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Summary. We study the approximation problem of 1Ef(XT) by IEf(X~), where 
(Xt) is the solution of a stochastic differential equation, (Xt n) is defined by 
the Euler discretization scheme with step T/n, and f is a given function. For 
smooth f ' s ,  Yalay and Yubaro have shown that the error ]Ef(XT) - f(X~) can 
be expanded in powers of l/n, which permits to constntct Romberg extrapo- 
lation procedures to accelerate the convergence rate. Here, we prove that the 
expansion exists also when f is only supposed measurable and bounded, under 
an additional nondegeneracy condition of H6rmander type for the infinitesimal 
generator of (Xt) : to obtain this result, we use the stochastic variations calcu- 
lus. In the second part of  this work, we will consider the density of  the law 
of X~ and compare it to the density of the law of XT. 
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1 Introduction 

Let (Xt) be the process taking values in IR d, solution to 

(1.1) 

where (W t) is an r-dimensional Brownian motion. 
The problem of computing the expectation ]Ef(Xt) on a time interval [0, T] 

by a Monte-Carlo algorithm, (Xt) being a diffusion process, arises from various 
motivations. For example, in Random Mechanics, a random dynamical system 
with a white noise being given, one wants to get the two first moments of  the 
response of the system, or the probability that the response reaches a certain 
level. In numerical analysis, this permits to solve parabolic or elliptic Partial 
Differential Equations in situations where deterministic algorithms become dif- 
ficult to use or inefficient, especially when the dimension of the state space 



44 V. Bally, D. Talay 

is large, when the underlying differential operator is degenerate, or when the 
objective is to compute the solution only at a few points. In economy, this 
permits to compute option prices based upon a large panel of assets. 

The algorithm consists in approximating the unknown process (Xt) by an 
approximate process (depending on a parameter denoted by n) (Xt ~) which can 
be simulated on a computer, and in simulating a large number M of independent 
trajectories of X[, so that IEf(Xt) is approximated by 

1 M 
- -  ~ f(xtn(c~ . 
m i = l  

The resulting error of the algorithm depends on the choice of the approximate 
process and the two parameters M and n. 

The effects of M can be described by the Central-Limit Theorem or large 
deviation results; in practice, one estimates the maximum value of the variance 
of f (Xt)  for t in [0, T], and then chooses M according to the desired accuracy 
and the power of the available computer. A sophisticated variance reduction 
technique has been developed and analysed by Nigel Newton in [8]. Generally 
M must be large, and, as just mentioned, one chooses a probabilistic technique 
because the problem is degenerate or high dimensional: therefore, one takes 
advantages of simple procedures to approximate (Xt). 

A natural mean is to use a time discretization scheme of the stochastic 
differential equation whose (Xt) is the solution: Tin represents the discretization 
step. For example, the Euler scheme is defined by 

n // T n 
X~p+i)v/, = XpT/. + b(Xpr/.) + a(Xpv/,)(W(p+l)r/n - WpT/.) . (1.2) 

For pT/n < t < (p  + 1)T/n, X 7 is defined by 

/ 

The effects of n can be measured by 

IlEf(Xr) 

P~f ) G(Xpr/.)(w, w~/.). + 

the quantity 

- IE f (X~) I .  (1.3) 

Milshtein [6] was the first to show that the schemes built for the quadratic mean 
convergence, and L 2 estimates of the corresponding errors, are not relevant in 
that context, since the objective is to approximate the law of (Xt). 

Talay [12, 13] and, independently, Milshtein [7], have introduced the ap- 
propriate methodology to analyse the error (1.3): it consists in writing this 
difference as a sum of terms involving the solution of a parabolic PDE (this 
technique will be used also below). These references provide schemes such 
that, under smoothness conditions on b, o-, f ,  

C 
] I E f ( X r ) -  IE/(X~) I < - -  ~ = 1, 2 .  

Several other schemes have then been proposed by Kloeden and Platen [4]. 
In Talay and Tubaro [14], a more precise result is proven: under the same 

conditions, the errors corresponding to these schemes can be expanded in terms 
of powers of l/n, and formulae for the coefficients of the expansion can be 
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derived. In Protter and Talay [11], the same result is shown for the Euler 
scheme applied to stochastic differential equations driven by general (discon- 
tinuous) Lrvy processes. 

Here, we will focus our analysis on the simplest scheme, the Euler scheme: 
as a consequence of the existence of the expansion, linear combinations of re- 
sults obtained with this scheme and different step-sizes permit to reach any de- 
sired convergence rate (Romberg extrapolation technique: see Talay and Tubaro 
[14]). 

Our objective is to show the existence of the expansion under a much 
weaker hypothesis on f than in [14]: we will suppose it measurable and 
bounded (the boundedness could be relaxed); for example, f can be the in- 
dicatrix function of a domain: our result applies when one wants to compute 
probabilities of the type ~P[lXrl > K]. In counterpart, we suppose a nonde- 
generacy condition which in particular ensures that, for any t > 0 and any 
x E ]R d, the law of the random variable Xt(x) has a smooth density with 
respect to the Lebesgue measure (essentially, this condition is the Hrrmander 
condition for the infinitesimal generator of the process): that condition is less 
restrictive than the uniform ellipticity of the generator, and therefore our result 
applies for dynamical systems whose solution, representing a pair (position, 
velocity), cannot have a uniformly elliptic generator. 

