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Figure 1: Given a target 3D surface (a), our method computes a flat layout of plastic ribbons (b) which, when printed on pre-stretched fabric,
causes the surface to deploy into 3D when the fabric is released (c). We designed a custom frame to easily print ribbons on both sides of the
fabric (b, red and blue), allowing us to reproduce surfaces with positive and negative extrinsic curvature.

Abstract
We introduce a new mechanism for self-actuating deployable structures, based on printing a dense pattern of closely-spaced
plastic ribbons on sheets of pre-stretched elastic fabric. We leverage two shape-changing effects that occur when such an
assembly is printed and allowed to relax: first, the incompressible plastic ribbons frustrate the contraction of the fabric back
to its rest state, forcing residual strain in the fabric and creating intrinsic curvature. Second, the differential compression at
the interface between the plastic and fabric layers yields a bilayer effect in the direction of the ribbons, making each ribbon
buckle into an arc at equilibrium state and creating extrinsic curvature. We describe an inverse design tool to fabricate low-
cost, lightweight prototypes of freeform surfaces using the controllable directional distortion and curvature offered by this
mechanism. The core of our method is a parameterization algorithm that bounds surface distortions along and across principal
curvature directions, along with a pattern synthesis algorithm that covers a surface with ribbons to match the target distortions
and curvature given by the aforementioned parameterization. We demonstrate the flexibility and accuracy of our method by
fabricating and measuring a variety of surfaces, including nearly-developable surfaces as well as surfaces with positive and
negative mean curvature, which we achieve thanks to a simple hardware setup that allows printing on both sides of the fabric.

Keywords: fabrication, parameterization, inverse design, self-
actuation, printing on fabric

1. Introduction

Deployable structures—structures that are fabricated flat and sub-
sequently actuate into the third dimension—are a subject of intense
interest in engineering, manufacturing, and architecture, as such

structures can have high geometric complexity, while remaining
accessible to traditional 2D manufacturing techniques, and retain-
ing many of the advantages of flat-fabricated objects such as ease
of transport and storage. Actuation from the flat to deformed state
can be achieved either via applying external loads on the structure
(pushing or pulling points of the surface) [KPCP18; PKI*19], or via
self-actuation where changes in the internal stress of the assembly
trigger shape changes [BvRL*19; GMN*16; GMB17; PIC*21].
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This paper contributes to the latter family of methods: we ex-
plore a new mechanism for self-actuation, based on printing plastic
ribbons on sheets of pre-stretched elastic fabric. Relative to other
self-actuation strategies, this modality is simple and low-cost—
requiring only a commodity 3D printer and a rigid frame for clamp-
ing the fabric. Since the fabric is pre-stretched and the plastic rib-
bons are not, the ensemble acts as an inhomogeneous bilayer that
buckles out of plane to reach a 3D static shape when the fabric is
released from its frame (Figure 1). We examine the interplay of ge-
ometry and physics that governs the behavior of the ribbon-fabric
ensemble, and use those insights to develop an algorithm for in-
verse design and a fabrication pipeline for approximating a given
freeform surface by a self-actuating deployable structure.

Relation to Previous Plastic-on-Fabric Techniques Several re-
cent methods have experimented with the idea of printing plastic
on fabric to rapidly prototype lightweight curved surfaces [GC16;
POT17]. The main difference of our approach is that we propose
to print dense, broken ribbons of plastic, rather than the sparse net-
works of closed curves found in prior work.

Forces over empty fabric

Forces along a ribbon

While both strategies involve
printing plastic on fabric, there are
deep differences in the mechanics
of how the plastic-fabric ensemble
buckles, and in the ability of the
ribbons to control the shell geome-
try. Specifically, in a sparse assem-
bly of long ribbons (as found in prior work), most of the shape
change during self-actuation is the result of compression of the pre-
stretched fabric in the regions in between the curves. The curves
buckle and bend to release this stress [POT17] (inset, top), and
serve as boundary conditions for the fabric which shrinks to a
Plateau-like surface. On the one hand, this mechanism allows for
significant coarse-scale shape change with only a small amount of
added plastic material. On the other hand, the sparse ribbons pro-
vide only limited control over the geometry of the fabric patches
(which always have negative intrinsic and approximately zero ex-
trinsic curvature).

In contrast, in our dense assemblies, the plastic ribbons cover
a significant fraction of the fabric surface area: not only does the
shrinking fabric exert in-plane stress on the plastic ribbons, but bi-
layer effects become important in the regions covered by plastic.
As the fabric relaxes and shrinks to relieve stretch, it exerts stress
on the plastic along the plastic-fabric interface. Since the plastic is
incompressible yet elastic, the ribbon buckles to form an arc at the
equilibrium state (inset, bottom). The curvature of this arc depends
on the pre-stress of the fabric as well as on the thicknesses of the
elastic and plastic layers. At the coarse scale, our dense assemblies
thus form a type of metamaterial, whose geometry is directly con-
trolled by the spacing, orientation, and thickness of the plastic rib-
bons. Given a sheet of fabric with constant pre-stress, our key idea
is to program the curvature of a target surface by optimizing these
parameters to leverage the above mechanisms of shape change.

Note that in contrast to methods that mainly rely on metric frus-
tration to control intrinsic curvature [KPCP18; CPSP21], our ap-
proach provides control of extrinsic curvature as well, as we can

force the surface to bend along prescribed directions by align-
ing ribbons with those directions. The ability to manipulate ex-
trinsic curvature is particularly important when fabricating nearly-
developable surfaces, when prescribing Gaussian curvature is not
enough to reliably achieve the desired shape.

