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Résumé
Tensile structures are architectural shapes made of stretched elastic material that can be used to create large-span
roofs. Their elastic properties make it quite challenging to obtain a specific shape, and the final shape of a tensile
structure is usually found rather than imposed.
We present a design tool for tensile structures that, unlike existing software, lets the user specify the shape they
want and finds the closest fit. From an input height field, the method finds a tensile structure that best approximates
the target. Based on a mass-spring formulation, we use non-linear optimization tools to find a sparse set of forces
which, when applied to an elastic membrane, creates a tensile surface as close as possible to the input.

Mots clé : Tensile structures, architecture, computational
design, inverse design

1. Introduction

Tensile structures and their intriguing shapes have sparked
the interest of architects and engineers alike for decades (see,
e.g. figure 1). Since these structures are only composed of a
rigid support and a lightweight, elastic membrane, they are
well-suited to create large-span roofs. However, architects
and engineers cannot directly control their shape the way
they would do with rigid structures such as masonry, because
the shape of the membrane naturally arises from its internal
elasticity, so it can only be controlled by moving the support
structure (i.e. the cables or the masts). The final shape of a
tensile structure can be visualized by physically prototyping
it, or by running a simulation, a process that is called form-
finding (see e.g. the report on form-finding algorithms for
tension structures by Veenendaal & Block [VB12]).

Because of this form-finding process, designing a tensile
structure is a tedious, trial-and-error process which usually
involves running simulations for many different parameters
until the desired shape is reached. Our goal is thus to develop
an easier and more intuitive tool to design tensile structures.
Instead of setting up a set of specific parameters such as the
position of masts or the internal elasticity of the membrane
and computing the resulting shape, we do the opposite and
find the support structure that makes it possible to reach the
desired shape.

Such an approach can be labeled as inverse design, as op-
posed to forward modeling, or forward design. Usually the
inverse problem is much more difficult to solve than the di-
rect one, there can be an infinite number of possible confi-

FIGURE 1 – The Dance Pavilion, Frei Otto

gurations leading to the same solution, hence the need for
regularization.

Our algorithm takes as input a given target shape and re-
turns a tensile surface that best approximates it, as well as a
support structure composed of masts. We add a sparse regu-
larizer in our formulation to guide the optimization towards
solutions with fewer masts, which makes for a lighter sup-
port structure. Note that the result of our method may not be
exactly the same as the target shape because tensile surfaces
belong to a very specific class of shapes so if the target sur-
face is not itself equivalent to a tensile surface then the result
of the optimization will be different from the input.

2. Related work

2.1. Form-finding of Tensile structures

A lot of work has been done on forward simulation of
tensile structures, and we can classify these form-finding
algorithms in 3 categories, as pointed out in the Veenen-
daal & Block report [VB12] as well as in Tension Struc-
tures [Lew03].

The first class is based on the force-density method [LS72]

© journées JFIG 2021



David Jourdan, Mélina Skouras, Adrien Bousseau / Article JFIG2018

which was first developed for cable nets, and later adapted to
elastic membranes, Bletzinger & Ramm [BR99] added tri-
angular finite elements to the formulation so that the me-
thod generalizes to a continuous elastic membrane. These
methods differ by the solving strategies used but both are
proven to be equivalent to the simpler, cable net case. In the
multi-step force-density method [SSM07] the simpler model
of a cable net and its associated linear formulation is used for
faster prototyping.

The second family of methods is based on the dynamic
relaxation method [Bar88]. This method considers the dy-
namic problem, it consists in solving Newton’s Second Law
of Motion for every vertex of the mesh such that its speed
has to be equal to 0 since we want the shape at static equi-
librium. This is an iterative method that solves for succes-
sive residuals and adds a damping coefficient for accelerated
convergence.

The third class is based on the stiffness matrix method
which is a standard method in structural analysis for compu-
ting small displacements in the structure with respect to cer-
tain loads. It has then been modified to compute larger dis-
placements and applied to the form-finding of tensile struc-
tures [AAB74]. We use a Newton-Raphson scheme with a
mass-spring energy to simulate a tensile structure in our ap-
plication. Even if our method solves the inverse problem ins-
tead of the direct one, our model belongs to this class of ite-
rative methods.