The organization of the paper is the following: in Sect. 2, we recall some 
results of the Malliavin calculus that we will use in the sequel, in particular 
an estimate due to Kusuoka and Stroock on the derivatives of the density of 
Xt(x); in Sect. 3, we state and comment our main result; Sect. 4 is devoted to 
the proof, except two technical lemmas which are proved in Sect. 5; in Sect. 6, 
we give some extensions of the result. 

In the second part of this work [2], we will consider the density of the law 
of X~. and compare it to the density of the law of Xr. 

Notation. In the paper, (p being a smooth function, the notation ~Xq)(t,x,y) 
means that the multiindex ct concerns the derivation with respect to the coor- 
dinates of x, the variables t and y being fixed. 

When 7 = (,fij) is a matrix. ~ denotes the determinant of 7, and 7j denotes 
the j th column of 7. 

When V is a vector, 3V denotes the matrix (OiVj.) ij. 
Finally, we will use the same notation K(.),  q, Q, ~t, etc, for different func- 

tions and positive real numbers, having the common property to be independent 
of T and of the approximation parameter n: typically, they will only depend 
on L~-norms of a finite number of partial derivatives of the coordinates of b 
and o" and on an integer L to be defined below (see the hypothesis (HU)). 

2 Some basic results of the Malliavin calculus 

One can now find several expositions of the Malliavin calculus: see, for exam- 
ple, Nualart [9] (we use the notation of this book) and Ikeda-Watanabe [3]; a 
short presentation on the applications to the existence of a density for the law 
of a diffusion process can be found in Pardoux [10]. 

We only introduce the material necessary to our computations. 
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We fix a filtered probability space (f2, W, (~t  ), lP ), and an r-dimensional 
Brownian motion (Wt) on that space. 

For h(-) E L2(IR+,IRr), we denote by W(h) the quantity fr(h(t),dWt). 

Let J be the space of "simple" functionals of the Wiener process W, i.e. the 
sub-space of L2(g2, Y ,  IP) of  random variables F which can be written under 
the form 

F = f (W(hl)  . . . . .  W(h,)) 

for some n, polynomial function f ( . ) ,  hi(') E L2(~+, ]Rr). 

For F E 5 ~ we denote by (DtF) the lRr-dimensional process defined by 

DtF= ~ ~xi(W(hl),...,W(hn))hi(t). 
i=1 

The operator D is closable as an operator for LP(E2) to LP(E2;L2(O, T)), for 
any p _-> 1. Its domain is denoted by IW,P, and we define the norm 

tlfll l,p :=  [IEIFI p + I[DFII~,(O,L2(O;T))] lip 

The j th component of  DtF will be denoted by D/tF. 

One also defines the kth order derivative as the random vector on [0, T] k x f2 
whose coordinates are defined by 

DJl,...,J)~ p " .. , tl,...,tk -- := D/[ " D/ll F 

and we denote by ID N'p the completion of 5 ~ with respect to the norm 

I I lip 
N k p 

IIFIIN, p := IEIFI p + ~ IEIID FIIL2((0.rF~ 
k=l 

D ~176 will denote the space Np>=~ Njel IDJ'P. 

For F E 5 P, one also defines the Ornstein-Uhlenbeck operator L by 

LF = ~ Of W(hn))W(hi) - ~ ~2f (W'hl),. .  W(hn))(hi, hj) , ~ X / ( W ( h l )  . . . .  ' ~ ~ t " ' 
i = 1  " i,j=l 

which is a closable operator. The domain of L includes ID ~ .  

For F := (F1,. . . ,F m) E ( IDa)  m, we denote by 7F the Malliavin covariance 
matrix associated to F, i.e. the m • m-matrix defined by 

i j 
7~ := (DF ,DF )L2(0, T) . 

Definition 2.1 We will say that the random vector F satisfies the nondegen- 
eracy assumption if the matrix 7F is a.s. invertible, and the inverse matrix 
F F :-~- ];F I satisfies 

IIrFll ~ N L p ( o ) .  
p=>l 
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Remark. 2.2 The above condition can also be written (we recall that 7F denotes 
the determinant of 7F): 

1 
- c N L~(n). 
~F p>l 

[] 

Our main ingredient is the following integration by parts formula (cf. the sec- 
tion V-9 in Ikeda-Watanabe [3]): 

Proposition 2.3 Let F C ( D ~ )  m satisfy the nondegeneracy condition 2.1, let g 
be a smooth function with polynomial growth, and let G in ID ~176 Let {He} be 
the family of  random variables depending on multiindices fi o f  length strictly 
larger than 1 and with coordinates flj E {1 . . . . .  m}, recursively defined in the 
following way: 

~ ( F ,  G) = H~i~(F, G) 