Overview Our inverse design tool takes as input a triangle mesh
embedded in R3 representing the desired target (deployed) surface
shape, and computes (1) a flattening of this surface into the plane,
and (2) a set of ribbons over this planar domain, so that 3D-printing
the ribbons onto fabric with constant pre-stress, and cutting the fab-
ric along the boundary of the planar domain, yields an assembly
whose static shape deploys to match the target surface (see Fig-
ure 2). The task of programming the desired surface curvature is
divided between these two steps: during flattening, we optimize for
a ribbon layout that will achieve the desired intrinsic curvature,
and aligns with directions of principal extrinsic curvature to pre-
vent torsion of the ribbons. Then, we choose ribbon thicknesses to
induce the desired extrinsic curvature magnitude, based on a data
table constructed by measuring physical samples.

We compute the flattening by optimizing for a 2D parameter-
ization of the target surface, subject to certain fabricability con-
straints:

1. the metric distortion of the parameterization remains below the
maximum stretch of the fabric;

2. the metric distortion of the parameterization is close to 1 along
the direction of maximum curvature.

The first condition encodes that the fabric can, at most, remain
in its pre-stretched state, and cannot stretch further. The second
condition ensures that the assembly will undergo little compres-
sion along directions of high curvature, which allows us to print
closely-spaced, incompressible plastic ribbons along those direc-
tions to maximally exploit the bilayer effect to induce the neces-
sary surface curvature. We solve for a flattening that satisfies these
properties using a local/global iterative algorithm akin to As-Rigid-
As-Possible parameterization [LZX*08]. While recent methods re-
lied on a similar procedure to bound distortion for other fabrication
techniques [AXZ*18; PIC*21], we introduce a hard constraint on
the direction of distortion to align our plastic ribbons with the prin-
cipal directions of curvature of the target surface.

We then position the plastic ribbons over the flattened surface to
form a dense pattern with spatially-varying spacing and thickness.
As explained above, the resulting pattern acts as a homogenized
metamaterial, where spacing between the ribbons controls the av-
erage stretch of the assembly as dictated by the parameterization,
while thickness controls the magnitude of normal curvature. We
generate G-code for printing this ribbon pattern by tracing orthog-
onal families of curves along smooth curvature-aligned direction
fields [KCPS13; KCPS15].

Since we use a 3D printer to deposit plastic on top of the
stretched fabric, the bilayer effect strongly biases the surface to
curve away from the printer bed, so that the curvature of the as-
sembly after it has relaxed to its static shape is always positive in
the direction of the ribbons. We circumvent this limitation by intro-
ducing a custom, reversible frame structure that allows us to print
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(e) Deployed surface and deviation(a) Target surface (b) Flattening (c) Stripe pattern (d) Ribbon layout
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Figure 2: Overview of our method. Given a target surface (a), we first compute its principal curvatures, along which plastic ribbons will
be placed. We compute a flattening of the 3D surface into the plane, with bounded stretching (b; colors indicate the magnitude of stretching
σ2 in the direction perpendicular to the ribbons). We then generate a staggered stripe pattern aligned with these directions; the deformation
desired for deploying from the flattened state to 3D determines the spacing and density of the ribbon pattern (c). We generate plastic ribbons
from this pattern, and adjust their thicknesses according to the target extrinsic curvature magnitude (d). Printing these plastic ribbons on
pre-stretched fabric results in a self-actuated assembly that deploys to a shape approximating the target surface when released (e).

plastic on both sides of the stretched fabric. This simple hardware
further expands the range of surfaces we can reproduce (Figure 9).

Contributions In summary, we introduce:

• a new mechanism for self-actuated structures, based on closely-
spaced plastic ribbons printed on pre-stretched fabric, which pro-
vides controllable directional distortion and curvature;
• an inverse design tool to fabricate low-cost, lightweight proto-

types of freeform surfaces using this mechanism;
• a parameterization algorithm that bounds surface distortions

along and across prescribed directions, along with a pattern syn-
thesis algorithm that covers a surface with ribbons to match the
target distortions and curvature given by the aforementioned pa-
rameterization;
• a simple hardware setup to reliably print plastic ribbons on both

sides of a pre-stretched sheet of elastic fabric, with minimum
manual intervention.

We applied our approach to fabricate a number of freeform sur-
faces, and evaluate our method by measuring the agreement be-
tween the fabricated and target 3D shapes.

2. Related Work

The need to manufacture 3D surfaces out of flat sheets of material
has motivated significant research in computer graphics, architec-
tural geometry, and materials science. Representative examples in-
clude work on materials that can bend but cannot shear or stretch—
like paper—to model developable surfaces [TBWP16; KMM17;
RHS17; SGC18; SC18; IRHS20]; materials that have the additional
ability to shear, such as Chebyshev nets [GSD*14] and other forms
of gridshells [PKI*19; dPel17; PLBM20]; and assemblies that can
locally expand or shrink to induce intrinsic curvature [KCD*16;
MPI*18; CPSP21].

Of particular interest for us are materials that can lift to 3D
without external forces, resulting in so-called self-actuated assem-
blies. Such properties are typically obtained thanks to materials that
produce internal stress under changes of temperature [BvRL*19;
NBB*16; KHB*12; GMP*20] or moisture [GMN*16], or mate-
rials that have been pre-stressed as part of the flat manufacturing

process, such as elastic sheets of latex or fabric [GMB17; POT17].
As explained in the introduction, we follow the latter approach, and
rely on competition between residual stress in pre-stretched fabric
and inextensibility of plastic ribbons to drive shape change. This
mechanism relies on commodity hardware (a desktop 3D printer
and fabric), which contrasts with alternatives that require special
lab equipment to glue plastic tiles over a pre-stretched latex sheet
[GMB17]. The geometry of surfaces that buckle in response to
anisotropic material changes due to these mechanisms has been
studied extensively in the physics community [SE10; PSJH17;
GAE19], though much of this analysis assumes a single anisotropic
material, rather than a patterned composite of two materials.