2.2. Computational design

The area of computational design received a lot of atten-
tion in the graphics community recently. Its goal is to deve-
lop tools to help the designer, artist, or architect to focus on
the design and to let the computer take care of more practical
considerations such as structural stability, materials or feasi-
bility. Such tools can help to shorten the design loop where a
project goes back and forth between the creative team which
focuses on the design, and the technical team which analyses
it.

Deformable materials In the context of fabrication, se-
veral methods have been developed for approximating a gi-
ven 3D shape with different materials and fabrication tech-
niques. In particular, creating shapes from flat, elastic pieces
of material is of interest because it greatly reduces fabrica-
tion costs. However, the use of elastic and deformable mate-
rial requires to take into account complex, non-linear beha-
vior. Elastic or deformable material thus requires an inverse
problem to find a shape that matches a target when certain
forces act on it.

Skouras et al. optimized the shape of a rubber balloon so
that it matches a given shape when inflated [STBG12], like-
wise, they optimized the shape of flat panels so that when
seamed together they form an inflatable structure which
matches a given shape when inflated [STK∗14]. Instead of
using air pressure to deform a given object, one can directly
use the internal forces of a pre-stretched elastic membrane.
In Guseinov et al. [GMB17] rigid tiles are enclosed between
two elastic sheets so that when the tiles are pulled together
by the elastic forces, the assembly can go out of plane. The

simulation of elastic membranes has been investigated in
more detail by Perez et al. [POT17], even though the inverse
problem has been tackled only for local editing. Moreover,
the problem of automatically determining the support struc-
ture, which correspond to discrete degrees of freedom in the
optimization, has not been tackled.

Architecture Computational design of architectural
structures has received a lot of interest in computer graphics.
Geometric approaches have been developed in a recent field
called architectural geometry, while methods taking into ac-
count static mechanics and structural stability have been de-
veloped for self-supporting structures.

To have a complete overview of the field of architec-
tural geometry, we refer to the report by Pottmann et al.
[PEVW15]. In the context of fabrication-aware design, ar-
chitectural geometry is interested in approximating free-
form surfaces by meshes optimized for fabrication, which
is often called rationalization in architecture. Rationaliza-
tion consists in approximating a freeform architectural sur-
face with elements that are easy or cheap to fabricate. For
example in Eigensatz et al. [EKS∗10] a freeform surface is
approximated by a union of patches, called panels, while mi-
nimizing fabrication costs. The idea is that flat panels are the
cheapest to produce since they can all be cast on the same
mold, but they do not approximate well curved surfaces, so
some curved ones are needed, such as cylindric panels which
are developable, and paraboloids, torus patches and cubic
patches that are doubly-curved.

Aside from these purely geometric methods, some work
has been done on integrating static mechanics and structu-
ral analysis on the design of architectural shapes. For self-
supporting masonry, the Thrust Network Analysis frame-
work [BO07] enabled the development of tools aimed at
designing freeform self-supporting structures. The topic has
been introduced to graphics by Vouga et al. [VHWP12] who
linked it to discrete differential geometry, and proposed de-
sign and editing tools for self-supporting surfaces, and fur-
ther developed by Panozzo et al. [PBSH13] who solved the
problem of finding the closest self-supporting structure to
a given target surface. Some specific problems related to
these structures have also been studied, such as optimizing
the amount of material used [KPWP17], or their assem-
bly [DPW∗14], but to our knowledge, the design of tensile
structures has not been studied in such a comprehensive way,
and the problem of finding the closest tensile structure to an
input surface has yet to be solved.

3. Method

3.1. Mathematical formulation

Given a target mesh M we want to find the vertex po-
sitions x = (x>1 , . . . ,x>n )> of the membrane, and external
forces p = (p>1 , . . . , p>n )> corresponding to masts, which
minimize the distance between x andM. This is a constraint
optimization problem, the unknowns x and p need to res-
pect the equilibrium condition, that is the sum of the inter-
nal membrane forces f(x) and the external forces p must be
equal to zero. The internal membrane forces are computed
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as mass-spring forces, with mass being lumped at vertex po-
sitions and springs corresponding to edges of the membrane
mesh.