" - -  - - k  "" " "" .-- F ij J F~ G LF j} {G(DF~,DFJ)L2(O,T) + F(DG, DF )L2(0,T) + �9 . , 
j--1 

He(F, G) = H(e,,...,ek)(F, G) 

:= HeAF, H(el,...,e~_ ,)(F, G)) .  (2.1) 

Then, for any multiindex ~, 

IE[ ( a~g )( F )G] = IE[g( F )H~( F, G)]. (2.2) 

We can get the following estimate: 

Proposition 2.4 For any p > 1 and any multiindex fl, there exist a constant 
C(p, fl) > 0 and integers k(p, fl), m(p, fl), mt(p, fl), N(p ,  fl), Nt(p,  fl), such 
that, for any measurable set A C f2 and any F, G as above, one has 

]E[IHB(F, G)IP~A] 1/p 

C(p,B)llFFaAllk(p,~)llalIN(p,~),m(p,~)llFllN,(p,e),m,(p,~ ) . (2.3) 

Proof We apply the Meyer inequality on ][LF]Ip (see Theorem 8.4 of Chap. 5 
in Ikeda-Watanabe [3], with k = 2, taking into accotmt Definition 8.2 in the 
same chapter): 

IILfllp < cIIfll2,p, 

and the equality 
DFiJ = --~FikFJlDykl ; 

the result readily follows from definition (2.1). [] 
We now state another classical result, which concerns the solutions of stochastic 
differential equations considered as functionals of the driving Wiener process. 
[A,A t] will denote the Lie brackett of two vector fields A and A t. 



48 V. Bally, D. Talay 

Definition 2.5 Let us denote by Ao,A1 . . . .  , Ar the vector fields defined by 

d 
Ao(x) = ~bi(x)Oi ,  

i=1 

d 
A j ( x )  =  a J(x)O  . 

i=1 
j = 1 , . . . , r .  

For a multiindex ~ = ( ~ l , . . . , 0 ~ k )  E {0 ,1  . . . .  r} k, define the vector fields 

AT(1 <_ i <_ r) by induction: AOi = Ai and, for 0 <= j <= r, AI ~'j) :=  [AJ,A~]. 

The H6rmander condition is said to hold at the point x i f  the vector space 
spanned by all the vector fields A~,, 1 _< i _< r and ~ multiindex, at the point 
x, is lR d. 

Theorem 2.6 Assume that the coefficients b and a are infinitely differentiable, 
with bounded derivatives of  order strictly larger than 1. Then, for all x, all 
t > 0 and i = 1 . . . .  , d, Xti(x) belongs to ID ~. 

Besides, suppose that the Hdrmander condition holds at some point x. Let 
7t(x) denote the Malliavin covarianee matrix corresponding to Xt(x), and Ftt(x) 
its inverse. 

Then, for any t > O, one has 

IIq(x)lt c N Lp(o), 
p__>l 

and the random vector Xt(x) has an infinitely differentiable density p t ( x ,  " ). 

Actually, Kusuoka and Stroock [5] give an exponential bound for pt(x, �9 ) in 
terms of  the following quadratic forms: 

VL(x . , )  := E 
g=l I~I__<L-1 

Set 

VL(x) = 1 A inf VL(x, tl). (2.4) 
I1~11-1 

The exponential bounds require some smoothness conditions on b and ~, and 
are valid for x in the set {x ~ ]R d : VL(x) > 0}; as we will apply this estimate 
for x = Xt", we assume: 
(UH) CL := infxc~d VL(x) > 0 for the some integer L. 
(C) The functions b and a are cg~ functions, whose derivatives of  any order 
are bounded (but b and a are not supposed bounded themselves). 

Under the conditions (C) and (UH), and a corresponding L being fixed (the 
smallest one, for example), Corollary 3.25 in Kusuoka and Stroock asserts: for 
any integers m,k and any multiindices ~ and /3 such that 2 m +  [c~[ + [/3] < 
k, there exist an integer M(k,L),  a non decreasing function K(T)  and real 
numbers C, q, Q depending on L, T, m, k, e,/3 and on the bounds associated to 
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the coefficients of the stochastic differential equation and their derivatives up 
to the order M(k,L), such that the following inequality holds~: 

m ~ p K(T)(1 + I[xll Q) 
lot OxOypt(x,y)l < tq(1 + IIY-xll2) k 

( "~(['x - Y'//" 1)2) 
•  - c  ~ i ~ 2 ~ , ~ -  , V0 < t < V. (2.5) 

The same theorem provides the following estimate for Ft(x): for any p > 1, 
for some constants C, # one has 

]]Ft(x)l[p < K(t) 1 + ]]xlf (2.6) 
= tdL 

Remark 2. 7 The rate of degeneracy of pt(x, y) as t ~ 0 is controlled by that 
of Ft(x); (2.6) gives an upper bound of order 1/tdL; the lower bound lit L-1 
is proved in Theorem 5.1 in Bally [1]. 

3 O u r  m a i n  r e s u l t  

We denote by ~ the second-order differential operator 

a 1 d 
~'~ := ~b i (x )Oi  + 5 ~ (crty*)iJ(x)Oij . 

i=1 i,j=l 
(3.1) 

Consider a measurable bounded function f and u(t,x) := lEf(Xr_t(x)) which 
solves 

0u 
0 t  + A ~  0__< t < T, (3.2) 

u(r ,  �9 ) =  f ( .  ). 