Another recently-proposed mechanism for self-actuation is in-
flation of air channels [PIC*21]: two thin, flat sheets of elastic
material are fused along a network of curves, creating air pock-
ets between the layers in the form of tube-like channels. Pressuriz-
ing the interstitial space causes the channels to inflate and contract
transversally. At the highest level, the design problem for inflata-
bles solved by Panetta et al. shares similar features to the problem
we solve for ribbon networks on fabric: in both cases, actuation re-
sults from programming anisotropic residual strain in a flat sheet,
parameterized by a network of curves, and subject to fabricability
constraints on the maximum strain. But crucial differences prevent
using the method of Panetta et al. for designing ribbon layouts:
inflated channels have zero normal curvature, whereas ribbons ex-
hibit strong extrinsic curvature (due to the bilayer effect) which
can be controlled and must be accounted for; moreover, whereas
inflated channels have circular cross-section, plastic ribbon cross-
sections are rectangular and a ribbon layout must account for po-
tential axial twisting of the ribbons due to geodesic torsion (see
Section 3 and Figure 3).

Inspired by early experiments in design and architecture [OR07;
GC16; BAB20; Kyc19; Fie18], several computational design sys-
tems have been proposed to simulate assemblies of plastic curves
embedded in elastic membranes [POT17; JSVB21]. Pérez et al.
[POT17] consider objects composed of a sparse network of curves,
resulting in so-called Kirchhoff-Plateau surfaces where the mem-
brane behaves like a minimal surface in-between the curves. How-
ever, sparse networks are difficult to design automatically, which is
why Pérez et al. adopt a direct modeling workflow, offering only
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a local inverse design tool to modify existing layouts. Moreover,
since their assemblies are dominated by empty fabric, Pérez et al.
ignore the forces exerted by the membrane along the curves, where
the plastic and fabric form a bilayer structure (see also the intro-
duction for more discussion of this line of work). Jourdan et al.
[JSVB21] propose a physical model to simulate this structure, al-
lowing them to better reproduce the arched shape taken by indi-
vidual plastic segments in reaction to the fabric forces underneath.
However, they use their model for the forward simulation of spe-
cific assemblies of star-shaped patterns, while we target an inverse
design task where we want to automatically find a pattern of plastic
ribbons that would reproduce a target shape when fabricated.

Surface parameterization is a classic problem in geometry pro-
cessing [HLS07], with many available algorithms that seek to mini-
mize angle [SLMB05; SC17] or length distortion [ZSGS04], while
possibly also considering ancillary complications such as seam
placement, local and global injectivity, atlas decomposition, etc.
We do not give a complete survey here; note that while conformal
mapping in particular is popular for texture mapping and similar
applications, and for fabrication techniques that exploit isotropic
scaling [KCD*16; GMB17], we specifically require an anisotropic
parameterization with bounded distortion. Few prior methods ap-
proached the problem of computing a flattening whose distortion is
bounded in one arbitrary direction [AXZ*18]. Closest to our ap-
proach is Panetta et al. [PIC*21]’s flattening step, which includes
a soft penalty term to favor alignment of the channels perpen-
dicularly to the principal direction of curvature. In contrast, we
treat curvature direction alignment as a hard constraint, which al-
lows us to build our flattening algorithm on top of As-Rigid-As-
Possible (ARAP) parameterization [LZX*08], a classic and easily-
extendable local-global algorithm for distortion-minimizing pa-
rameterization. See Section 4.1 for more discussion of the pros and
cons of the two approaches.

The last step of our method consists in generating a pattern of
plastic ribbons over the flattened shape, where the local orientation
and spacing of the ribbons is dictated by the curvature and distor-
tion fields of the target surface. Producing such a graded pattern of
discrete, elongated elements arises in other fabrication scenarios,
including the design of metal frame and wire structures [MLB16;
MWS*20], knitting paths [NAH*18], microstructures [TTZ*20],
weaves [VZF*19; RPC*21] and nets [SCBV19], fiber-reinforced
composites [BTM*20], and the aforementioned inflatable struc-
tures [PIC*21]. Many of the algorithms in geometry processing
on vector-field integration could be used to generate ribbon curves
from our curvature-aligned vector field; see the survey by Vaxman
et al. [VCD*16] for a review of some of these alternatives. We
chose the method of Knoppel et al. [KCPS15], originally designed
for computing stripe textures on surfaces, due to the ease of spec-
ifying the frequency of the reconstructed pattern in the transverse
direction, and availability of source code.

3. The mechanics of plastic ribbons embedded in stretched
fabric

The key idea behind our approach is to balance between two effects
that occur when plastic ribbons are bound to a stretched fabric sub-
strate. First, the ribbons frustrate the contraction of the fabric back

(a) Fabricated ribbon patterns (b) Darboux frames

Figure 3: Due to the bilayer effect, parallel plastic ribbons roll
to form a cylinder (a, top). Attempting to orient the ribbons away
from the direction of maximum curvature still yields a cylinder as
ribbons resist torsion (a, bottom). On a curved surface, curvature
lines are the only curves with zero geodesic torsion, as visualized by
sliding a Darboux frame along the curve and observing its rotation
around the curve tangent (b, after [IBB15]).

to its rest state, forcing residual strain in the fabric and creating in-
trinsic curvature. Second, as mentioned in the introduction, due to
differential compression of the plastic and fabric layers in the direc-
tion of the ribbons, there is a bilayer effect that induces each ribbon
to buckle into an arc when the assembly is released. We seek to
exploit both phenomena to program the desired surface curvature.

