , n� v T � T�n, X � � v T � T�n, XŽ . ž /T T�T � n

T
m m m , n m , n� � A v T � T�n, X � Rž /T�T � n T�T � nn

39Ž .
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� Ž .�with we use 26

� m � mŽ . Ž .K ŽT . , 2 K ŽT . , 8m , n m
� d� � � �� R � � v T � T�n, � � .Ž .Ý L Ž� .T�T � n I2 2n n� �1� I �4

Ž . Ž .We now come back to 33 , use 39 , make a first-order Taylor expansion
around 0 of

m m m , n m , nz � A v T � T�n, X � f X zž /ž /T�T � n T�T � n

Ž . Ž .and use 35 , 36 . We obtain

m m , n m m , n m , n� v T , X � � v T � T�n, X � SŽ . ž /T T�T � n T�T � n

with

� mŽ .K ŽT . , 8m , n� �S � .T�T � n 2n
m m , nŽ .Proceeding in the same way to expand � v T � T�n, X aroundT�T � n

m m , nŽ .� v T � 2T�n, X , and so on, one finally getsT�2T � n

n�1
m , n m m , n m m , n m , n� g X � � v T , X � � v 0, X � SŽ .Ž . Ž . ÝT T 0 kT � n

k�0

n�1
m m m , n� � v 0, X � SŽ . Ý0 kT � n

k�0

n�1
m m m , n� � v T , X � SŽ . ÝT kT � n

k�0

40Ž .

n�1
m m , n� � g X � S ,Ž . ÝT kT � n

k�0

with

� mŽ .K ŽT . , 8m , n� �S � .kT � n 2n

Thus, one has

� mŽ .K ŽT . , 8m m , n� �� g X � � g X � . �Ž . Ž .T T n

5. Proof of Theorem 2.2.

5.1. Preliminary remarks. We start by two lemmas. The following lemma
� �is given in 3 in a more general context. Because of its importance for our

results, we include it here.
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� � p Ž . Ž .LEMMA 5.1. Let p 
 �, p � 2. Suppose that H z � dz � � and that f �
Ž . pŽ .is Lipschitz. Then the solution X of 1 is in L � and

p p� � � �41 � sup X � � � 1 � � X .Ž . Ž . Ž .s K ŽT . , p 0
0�s�t

Ž � �. Ž .PROOF. We know by the general theory see, e.g., 29 that equation 1
has a solution and it is unique. Let X denote the solution with the convention
X � 0 and define0�

k � �T � inf t � 0; X � k .� 4t

Let

X T k� � X � k � X k � k .t t t � T T � t � T

T k� � k . � � � � kThen X � X on 0, T � X � k and moreover the T ’s are increasing0
with lim T k � � a.s.k ��

The hypothesis on � allows us to apply Lemma 4.1 to deduce
p

sk kp pT � T �� � � �E sup X � C � sup f X dZ � � XŽ .Hs p �� � 0ž /00�s�t 0�s�t

pT k pT � � �� � � � f X d� � C � X ,Ž . Ž .Hp �� p 0
0

� T k�� Ž .where the right side is finite, because X � k, and f � is continuous.
Ž .Since f � is Lipschitz,

k kT � T �f X � C f f 0 � XŽ . Ž .Ž . ž /�� ��

and applying Gronwall’s lemma we have

k p pT �� � � �� sup X � � � 1 � � X .Ž . Ž .s K ŽT . , p 0
0�s�t

The right side is independent of k, so Fatou’s lemma gives the result. �

In view of the preceding lemma, our proof of Corollary 4.3 can be rewritten
to get:

Ž . Ž . Ž . � Ž . Ž .�COROLLARY 5.2. Assume H1� , H2� and H3� resp. H2� and H3� .
Set

42 v t , x � � g X .Ž . Ž . Ž .x T�t

Ž .Then there exists an increasing function K � such that for any multiindex I
� � Ž .with I � 4 resp. 8 ,