Denote by a the matrix aa*. Let T(t,x) be defined by 

d 
1 d 1 ~ bi(x)aJk(x)aijku(t,x ) ~'(t,x) = 2 ij=l ~ b*(x)bqx)aisu(t,x) + ~ i,j,~=~ 

1 d 1 O 2 
+ -~ ~ aiJ(x)ak~(x)OijklU(t,x) + ~ ~ u ( t , x )  

i,j, kd=t 

d . 1 ~ aJ(x)~Oiju(t,x). 
+ i=l ~ bZ(x) Oiu(t,x) § ~ i,j=l (3.3) 

Theorem 3.1 Let f be a measurable and bounded function. Under the hy- 
potheses (UH) and (C), the Euler scheme error satisfies 

]Ef(Xr(x)) IEf(X~r(x)) Cf(T,x) On(f, T,x) - - -  - -  + �9 ( 3 . 4 )  
n /,12 ' 

1The constant 70 of  the statement o f  Kusuoka and Stroock is equal to 1 under (C) 
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the terms Cf(T,x)  := f[IET(s, Xs(x))ds and Q,( f ,  T,x) have the following 
property: there exists an integer m, a non decreasing function K( T) depending 
on the coordinates of  a and b and on their derivatives up to the order m, and 
positive real numbers q, Q such that 

1 + I[xtl O 
Icj(T,x)I + sup n IOn(f, T,x)I <~ K(T)IIfII~ Tq 

The expansion (3.4) was first obtained by Talay and Tubaro in [14]. No non- 
degeneracy assumption of HSrmander type was necessary, but in counterpart 
the function f (  �9 ) was supposed smooth enough; in that context, one obtains 
a bound of type 

ICf(T,x)l +sup.  ]Q~(f,T,x)t ~ K(T) ~ II0~flloo, 
p~l<6 

Besides, when f is smooth, the analysis shows that the simulation of Brow- 
nian paths is unnecessary to get the existence of the expansion: the algorithm 
may involve appropriate discrete lawed random variables as well (see [14]). 
In our context, this property does not remain true. This has no practical inci- 
dence: the simulation of the increments of the Wiener process can efficiently 
be performed. 

4 Proof of Theorem 3.1 

The proof of the preceding theorem is based upon the two following technical 
lemmas, which are interesting by themselves. Their statements suppose that the 
hypotheses of Theorem 3.1 hold. 

Lemma 4.1 Let the function u be defined by (3.2). Then, for any muhiindex 
c~ and for any smooth function with polynomial growth g, there exist a non 
decreasing function K(T)  and positive constants q, Q, uniform with respect 
to n and T, such that 

1 + Ilx]l ~ 
vt ~ [O,T], ]Ig[g(X,(x)),~u(t,X,(x))]l ~ K(T)llflioo Tq ' (4.1) 

and 

Vt O , T -  T] [lE[g(Xt(x))O~u(t,X~(x))] [ < K(T)[[ f ] [1  + IIxll Q 
' = Tq 

(4.2) 

L e m m a  4.2 Let 7 and 2 be multindices, let g and gy be smooth functions with 
polynomial growth. Set 

(p(0, �9 ) : = g y ( -  )O~PT o f ( "  ) .  
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There exist a non decreasing function K ( T )  and positive constants q, Q, 
uniform with respect to n and T, such that 

voz  [ o , r -  ~ ] ,  v t z  [O ,O- r ]  , 

1 + Ilxll Q IlE[g(X~(x))8xPo-tep(O, -)(z)lz=xT(x)]l ~ K(T)IIflI~ rq (4.3) 

L e m m a  4.3 For some integer q and some non decreasing function K(T) ,  one 
has that 

llE f ( X ~ r ( x ) ) _  lE(PT/.f)(X~r_r/~(x))] < K~T)I l f l l~(1  + Hxll o ) .  (4.4) 

For a while, we admit Lemmas  4.1, 4.2, 4.3 which will be proven in Sect. 5. 
We start with an easy other lemma. 

L e m m a  4.4 It holds that 

T 2 n - 2  / k T ,  x n  x "~ n-1  
IE f (X} (x ) )  - I E f ( X r ( x ) )  = ~ -  k=0 ~ IETJ ~ - ~  kr/n( ) )  + k ~=oR~' (4.5) 

where 
R~_ 1 := lEf(X~r(x)) - IE(Pr/ , f ) (X~r_r/ , (x)) ,  

and for  k < n - 1, R~ can be explicited under a sum of  terms, each o f  them 
being of  the form 

(k+l)T/n s 1 s 2 
IE ~ n ~ X n x n ~o~(xk~/.(x)) f f f ~0~( ~3( ))~.(s3,X~(x)ds~ds~ds4 

(k+l)T/n s 1 s 2 ] 

+ q~(X~r/,(x)) f f f (o~(X~3(x))8~u(s3,Xs3(x))ds3dszdsl , (4.6) ] kr/~ kr/~kT/~ 

s (p~'S, (p~'S products o f  functions which are where [c~[ < 6, and the (p~, , are 
partial derivatives up to the order 3 of  the aiJ,s and bi's. 