To that end, we define a pattern of plastic ribbons that behaves
like a homogeneous metamaterial with controllable stretch and cur-
vature, illustrated as inset. This pattern will be printed on fab-
ric that has been uniformly stretched by a factor s. In this pat-
tern, the plastic ribbons are separated by empty fabric to form
dashed stripes. Parallel stripes are also separated by empty fabric.

+
++

k1
k2wr

lr
µ2

µ1

Note that we shift every two
stripes by half the period of the
dashes to form a staggered pat-
tern, which prevents the emer-
gence of long bands of empty
fabric transverse to the plastic ribbons. Varying the quantity of
empty fabric in-between consecutive and parallel plastic ribbons
controls the average contraction 1/σ1 and 1/σ2 of the metamaterial
when deployed, while varying the thickness τ of plastic deposited
on the ribbons impacts the strength of their bilayer effect.

Given a target surface S, our key idea is to design an appropriate
ribbon pattern in three stages:

1. The bilayer effect induces significant extrinsic curvature in the
direction of the ribbons, and the plastic ribbons resist torsion
along that direction (Fig. 3a). Based on these two observations,
we align the ribbon pattern (horizontal axis in the inset figure)
in the direction of maximum magnitude principal curvature k1,
which maximally exploits the bilayer effect and minimizes tor-
sion along the ribbons since curvature lines are characterized by
vanishing geodesic torsion [dCar76; BFS10; IBB15] (Fig. 3b).
It follows that the transverse direction of the pattern aligns to
the other principal curvature direction k2.

2. When the plastic-fabric ensemble is released and allowed to re-
lax to equilibrium, the fabric will contract. At most, it will return
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to its original shape; and at least, it will not contract at all (if the
fabric is covered completely in plastic). The fabric pre-stretch
factor s, together with fabricability constraints on the minimum
and maximum values of ribbon length and width lr,wr and spac-
ing µ1,µ2, determine the range of possible contractions in the
ribbon and transverse direction. We compute a flattening of the
target surface S to the 2D plane, which satisfies these constraints
(Section 4).

3. To control extrinsic bending of the surface, we adjust the rib-
bon thickness τ, using a data-driven law for the relationship
between τ and curvature derived from physical measurements
(Section 5). In practice, we only measured patterns of parallel
ribbons, which makes the resulting law better suited to surfaces
that are nearly developable rather than doubly-curved.

4. Controlling stretching

We first describe our flattening formulation in a continuous setting,
and then describe its discretization.

4.1. Flattening with bounded directional scaling

Let the mapping ϕ : Ω ⊂ R2→ R3 describe our (given) target de-
ployed surface S, and let ϕ̄ : Ω ⊂ R2→ R2 describe its (currently
unknown) flattened, pre-stretched counterpart S̄, with Ω denoting
an arbitrary surface parametric domain with coordinates (u,v). We
write k1(u,v), k2(u,v) for the vector fields Ω→R3 in the direction
of maximum-magnitude and minimum-magnitude principal curva-
ture of S.

We seek a flattening ϕ̄ ◦ϕ
−1 : S → S̄ with the following prop-

erties: (1) the principal stretch directions are aligned with k1,k2;
(2) the two principal stretches σi are in the range 1 ≤ σ

min
i ≤

σi ≤ σ
max
i . As discussed above, the achievable range of principal

stretches [σmin
i ,σmax

i ] is determined by s, the geometry of the rib-
bon pattern, and limits on the accuracy and resolution of the 3D
printer; we discuss how to determine these ranges in Section 4.3,
and assume they are given for now (roughly speaking, σ1 must be
close to inextensible, while there is more flexibility in the choice of
σ2, since the ribbons are longer than they are wide).

More precisely, let Jϕ̄ = dϕ̄ ∈ R2×2 denote the Jacobian of the
mapping ϕ̄, and likewise for Jϕ. We are looking for a mapping ϕ̄

such that the pushforward d(ϕ̄◦ϕ
−1) has the form

d(ϕ̄◦ϕ
−1) = RS̄ΣRt

S ,∀(u,v) ∈Ω, (1)

where RS̄(u,v) is an arbitrary rotation matrix; RS =
[
k̂1 k̂2

]
3×2

rotates the Euclidean plane to the tangent plane of S, with the
Euclidean axes mapping to the principal curvature directions; and
Σ(u,v) =

(
σ1(u,v) 0

0 σ2(u,v)

)
encodes stretching, subject to the bound

constraints σi ∈ [σmin
i ,σmax

i ].

Since satisfying (1) exactly for all (u,v) ∈ Ω might be impossi-
ble, we seek the closest solution in the least square sense. Denoting
‖ · ‖F the Frobenius norm, we cast our minimization problem as

min
ϕ̄,σ1,σ2,RS̄

∫
Ω

‖Jϕ̄−RS̄ΣRt
SJϕ‖2

F dudv, (2)

S ⊂ R3 Ωe ⊂ R2 S̄ ⊂ R2x

y
z

u

v

u

v

k1

au

av

x1

x2

x3

θ

ϕ

X1 X2

X3

dϕ−1(k1)
θ

k̄1

āu

āv

x̄1

x̄2

x̄3

ϕ̄

1
u

v

Ω

θ

Rθ Σ RS̄

S̄

ϕ̄,dϕ̄ = Jϕ̄ ≈ RS̄ΣRθ

dϕ−1(k1)
k̄1

āu

āv

σ1

σ2

Figure 4: Overview of the flattening algorithm. Each triangle of the
target mesh S is first mapped to the 2D plane by aligning its (x1,x2)
edge with the u-axis of our 2D Cartesian coordinate system. We
then compute its mapping ϕ̄ to the flattened configuration S̄ using
a local/global algorithm (top). This mapping ϕ̄ is built so as to
maximally stretch the surface S along its direction of maximum
curvature k1 (bottom).

whose unknowns are the fields ϕ̄ : Ω→R2, σ1 : Ω→ [σmin
1 ,σmax

1 ],
σ2 : Ω→ [σmin

2 ,σmax
2 ] and RS̄ : Ω→ SO(2).