� � � � M �
�43 � v t , x � � 1 � xŽ . Ž . ž /I K ŽT . , M

� Ž � �. � Ž � �.�with M � max 2 M�, 2 I resp. max 2 M�, 2 I .
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� � 2 p Ž .LEMMA 5.3. Assume that H z � dz � � for some integer p � 1 and that
Ž . Ž .f � is Lipschitz. Then there exists an increasing function K � such that,

uniformly in n one has
2 p 2 pn� � � �44 max � X � � � 1 � � X .Ž . Ž . Ž .kT � n K ŽT . , 2 p 0

0�k�n

PROOF. For p � 1, one has
2 2 2n n n� � � � � �� X � E X � � f X Z � Z .Ž .ž /Žk�1.T � n kT � n kT � n Žk�1.T � n kT � n

The Levy�Khintchine formula provides an analytical expression for the´
characteristic function of Z ; since Z has moments of orders up to 2 p,T � n T � n

Ž Ž ² :. ² :.differentiation under the integral sign of H 1 � exp i u, x � i u, x
Ž . Ž .� � dx permits the computation of these moments. Under H1 , one can� � x � �1�

then check that

C� � T 2Ž .2 p2 2n n� � � �� X � � X �Žk�1.T � n kT � n n
Ž .for some constant C depending only on f � . One then sums over k to obtain

the result for p � 1. One then proceeds by induction. �

Ž .We are now in a position to prove 10 .

Ž . Ž . Ž . Ž .5.2. Proof of 10 . In this section we suppose H1� , H2� and H3� . We
follow the guidelines of Section 4.3.

˜ Ž .Let Z denote the Levy process Z � Z , 0 � s � T�n and let´ s�T�T � n T�T � n
˜ 4 dŽ .G denote its infinitesimal generator. Consider functions � in CC � such
that

� � � � M�45 � � z � C 1 � zŽ . Ž . Ž .Ý I �
� �1� I �4

for some positive real number C and some integer M � 2. Consider Dynkin’s� �
˜ ˜m mŽ .formula 34 with Z instead of Z and � instead of � . Make a Taylor

Ž .expansion to get the approximate Dynkin formula, similar to 37 :

T
n˜ ˜ ˜46 �� Z � � 0 � G� 0 � R ,Ž . Ž . Ž .ž /T � n n

with
� �Ž .K ŽT . , M�n˜� �� R � 2n

Ž .and furthermore the increasing function k � is uniform with respect to 
, 	 ,
Ž .� and n, and depends on � � only through the constants C and M� �

Ž .appearing in 45 .
Choose

n n� z � v T � T�n, X � f X z .Ž . ž /ž /T�T � n T�T � n
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Ž . 4Ž d . Ž . �This function � � is of class CC � and satisfies 45 with M � M ��

Ž . � Ž . Ž .�M�* � max 2 M�, 8 remember that M�* appears in H3� and use 43 . Thus
Ž .37 can be used. We get

n n� v T � T�n, X � � v T � T�n, XŽ . ž /T T�T � n

T
n n� � Av T � T�n, X � Rž /T�T � n T�T � nn

47Ž .

� Ž . Ž .�with we use 43 and 44

� �Ž .K ŽT . , M �*n� �� R �T�T � n 2n

Ž . n m , n Ž .Proceeding as in 40 with X instead of X and v �, � instead of
mŽ .v �, � , we deduce

�K ŽT . , M �*n� �� g X � � g X �Ž . Ž .T T n

Ž . Ž .for any function g � satisfying the hypothesis H2� .

Ž . Ž .5.3. Proof of 11 . To obtain the expansion of the Euler scheme error 11 ,
Ž . Ž .we must now refine the strategy. From now on, we suppose H1� , H2� ,

Ž .H3� .
Ž .It can be checked using the Meyer�Ito formula that the function v t, �ˆ

Ž .defined in 42 solves

� v � A v t , x � 0, 0 � t � T ,Ž . Ž .048Ž .
v T , � � g � ,Ž . Ž .