Proof We follow [14], just changing the presentation. 
For a fixed z in IR d, we define the differential operator 5r by 

a ~la i j ( z )Oi jg  ( ~ezg( �9 ) :=  ~bi(z)~ig( �9 )+ �9 ). 
i =  1 i, "= 

We note that, for z = X~r/n(x), ~ z  is the infinitesimal generator o f  the diffusion 
process (Xtn(x),kT/n <= t < (k + 1)T/n). 

As u(t, �9 ) = P r - t f (  �9 ) = lEf(Xr_t(  �9 )), one has 

~f(X~(x)) - Ef(XT(x)) = ~Eu(T,X~(x)) - u(0,x) = ~ 67~ 
k<=n--I 
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with 

3 ~ : = i E I u ( ( k + l ) T  ..n . .'~ / k T , x n  x \ 

The It6 formula implies 

(k+l)T/n 
n y n , fi~ = IE f (Otu(t,X~(x)) + 5fzU(t, t(x))lz=X,~r/.(x))dt 

k Tin 

from which, using (3.2), one gets 

(k+D~/n 
3~=-IE f (--Lu(t, XT(x))+ 5~u(t, Xt(x))b x,  ,x,)dt. 

k T/n = k r/n t ) 

Denote 

and 

i~( t )  := ~zU(t, XT(x))l~=x.T/.(x~ - Lezu ( ~,X~r/.(x) ) z-X,~T/.(x~ 

J ~ ( t ) ' = S z U  T,Xkr/n(x)  -Lu(t ,  Xt(x)) 

/ k T ,xn  x "~ =L.[7 

(4.7) 

We have 
( k+ l )T /n  

6~=IE f (I~(t)+J~(t))dt .  
kr/n 

We now consider IN(t ) and J~(t) as smooth functions of the process (X~) 
and recursively apply the It6 formula, using the fact that the fimction u solves 
(3.2), so that Lu solves a similar PDE. [] 

We can deduce the following corollary (note that this upper bound in terms 
of Ilfll  was stated nowhere else in the literature before, even for smooth 
functions f (to our knowledge); but we do not focus on it, since our objective 
is a stronger statement): 

Corollary 4.5 There exist a non decreasin9 function K( T ) and constants q, Q 
such that: 

IIEf(X}(x)) - IEf(XT(X)) t < K(T)I[flI~176 + IlxllQ) -1 (4.8) 
= T q  n "  

Proof. We apply Lemma 4.3, and for k < n -  1, we apply the estimates of  
X n R n [] Lemma 4.1 to ~P(kT/n, kr/n(X)) and k- 

Before ending our proof, we make an easy remark. 
We recall that 0xq~(t,x, y)  means that the multiindex a concerns the deriva- 

tion with respect to the coordinates of  x, the variables t and y being fixed. 
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As u(t ,x)= Pr- t f ( x ) ,  one has 

a x u(t,x) = f OXpv_t(X, y ) f ( y )  dy. 

Now we use the estimate (2.5) and get, for some k >= I~[ __> 1, 

K ( T  - t ) , ,  1 
IOx pT-t(x' y )I ~ -( T - t )q t l  + IlxllO)(1 + Ily - x l T  ) k ' 

so that 

K(T) 11/[[~ cl [a~ u(t,x)l < ( ~ _ t ) q , ~  + IlxllQ). 

Now we are in a position to prove (3.4). 
The expansion (4.5) can be rewritten under the following form: 

(4.9) 

lEf(X~r(x)) - lEf(Xr(x))  = ~ -  k~_0 IE~ ,Xkr/ ,(x)  

k=O 

n I 

+ E R~.  (4.10) 
k=0 

For any k such that k/n __< �89 we apply the inequalities (4.8) (with ~P(kT/n, �9 ) 
instead of  f (  �9 )) and (4.9) (to upper bound l]TJ(kT/n, �9 )[]~): 

lETj ( k  Tn ,x~r/n(x) ) _ lETj (kTn ,Xkr/n(X)) <= K(T) nTq II/ll~(1 + Ilxlla). 
(4.11) 

For kin > �89 one applies the expansion (4.5), substituting the function 
fn, k(x) := 7J(kT/n, �9 ) to f (  �9 ). Set Un, k(t,x) := Pkr/,-tf,,k(X) and denote by 
7~,,k(t, �9 ) the function defined in (3.3) with U~,k instead of  u; then one has 
that 

lET ~ 

= - -  ~ ' . , k  , x T T / , ( x )  
n2 j = 0  

k - 1  

+ j_2 0= 'k , 

n n  k~ where the ~xj' s are sums of  terms of  type (4.6) with u,,k instead of  u. We 
apply Lemma 4.2 to upper bound the right hand-side. 
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Combining this estimate with (4.11), we get (for a new function K( �9 ) and 
new constants) 

< K(T) 
= n2rq Ilfll~(1 + Ilxll%. 