While this formulation is reminiscent of other flattening methods
with bounded scaling [AXZ*18; PIC*21], unique to our approach
is the use of the fixed matrix RS to strictly constrain the directions
of maximal strain. In contrast, Panetta et al. [PIC*21] employ a soft
regularizer to penalize alignment of their air channels with direc-
tions of high normal curvature. While their formulation gives addi-
tional freedom to trade curvature alignment for better scaling dis-
tribution, the strong resistance of plastic ribbons to torsion (Fig. 3)
demands close curvature alignment and limits the usefulness of this
tradeoff. Moreover, hard constraints allow the use of ARAP-style
local-global iterations (described next), which are simpler and eas-
ier to implement than the black-box nonlinear optimization using
Newton’s method that would be required for soft constraints.

4.2. Discrete formulation

We discretize (2) using triangular elements. To this end, we rep-
resent the surfaces S and S̄ using triangle meshes having same
number of vertices nV and faces nT , and same topology, and we
stack the coordinates of their vertices into the vectors x and x̄ re-
spectively. Approximating ϕ̄ by a piecewise linear function makes
Jϕ̄ constant on each triangle. We denote by Je the value of Jϕ̄ on

element e, and likewise for other quantities such as Σ
e =

(
σ

e
1 0

0 σ
e
2

)
,

etc.

Note that in practice we do not need to build a full (and con-
sistent) parametrization of the surface S on the entire domain
Ω at once to compute the Jacobians Je; we can instead locally
parametrize the surface on a per triangle basis. More specifically,
we define the preimage Ω

e of a given element e of S with 3D vertex
coordinates xe

1≤k≤3 as a 2D triangle of same shape and size with
vertex coordinates Xe

k, whose edge vector Xe
2−Xe

1 is aligned with
the u-axis of our 2D Cartesian coordinate system (see Figure 4). We
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can then express the Jacobian Je as Je = [x̄e
2− x̄e

1 x̄3− x̄e
1][X

e
2−

Xe
1 Xe

3−Xe
1]
−1. Moreover, on each triangle, the parameterization

of S is now an isometry, with Rt
SJϕ = Rθ a 2×2 rotation matrix by

angle θ, where θ is the angle from dφ
−1k1 to the u-axis.

We can now rewrite our optimization problem (2) as

min
x̄,σ1,σ2,R

nT

∑
i=1
‖Ji(x̄)−Ri

S̄Σ
iRi

θ‖
2
F Ai︸ ︷︷ ︸

E(x̄,σ1,σ2,R)

, (3)

where σ1 = {σi
1 ∈ [σmin

1 ,σmax
1 ]}, σ2 = {σi

2 ∈ [σmin
2 ,σmax

2 ]}, R =
{Ri
S̄ ∈ SO(2)}, and Ae is the area of element e in the mesh corre-

sponding to S.

To solve problem (3), we adapt the local/global optimization al-
gorithm proposed by Liu et al. [LZX*08] and alternate between
local steps in which we optimize the per-triangle rotations and
stretches Re

S̄ and Σ
e, and global steps where we minimize the cost

function E over the positions x̄ while keeping all the matrices Re
S̄

and Σ
e fixed. We detail below how we solve these local and global

problems.

Computation of stretching matrices Σ
e . For each element e, the

minimizer of E with respect to σ
e
1 and σ

e
2 can be obtained by solv-

ing the local problem

(σ̃e
1, σ̃

e
2) = argmin

(σe
1,σ

e
2)

σ
min
1 ≤σ

e
1≤σ

max
1 ,

σ
min
2 ≤σ

e
2≤σ

max
2

‖Je(x̄)−Re
S̄Σ

eRe
θ‖

2
F . (4)

As shown in Appendix A, we can derive closed-form expressions
for σ̃

e
1 and σ̃

e
2:

σ̃
e
i =


σ

min
i if σ̂

e
i < σ

min
i ,

σ̂
e
i if σ

min
i ≤ σ̂

e
i ≤ σ

max
i , i = {1,2},

σ
max
i if σ

max
i < σ̂

e
i ,

(5)

where σ̂
e
i = [Re

θ(J
e)tRe
S̄ ]ii.

Computation of rotation matrices Re
S̄ . Minimizing E with re-

spect to Re
S̄ amounts to solving the local problem

R̃e
S̄ = argmin

Re
S̄∈SO(2)

∥∥Je(x̄)−Re
S̄Σ

eRe
θ

∥∥2
F . (6)

We show in Appendix B that the optimal rotation matrix R̃e
S̄ is

given by

R̃e
S̄ =UV t , (7)

where U and V are the orthogonal matrices of the singular value
decomposition of the matrix Je(Re

θ)
t
Σ

e, up to flipping the sign of
the column of U corresponding to the smallest singular value so
that det(UV t)> 0.

Computation of 2D node positions x̄. Following Liu et al.
[LZX*08] and denoting Me = Re

S̄Σ
eRe

θ, we rewrite our energy E
using cotangent weights as

E = ∑
(i, j)∈He

cotαi j

2

∥∥∥x̄i− x̄ j−MT (i, j)(Xi−X j)
∥∥∥2

, (8)

whereHe denotes the set of all half-edges of the meshes, T (i, j) the
triangle incident to the half-edge (i, j), and αi j the angle opposite
to the half-edge (i, j) in the triangle T (i, j).