Such a problem is unfortunately ill-posed. Even with
the equilibrium condition satisfied there can be an infinite
number of solutions, forces in p can have arbitrarily high
magnitudes that compensate each other while preserving the
shape of the input. We thus need to guide the optimization
with a regularization term Rsparse(p), which will favor
solutions where p is sparse.

This is formulated as :

min
x,p

Edist(x)+Rsparse(p)

s.t. f(x)+p = 0
(1)

where Edist is the sum of pairwise distances between vertices
of the target mesh x̂ and vertices of the membrane mesh x

Edist(x) = ∑
i
||xi− x̂i||2 (2)

and f(x) are the internal forces of the membrane computed
as mass-spring forces.

Since each external force corresponds to a mast, and we
want light tensile structures with a few number of masts, the
preferred solutions should have a small number of non-zero
forces. We thus choose a regularizer that penalizes the sum
of the magnitude of the forces, as was previously done by
Skouras et al. [STC∗13] :

Rsparse(p) = ksparse ∑
i
||pi||α2 (3)

with ksparse a scaling parameter and α≤ 1 an exponent that
generalizes the mixed `2/`1 norm to more strongly penalize
small values.

To make this regularizer differentiable at 0, we need to
add a small constant ε to it :

Rsparse(p) = ksparse ∑
i
(||pi||2 + ε)

α

2

3.2. Optimization

The constrained problem (équation 1) is turned into an
unconstrained one using the Augmented Lagrangian Me-
thod, which is then itself solved using the Newton-Raphson
scheme. For details we refer to Nocedal & Wright [NW06].

However, after solving équation 1, a few close-to-zero
forces may still be present. Since these forces are perturbing
the result, we run a second round of optimization after re-
moving variables corresponding to forces close to 0, in the
spirit of Iterative Rounding methods (see figure 3).

4. Results

We first tested our method on a tent model, obtained
through forward simulation, that we knew could be reached
exactly with our method. We also tested if we could recover
the same model with added noise (figure 2).

The results in figure 3 show that the iterative rounding step

(a) (b)

FIGURE 2 – Test model with and without noise

(a) (b)

FIGURE 3 – Before and after iterative rounding, in (a) a few
close-to-zero forces are perturbing the result, in (b) we get a
more precise value of the mast force

was necessary even for the simplest example where the tar-
get surface is a membrane obtained through forward simula-
tion, even if the method appropriately locates the position of
the external force, its magnitude is incorrect, because neigh-
boring vertices are influenced by forces of lesser magnitude.
In figure 4, the iterative rounding step also helps finding a
more realistic and "tensile-like" result.

We then tested our method on a surface that cannot be
fabricated with elastic membranes, a model with 3 convex
bumps. As shown in figure 5, the bumps are difficult to re-
produce with a sparse set of forces, thus the algorithm has
to find a compromise between minimizing the distance bet-
ween the target and the membrane on one hand, and impo-
sing sparsity on the other hand. Since the boundary of the
target surface is flat, we had to remove the variables corres-
ponding to the boundary from the optimization, because it
introduces too much noise in the result. After a few rounds
of iterative rounding, the algorithm manages to find a solu-
tion with a sparse set of forces.

5. Conclusion and Future Work

We developed a novel computational design method,
using inverse simulation of elastic membranes. Based on
a constrained, non-linear optimization problem we used
sparsity-inducing regularizers to drive the optimization to
solutions which can be fabricated as tensile structures, with
some elastic fabric and a few masts.

This method could be extended to integrate other types of
support structures such as arches or cables. To make these
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(a) (b)

FIGURE 4 – Noisy model, before and after iterative rounding

(a) Target model (b) Result

FIGURE 5 – Result on a model with convex bumps

supports emerge, we would need another type of regularizer
that would encourage the alignment of forces along curves.
We could guide the optimization by analyzing the curvature
of the target surface to predict where to place such arches or
cables.
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