We proceed similarly to upper bound Nn-2Rn and we k=0 k ,  apply Lemma 4.3 to 
upper bound ]Rnn_l]. 

Finally, using It6 's  formula and the estimate (4.1), we get 

T <=~_ 1E~e ,&r/~(x) - flE~e(s,X~(x))ds < Ilfr[~(1 + IIxIIQ). 
n - k  1 0 ~ n 

We note that (4.1) also ensures that fo r IE[ ~(s,X~(x))[ ds is finite. 
That ends the proof  of  Theorem 3.1. [] 

5 Proof of Lemmas 4.1, 4.2 and 4.3 

We first state a technical lemma. 

Lemma 5.1 Under the above hypotheses, for any p > 1 and j > 1, there 
exist an integer Q and a non decreasin 9 function K(t) such that 

sup IIXt(x)lFj, p < K( t ) (1  + Ilxll Q) 
n=>l 

and 
sup [[Xt(x) -X~(x)[[j,p < K(--~t)(1 + [[x[[Q). 
n__>l ~/n 

Proof. We just have to mimic the classical computations giving estimates for 
HXt(x)llj, p. For example, let us show how we can proceed for j = 1. Let 
t/n(t) denote pT/n, where the integer p is such that pT/n < t < ( p +  1)Tin. 
We remark that, for t - 0 > T/n, DkX[(x)  satisfies 

t 

DkoXt(x) ~r(X~n(o)(X) ) + ~ f n k n = &71 (X4,(s)(x))D 0 Xnn(s)(X) dWs 
t=J ~n(O)+T/n 

t 

~"(O)+r/n 

Under (C), a classical use of  Gronwall 's  lemma permits to get 

sup sup IlXt(x)lll,p < K(T)(1 + rtxl[% 
n>_l O<_t<T 

For other values o f j  and for the difference Xt (x )  - X ~ ( x ) ,  we proceed in the 
same way. [] 
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5.1 Proof  o f  Lemma 4.1 

We only prove part (4.2), part (4.1) being treated with the same arguments. 

5.1.1 Small t. We first consider the case 0 < t <<_ T/2. As T -  t > T/2, the 
inequality (4.9) yields (4.2). 

5.1.2 Large t. Now, let us treat the situation T/2 < t <_ T -  Tin. The pre- 
ceding argument cannot be used, since for 0---+ T the measure p r - o ( x , y ) d y  
converges weakly to the Dirac measure at point x. 

The principle of the rest of the proof is the following: in order to get rid of 
the derivatives of u(t,x), we will use Malliavin's integration by parts formula 
with respect to the functional X~(x),  which is expected non degenerated (with a 
high probability) for t > T/2 because X~(x)  approximates Xt(x); estimates on 
the L P-norm of the inverse of the Malliavin covariance matrix of X~(x), F], 
can be directly obtained under a uniform ellipticity condition but, under (UH) 
only, we are led to compare ][F~'[[p and ]lFt[Ip (where Ft denotes the inverse 
of the Malliavin covariance matrix of Xt(x)) and we will use a localization 
argument: 

�9 let fJ0 be the set of events where [Tt -7 t t  is larger than C~t; to prove that 
lP(~0) is small, we will use two facts: first, (X~(x))  is a "good" approxi- 
mation of (Xt(x)); second, the I]~-l[[p'S are finite; 

�9 on the complementary set of D0, ]Yt - ~t[ is small, which (roughly speaking) 
means that the Malliavin covariance matrix of X[(x) behaves like that of 
Xt(x)  (see (2.6)), which allows integrations by parts of type 2.2 with a 
good control of the LP-norms of the variables H~. 

1 Let q~ C ~ ( I R )  such that qb(x) = 1 for Ix[ __< �88 q~(x) = 0 for [x] >= ~ and 
0 < ~b(x) < 1 for ]xl E (�88189 
Set 

n (~t n -- ~t) 
Y t  " - -  

One has 

n X /'/ n X n IE [ g(X, (x))a  ~ u ( t , X ,  (x))] = r  ))] 1E {g(X t (x) )a  ~ u(t, XT(x)) (1 - 
/7 X n /'t + IF. [g(X t (x))Q~ u ( t , X  t (x))r  t )] 

= : A §  

To upper bound [A], we use (4.9): 

K(T) Llfl[~ IE IA[ ~ ~ 1 qS(rt) t . (5.1) 

2 In the sequel, ~ (resp. 7t) will denote the Malliavin covariance matrix of Xp(x) (resp. 
X~(x)); note that, in order to simplify the notation, we systematically drop the dependancy 
on x except for X[ and Xt themselves 
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Since 1 - ~b(r~) = 0 for IrTI ~ �88 one has 

1El1-  qS(r~), < IP [,r~', > ~]=le 

--< le [~, ==- n@/4] + Ie ['~: - ~tt 

= IP [~tl ~ n 1/4] §  [[])t n-~)t[ 

Thus, for any p > 1, one has 

= 4nl/4 1]  
= 4nl/4 �9 

JEll - q~(r~) I =~ n-p/4]El~t l  p § ( 4 n l / 4 ) p l E ] ~ t  - ~tl p . 