The minimum of (8) with respect to x̄ can then be obtained by
solving the linear system

∑
j∈N (i)

[
cotαi j + cotα ji

]
(x̄i− x̄ j)

= ∑
j∈N (i)

[
cotαi jM

T (i, j)+ cotα jiM
T ( j,i)

]
(Xi−X j)

(9)

for all vertices i, whereN (i) represents the set of vertices adjacent
to i.

4.3. Implementation details

Computation of curvature directions k1. We compute the di-
rections of maximum curvature k1 on the target mesh S using
the method of Knoppel et al. [KCPS13] that we slightly modi-
fied to output a line field aligned with the curvature directions hav-
ing largest magnitude in terms of absolute value. For many exam-
ples, we kept the default value λ = 0 for the parameter controlling
the tradeoff between faithfulness to the curvature directions and
smoothness of the output field (smoothness is necessary to regu-
larize the field when the principal curvature directions have sim-
ilar magnitudes). However, in some cases, we found necessary to
slightly decrease this value to avoid oversmoothing (see Table 1).

Setting the principal stretch bounds σ
min,σmax. The upper

bound in the transverse direction is determined by how much spac-
ing we allow between neighboring ribbons. We fix this distance to
µmax

2 = lr to avoid producing large areas free of plastic. From this
value, we deduce σ

max
2 ≈ 1.51 using Equation 10 described in Sec-

tion 6.1. For the lower bound, we set the value σ
min
2 = 1.3 as a

safeguard against fusion of neighboring ribbons. Along k1, we set
σ

min
1 = 1 and σ

max
1 = 1.3 to give room to the fabric to contract a bit

along the principal direction of curvature if necessary to flatten the
surface.

Initialization of x̄, σ1, σ2 and R. We initialize the vertex posi-
tions x̄ of the flattened mesh by computing a Tutte’s embedding
after regularly distributing the boundary vertices on a unit disk.
We then run the implementation of Scalable locally Injective Map-
pings [RPPS17] (as implemented within libigl [JP*18]). The initial
stretch values σ

e
1, σ

e
2 are set to 1. The rotations matrices Re

S̄ are
initialized using Formula (7).

Update scheme and termination. We alternate between local
computations of R, σ1 and σ2 and global computation of x̄ (in
this order). The loop updating R, σ1 and σ2 is run twice before
switching to x̄. The algorithm is stopped when the average change
of both σ1 and σ2 is below 10−6. Note that the principal stretches
and stretch directions that will be used subsequently to compute
ribbon layout are those of the Jacobians Je at termination, which
might not exactly satisfy the scaling bounds if the optimal residual
of Equation 3 is nonzero. See Table 1 for detailed statistics about
the behavior of the optimization in practice.
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Figure 5: The curvature κ1 of our metamaterial varies not only as
a function of plastic thickness τ, but also as a function of spac-
ing µ2 in the transverse direction (left, with µ1 = 22.5mm and
τ = 0.5mm). In contrast, varying spacing µ1 in the ribbon direc-
tion has little impact (right, with µ2 = 6mm).

5. Controlling Curvature

As discussed in the previous section, we align the ribbon pattern
along the direction of maximum principal curvature k1 to take ad-
vantage of the bilayer effect: the tendency of plastic printed on top
of pre-stressed fabric to bend about the axis transverse to the rib-
bon, to relieve the differential stress in the thickness direction at the
bilayer interface. Jourdan et al. [JSVB21] derived an expression for
the curvature expected for an isolated plastic ribbon printed on fab-
ric, as a function of the ribbon thickness. However, when we tested
the theory using physical prototypes, we observed that curvature
is also affected by the quantity of empty fabric surrounding the
ribbons, as this fabric exerts additional forces on the ribbons and
modifies their equilibrium shape.

We conducted an experiment
where we printed several regular
patterns that roll in a cylindrical
shape (inset), with ribbons of con-
stant thickness, width and length,
but varying µ1 and µ2. We then
measured the curvature κ1 of each
cylinder, as plotted in Figure 5. This experiment reveals that cur-
vature is affected primarily by the amount of empty fabric in the
transverse direction, µ2, and not by the spacing in the ribbon direc-
tion, µ1. We conclude from this experiment that the forces applied
by the fabric along the ribbons depend on the area of fabric across
the ribbon (controlled by µ2).

Given the complex interplay between the fabric and the ribbons
forming our assemblies, we chose to adopt a data-driven approach
to relate the target curvature to the thickness and spacing of the
ribbons. Concretely, we printed a series of regular patterns with
varying plastic thickness τ and spacing µ2, while holding µ1 and
the ribbon width and length fixed. We then measured the curvature
κ1 along the k1 direction of the resulting cylinders, as reported in
Figure 6. Since the function is monotonic, tabulating and interpolat-
ing this data allows us to obtain, for a target curvature and spacing,
the thickness τ that should be used for each ribbon. We only mea-
sured this data on cylindrical shapes produced by parallel patterns,
as for most surfaces, the method of Knoppel et al. [KCPS13] pro-
duces curvature fields that are locally near-parallel, but our results
demonstrate that our approach for assigning thickness generalizes
to more complex shapes too (including shapes in which ribbon ori-
entation changes slowly over a large area (Fig. 1, Fig. 2) and shapes
where there are orientation singularities, but localized to small re-
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Figure 6: Curvature κ1 of our metamaterial as a function of plastic
thickness τ and spacing µ2 (in mm).

gions (Fig. 9, first row)). While additional data could be collected
for doubly-curved samples, this would come at the cost of a more
complex measurement procedure, and a higher-dimensional data
table.