Ž . � Ž .�where A is the infinitesimal generator of the process X see 2 .t
Ž . Ž . Ž . Ž .In view of 48 , � v t, x � �A� A� Av t, x . The estimate 43 shows000

Ž .that, for an increasing function K � ,

� � � � M �
�� v t , x � � � 1 � x ,Ž . Ž . ž /000 K ŽT . , M

where M� � 2 M � 12.
Ž .Instead of 33 , we now write:

T
n n n� v T , X � � v T � T�n, X � � � v T � T�n, XŽ . Ž . Ž .T T 0 Tn

T 2
n n� � � v T � T�n, X � RŽ .00 T T22n

49Ž .
T

n n� � v T � T�n, X � � Av T � T�n, XŽ . Ž .T Tn

T 2
n n� � A Av T � T�n, X � RŽ . Ž .T T22n
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� Ž .�with we use 44
� �Ž .K ŽT . , M � *n� �50 R � .Ž . T 3n

nŽ .In order to expand the right side of 33 around X , we need anT�T � n
Ž .approximate Dynkin formula more precise than 37 .

Ž . 6Ž d .Suppose that � � is of class CC � and that

� � � � M�51 � z � C 1 � zŽ . Ž . Ž .Ý I �
� �1� I �6

for some positive real number C and some integer M . Apply Dynkin’s� �

formula twice:
sT T�n˜ ˜ ˜ ˜ ˜�� Z � � 0 � G� 0 � �G�G� Z d� ds.Ž . Ž . Ž .H Hž /T � n �n 0 0

We make a Taylor expansion of Z around 0; we obtain�

T T 2
n˜ ˜ ˜ ˜ ˜52 �� Z � � 0 � G� 0 � G�G� 0 � R ,Ž . Ž . Ž . Ž .ž /T � n 2n 2n

with
� �Ž .K ŽT . , M�n˜� �� R � 3n

Ž .and furthermore the increasing function k � is uniform with respect to 
, 	 ,
Ž .� and n and depends on � � only through the constants C and M� �

Ž .appearing in 51 .
Choose

n n� z � v T � T�n, X � f X z .Ž . ž /ž /T�T � n T�T � n

Ž . 8Ž d . Ž . �This function � � is of class CC � and satisfies 51 with M � M ��

Ž . � Ž . � Ž .max 2 M�, 12 use 43 again . Thus, we can apply 52 .
Ž .Then apply 37 to

n n� z � Av T � T�n, X � f X z ,Ž . ž /ž /T�T � n T�T � n

and finally make a Taylor expansion around 0 for
n nz � A� Av T � T�n, X � f X z .ž /ž /T�T � n T�T � n

As in the preceding subsection, easy computations lead to

T 2
n n n n� v T , X � � v T � T�n, X � �� T � T�n, X � SŽ . ž / ž /T T�T � n T�T � n T�T � n2n

where
� �Ž .K ŽT . , max Ž2 M , 12.n� �S �T�T � n 3n

Ž .and where the function � �, � is defined as follows:
1 12 t , x t , x˜ ˜ ˜� t , x � A v t , x � G�G� v 0 � G� Av 0Ž . Ž . Ž . Ž .2 2



P. PROTTER AND D. TALAY422

where
vt , x z � v t , x � f x z .Ž . Ž .Ž .

� � Ž . Ž .We conclude as in 35 : consider now � t, � , 0 � t � T, instead of g � in
Ž . Ž . Ž . Ž .10 ; � t, � satisfies H2� with M�* � max 2 M�, 16 , so that

T 2
n n n� v T , X � � v T � h , X � �� T � T�n, X � U ,Ž .Ž . ž /T T�T � n T�T � n T�T � n2n

with
� �Ž .K ŽT . , M � *n� �U � .T�T � n 3n

Ž .Proceeding as in 40 , we obtain:
2 n�1 n�1T

n n� v T , X � � v T , X � �� kT�n, X � U .Ž . Ž .Ž . Ý ÝT T kT � n kT � n2n k�0 k�0

Finally, we observe that
2 n�1T T T n�� kT�n, X � �� s, X ds � rŽ .Ž .Ý HkT � n s2 nn 0k�0

with
� �Ž .K ŽT . , M � *n� �r � .2n

Thus,
T � �Ž .T K ŽT . , M � *n� g X � � g X � �� s, X ds � . �Ž . Ž .Ž . HT T s 2n n0
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