But (see Lemma 5.1): I l X t ( x ) - X ] ( x ) l l i , p  <-_ K( t ) (1  + I/xjle)n-% so that 

[I~7 -- ~t[]p ~ (1 + l l xp IQ)K( t )n  -1/2 . 

On the other hand, under our nondegeneracy assumption, one has (see (2.6)) 

sup HT;'IIp < K ( T )  1 § Ilxll" 
TdL T/2 < t<_T 

As a consequence, for any p > 0 there exists an increasing function K(  �9 ) 
and an integer Q such that 

lEll - ~b(rT) I _-< K ( T ) ( 1  + IlxlIQ)n -p/4 1 TPdL ' (5.2) 

from which and (5.1), remembering that for t < T - T/n,  ( T  - t ) - q  < Cnq,  
one gets 

IAI <= I [ f ] t ~ n  q p / 4 K ( T ) ( 1  § IlxllQ)r)dL. (5.3) 

To obtain the desired result, it remains to choose p = 4q. 
We now treat B. We want to apply proposition (2.2). As X~' may not 

satisfy the nondegeneracy condition, we make a slight modification: we change 
the time interval for [0, T + e] with e > 0, and on [0, T + g] we set 

x7 '~ :=x7 + eWr+~. 
Then X~ '~ satisfies the nondegeneracy condition 2.1 for all e > 0 and all t E 
[0, T + g]. 

In order to simplify the notation, we continue to write X "  instead of  X~,L 
In the computations which follow, the Sobolev norms below are computed for 
the time interval [0, T + g]. It must be understood that, at the end, we make 
e tend to 0: the constants which appear in these computations can be chosen 
uniform w.r . t .e .  
The proposition (2.2) implies: 

B n n = ~ r u ( t , x ,  (x))H~] 
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where/-/~ := Ho~(X~(x),g(X'~(x))4)(r~)). First, we observe that H~" is a sum of  
terms, each one being a product which includes a partial derivative of  4) evalu- 
ated at point r~. From the definition of  4) it follows that H~ -- H~n ll[o,1/~_]([rt, [). 

On Ir~' I =< �89 one has 3fit > 77 >-- �89 and therefore 

Consequently, 

We apply (2.3) and obtain, for some integers k , N , N  ~, 

IBI _-< c I I f l l ~  U ~[~;__>�89 [IX'; (x )llN, mllg(X'; (x ) )4)(r'] )llN,,m, 
k 

1 + Ilxll ~ 
<= K(T)llfll~llrtll~ td L 

1 + Ilxll ~ 
<= g(Z) l l f l [~  td L 

As T/2 < t < T we obtain 

l + l l x l l  ~ [] 
B ~ g(T) l l f ] l~  Td L 

5.2 Proo f  o f  L e m m a  4.2 

For 0 < T/2, the derivatives of  the function q)(0, �9 ) can be uniformly bounded 
in 0 ( remember (4.9)); thus, to get (4.3) one can simply use Lemma 4.1 with 
q~(0, �9 ) instead of  f (  �9 ) and Po-t~p(O, �9 ) instead of  u(t, �9 ) = P v - t f (  �9 ). 

For 0 => T/2 and 0 - t > T/4, one can note that 

~Po_,~o(o,  �9 )(z) f g~(y) f ' y = f ( y  )O~pr o ( y , y ' ) d y '  ~ P o - t ( z , y ) d y ,  

(5.4) 

an integration by parts w.r.t, y and the inequality (4.9) gives the result. 
Consider now the case where 0 > T/2 and 0 - t < T/4; in that case, t > 

T/4 and, in order to get rid of  the explosion of  the upper bounds for the 
derivatives of  q)(0, �9 ), we are going to use the law of  X~(x):  this argument 
is similar to what we have done for Lemma 4.1, but here it is insufficient 
because we must deal with 07Pr  o f  instead of  f .  In any case, we start as in 
Sect. 5.1.2: 

[g(XT(x))a~Po_,~o(o, �9 )(z)lz_x;(x)] 

= ~ [ ( ]  - 4)(X~(x)))g(XT(x))a~Po_, ~o(o, �9 ) ( z ) l z = x ; ( j  

+ ~[4)(r~)g(X~(x))a~Po_, ~(o, �9 )(z)lz_x~(x)] 
N 

= : A + B .  (5.5) 



58 V. Bally, D. Talay 

We upper bound I.d[ by using (5.4), (4.9) and (5.2): we obtain an estimate 
similar to the right hand-side of  (5.3). 
Now consider/}. First, we apply Proposition 2.2 again, and get 

a = ~[Po_,q,(o, �9 )(XT(x))H~(t)] 

We now use a probabilistic representation of  Po-tq)(O, �9 ), based upon a pro- 
cess ()(t)  which is a weak solution of  (1.1) independent of  (Xt); we denote by 
(f), ~&, IP) the probability space on which (J2t) is defined, and IE the expectation 
under IP. Applying Proposition 5.2 below, one gets 

Po-tq)(O, �9 ) =  IEq)(O, X o _ t ( .  )) 