We also considered physical simulation to optimize for the rib-
bon parameters that reproduce the target shape. However, our ex-
periments with existing models [POT17; JSVB21] revealed that
they cannot reliably predict the coarse-scale behavior of our rib-
bon patterns. Because the plastic ribbons bond to the fabric along
their entire width, the presence of ribbons causes the surface to re-
sist transverse contraction, by a factor that depends on the ribbon
width wr (See Eq. 10 below). Rod-shell coupling models that as-
sume that the ribbons are infinitesimally wide fail to capture this
phenomenon. Fig. 7 shows the result of the model by Jourdan et
al. [JSVB21] when simulating a similar pattern as in Fig. 2. The
simulation predicts that the shell contracts uniformly during de-
ployment, yielding an equilibrium shape different from the target
half-torus. (In reality, the shell contracts more along the interior
boundary than along the exterior one.) Other effects that are not
captured by existing simulations, that we hypothesize are impor-
tant to accurately predicting the deployed shape, include nonlin-
earity of the fabric (which is knitted, and stretched well outside its
linear regime); plasticity of the ribbons; residual stress in the rib-
bons induced by the printing process; printer fabrication errors; and
seeping of the plastic partially into the fabric during printing. While
more complex models might capture such effects, their develop-
ment would require extensive lab testing and parameter sweeps to
be repeated for any change in the fabric/printer/filament used. In
contrast, our approach based on geometric principles and data fit-
ting allows good control over the deployed shape while being fast
and relatively simple.

Front-and-back asymmetry The fabric we used in our experi-
ments was knitted with a stockinette stitch pattern, which has a
stronger bending resistance in one direction than in the other. We
found that the curvature varied significantly for similar values of τ

and µ2 depending on the side of the fabric we printed on: the same
ribbons, when printed on the stitch front, had a 50 to 60% higher
curvature than the ones printed on the stitch back. We therefore
computed two different tables of µ2 vs. κ1 vs. τ, one for each side
of the fabric, each of these tables has 8×6 data points in total.
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(a) Front view (b) Side view

Figure 7: The rod-based model of Jourdan et al. [JSVB21] does
not account for the width of the plastic ribbons. When attempting
to simulate a similar pattern as in Fig. 2, the surface bends properly
along the ribbons due to the bilayer effect (a), but it contracts uni-
formly in the direction transverse to the ribbons, despite the vary-
ing density of plastic along the interior and exterior boundary (b).
As a result, the simulation predicts a deployed shape that does not
match the target half-torus.

6. Ribbon layout

We are now equipped with a flattened surface S̄, along with the di-
rections k̄i = d

(
ϕ̄◦ϕ

−1
)

ki and magnitudes σi of principal stretch
of the flattening map. Our goal is to map these quantities to the pa-
rameters lr, wr, µ1, and µ2 of the discrete ribbon pattern that will
be printed on the fabric (see inset figure in Section 3), and compute
curves on S̄ that trace the centerline of each ribbon. Together with
the thickness τ computed in Section 5, these parameters and curves
fully determine the structure to be fabricated.

6.1. Determining the Pattern Parameters

In theory, we can vary the quantity of empty fabric locally by ad-
justing the length lr and width wr of the ribbons, or the spacing µ1
and µ2 between the centers of neighboring ribbons, or both. In other
words, a dense pattern of thin ribbons yields as much empty fab-
ric as a sparse pattern of large ribbons. Since varying the spacing
between ribbons is less susceptible to limitations on printer accu-
racy and resolution than attempting to vary the ribbon dimensions,
we eliminate this redundancy by fixing lr and wr, leaving spacing
between the ribbons along µ1 and µ2 as the only parameters that
control stretch. We experimentally set lr = 15mm and wr = 1.5mm
as a trade-off between the resolution of the pattern and the adher-
ence of the ribbons, as smaller ribbons would increase resolution
but adhere less to fabric.

Given the fabric pre-stretch s, we compute the values of spacing
µ1 and µ2 to achieve the target stretching values σ1 and σ2 by con-
sidering individual stripes of ribbon dashes. More specifically, we
assume that, after we release the fabric, a periodic motif of initial
length µ1 contracts to an average length µ̄1 = lr + µ1−lr

s . Likewise,
we estimate the average width of parallel motifs of initial width µ2
to µ̄2 =wr+

µ2−wr
s . Taking the ratios of initial to contracted lengths

(respectively widths) gives us the average stretch values σ1 = µ1
µ̄1

and σ2 =
µ2
µ̄2

, from which we deduce

µ1 = lr
s−1

s−σ1
σ1, µ2 = wr

s−1
s−σ2

σ2. (10)

Note that these equations assume that the empty fabric surrounding
the ribbons effectively contracts by a factor of s on deployment. In

practice, the presence of staggered ribbons on each side of the gaps
along k̄1 might prevent Equation (10) from holding for small values
of µ2. Nevertheless, we found this effect to be negligible once the
bound σ

min
2 on σ2 was enforced during optimization.

6.2. Generating the ribbon layout

2µ2

µ1

As discussed above, we reduced
the design space of our ribbon
pattern to three parameters that
correspond to the spacing µ1 and
µ2 of the ribbons, and their thick-
ness τ. We now need to place ribbons over the flattened surface S̄ so
that their local spacing agrees with the target stretching values σ1
and σ2 according to Equation (10). We achieve this goal by leverag-
ing the fact that the ribbons in our staggered pattern lie on two grid
layouts with cell size µ1×2µ2, one grid being shifted by half a cell
with respect to the other in a brick-like pattern (inset). Each such
grid can further be decomposed into two families of nearly-parallel
curves with spacing µ1 and 2µ2 respectively.