= ~[g~(20_,(. ))(~u)(O,2o_~(. ))] 
= ~ [ g ~ ( 2 o  , ( .  ))o~{u(O,2o_,(. ))}OPt(" )]. 

p 

Thus, 

= ~ IE[H;n(t)lfi[g~(2o-,(z))OZ~{u(0,2o ,(z))OPt(z)}lz ~,,(j] 
p 

= ~ ~m[HZ(t)[g,(2o_,(z))a~{u(O,2o_,(z))OPt(~)}lz=x;,(x~]]; 

we fix go and use the integration by parts formula (2.2) with F(co) = Xp(x, co): 
for some random variable D~,v,p(0, t,x), one has 

= ~ l~lE[u(O,2o_,(z))lz_xr(xft~,7,p(O, t,x)]. 
p 

We now conclude as at the end of  Sect. 5.1.2. [] 

In the above proof, we have used the 

Proposition 5.2 Let  Xt(_. , go) denote a version o f  class cgoo o f  the stochastic" 
f low y ---, X t ( y ,  go); let Yt( �9 , go) denote its Jacobian matrix and Zt( �9 , go) the 
inverse matrix o f  Yt( " ,  go). 
For any multiindex 7, there exists processes (OPt) such that: for  any smooth 
real function F, for  any y E IR g, 

(~,~F)(2t(y)) = ~ OPt(y)~p{F o 2 t (  �9 ,go)}(y) a.s., (5.6) 
Ipl_<l~l 

and QPt(y) is a polynomial function o f  the coordinates o f  Zt(y,  go). 

Proof  We proceed by induction. For WI = l ,  we observe that 

V F  of ( t (  �9 ,go)= !?t( �9 ,go) x ( V F ) ( X t (  �9 ) ) ;  

it now remains to multiply the two sides of  the equality by Zt( �9 , go). 

3 As in the preceding proof, we should introduce X n,~. We omit this detail 
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Suppose that the relation (5.6) holds for 171 < k; as 

V(O~F oXt(  �9 ,&)) = 17t( �9 ,o5) • (V07F)(2t(  �9 ) ) ,  

a multiplication of the two sides of that equality by Zt(y, c5) and (5.6) (for 
171 = k)  imply that (5.6) also holds for 171 = k + a. [] 

5.3 Proof  o f  Lemma 4.3 

The proof of Lemma 4.1 cannot apply to treat 6nn_l (defined in (4.7)) because 
the last argument before (5.3) cannot be used. We still localize by introducing 
~b, but we do it at once: set 

A* := [IE[(U(X~(x)) - Pr/,f(X~._r/n(X)))(1 - q~(r~/2))]l, 

B* := I~E[(f (X~(x ) ) - Pr /n f  (X~_ r/n(X ) ) )(~(r~/2) ]l 

= ]IE[(u(T,g~(x)) - u(T - T/n,X~_r/n(X)))()(r~/2)][. 

Clearly (remember (5.2)), 

2 1 1 f l l o o l E I 1  - ~ / (qn T) Ilflloo(1 + IIxlI%' A* 

To treat the term J*, we proceed as in the proof of Lemma 4.4 to express 
6~ as an integration of I~(t) and J;( t) ,  and we apply the arguments used in 
Sect. 5.1.2, especially the integration by parts formula (2.2) with F = Xp(x).  

[] 

6 Extensions 

In Theorem 3.1, the boundedness hypothesis on f can be relaxed: the pre- 
ceding technique can be improved to treat the case of functions f which are 
measurable and have a polynomial growth, i.e. such that 

Vx, lif(x)ll < c f (1  ~-I[xllqw) 

for some c f  and q f;  then in all the estimates of the proof, IIfll~ must 
be replaced by a constant C depending on Cf  and q f: indeed, instead of 
upper bounding quantities of type IIf(XT(x))llLp(m by I I f l l~ ,  one can use that 
~lIgT(x)lLp can be upper  bounded  by C(1 + IIxllq), where  the constants C and 
q are uniform in n. 

One can also show the existence of an expansion up to any order: as 
in [14], instead of bounding the I~'s of the expansion (4.5), one can apply 
the technique used at the end of the proof of Theorem 3.1 and make appear 

an integral of type (1 /n2) f~  IETq(s,X~(x))ds (for some appropriate function 
7-'l ); this operation makes appear a new remaining term for which one applies 
Lemmas 4.1 and 4.3. 

Finally, the result can be extended to other schemes. The numerical benefit 
is less clear, since they involve derivatives of the coefficients and therefore 
require a larger computational effort than the Euler scheme (they also may 
lead to larger coefficients of Tin i in the expansion of the error). 
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7 Conclusion 

We have proved that the error corresponding to the approximation of  IEf(XT) 
by IEf(X~), X~. being given by  the Euler scheme, can be expanded in terms 
of  1In when f is a bounded and measurable function, under a hypothesis of  
uniform hypoellipticity. 

It now remains to give estimates on the convergence rate o f  the density of  
XT~ to the density o f  Xr  (when they do exist). This will be done in the second 
part o f  this work, in preparation [2]. 
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