We generate these families of curves over S̄ using the stripe pat-
tern algorithm of Knoppel et al. [KCPS15], which provides local
control on stripe spacing and orientation. Since this algorithm re-
quires spacing values per vertex, we compute these values by area-
weighted averaging of the per-triangle values given by our flatten-
ing algorithm. In practice, we first run the stripe pattern algorithm
twice with the spacing fields µ1 and 2µ2 and the direction fields k̄1
and k̄2, respectively, to form one grid of our pattern. The output
of the algorithm of Knoppel et al. [KCPS15] is two S1-valued unit
complex fields over S̄, θ and ψ: the zero isolines of arg(θ) give the
centerlines of the ribbons on one copy of the staggered grid (dark
blue lines in inset figure), and the zero isolines of arg(ψ) (light
blue lines) intersect those arg(θ)-isolines at the ribbon midpoints.
We generate the shifted second grid (orange lines) simply by ex-
tracting the π isolines of both fields. The curvature κ1 along these
lines (used to define the thicknesses of the associated ribbons) is
obtained by linearly interpolating the values of κ1 at the crossing
points between the lines and the edges of the mesh.

The ribbon centerline curves can be directly computed from the
staggered grid described above, by cutting the θ-isolines into pieces
of length lr enclosed by the grid intersection points. We clip the rib-
bons to the boundary of S̄, and we delete ribbons that are shorter
than 2mm. Also, we noticed that near singularities, the stripes can
deviate significantly from the prescribed direction field to merge or
split. We detect these cases by measuring the angle between the rib-
bon centerline and the direction field, and trim the ribbon when this
angle exceeds 25◦. Finally, we walk along each ribbon and assign
its segments to either the front or back of the fabric depending on
the sign of curvature κ1. In cases where the sign of the curvature
changes sign, we split the ribbon in two pieces.

7. Fabrication

Since fabricating our structures requires printing onto fabric that is
under uniform, prescribed amount of tension, and requires careful
control over the width and thickness of the ribbons being printed,
we designed a custom frame structure that attaches to the printer
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Frames
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Figure 8: Our frame structure is composed of two rigid frames,
in between which the fabric is clamped in tension. These frames
sit on a base that attaches to the printer bed. The four corners of
the frames can be removed to be fixed to the sheet of fabric before
stretching.

bed, holds the pre-stretched fabric in place, and allows us to reliably
fabricate our results. The frame structure was designed with several
goals in mind:

• it should be easy to place the fabric under the prescribed tension,
and the frame structure should maintain that tension throughout
the printing process;
• it should support the fabric from below to prevent the printer

extrusion nozzle from deforming the fabric during printing;
• it should be fixed to the printer bed to prevent sliding during

printing;
• it should be easily reversible to print on both sides of fabric,

without allowing the pattern on one side to become miscalibrated
with respect to that on the other due to sliding or rotation of the
fabric.

Figure 8 provides an exploded-view drawing of our design. The
structure is composed of two frames that clamp down on the fabric
to maintain it under uniform tension. To ease setup of the fabric,
the four corners of the frames are removable. We cut a rectangu-
lar piece of (unstretched) fabric of the size of the framed scaled by
a factor 1/s, where s is the desired stretching factor. We then de-
tach the four corner pieces from the frame and independently clamp
them onto the four corner of the fabric. The corners then snap back
into place on the frame, stretching the fabric by the factor s. Once
the corners are pulled back to their location on the frames, we fix
additional clamps along all sides of the frame to distribute the ten-
sion uniformly (see our supplemental video).

The frames sit on a base that is glued to the printer bed. This
base has the same size as the inner boundary of the frames, and
of the same thickness as one frame (so that the frame snaps into
place flush with the base, which ensures that the fabric is supported
by the base once the frames are in place). Since the base perfectly
fits within the bottom frame, the whole assembly cannot slide. And
since the two frames have equal thickness, we can print on both
sides of the fabric simply by flipping the frame structure around
and placing it back on the base.

We produced all our results with a desktop Ultimaker 2 FDM
printer equipped with a large printing nozzle (0.8mm) and con-
figured at low speed (15mm/s), which we found to improve ad-
hesion of plastic on fabric. We used TPU 95A as plastic filament,

which is more flexible than standard PLA. We used a finely knit-
ted lycra (80% polyamide, 20% elastane) as fabric, which binds
well with the melted plastic and offers enough elasticity to be
stretched by a factor s = 1.6 in our experiments. This knitted fabric
is anisotropic, but we chose to ignore this effect out of simplic-
ity. Notice that rotationally-symmetric designs remain rotationally-
symmetric when fabricated (Fig. 1, Fig. 2) and so the effect of fab-
ric anisotropy on the manufactured shape in practice is likely small.

8. Results

Figure 1, Figure 9 and Figure 13 illustrate results produced with our
method, including several architectural models and fashion items.
We provide turntable animations of these models in the supplemen-
tal video, along with a step-by-step demonstration of the fabrica-
tion procedure. Note that all these shapes deployed without manual
placement of their boundaries, except the ones shown in Figure 12
and Figure 13 for which we used additional support or a textile
strengthener, as discussed below.

Our results exhibit various degrees of curvature, including pos-
itive and negative curvature achieved by printing on both sides
of the fabric (Figure 1) and nearly developable surfaces (Skirt in
Figure 9). This latter example highlights the benefit of being able
to control extrinsic curvature (via the bilayer effect), since devel-
opables cannot be fabricated by controlling the intrinsic curvature
alone. Fig. 10 plots the curvature values sampled over some of our
target shapes, which shows that while the bilayer effect allows us to
reproduce nearly-developable surfaces (k2 close to 0), metric frus-
tration also provides a means to reproduce shapes with moderate
positive and negative Gaussian curvature.

We also visualize for each result in Figure 9 its deviation
from the target surface: we reconstruct the geometry of the de-
ployed structure from a photogrammetry scan of the fabricated ob-
ject [Cap], rigidly register it to the target surface S, and for each
point on the reconstructed surface, compute the distance to its clos-
est point on S. Errors are expressed as percentages of the bounding
box diagonal of S.

Table 1 reports the computation time for each model shown in
the paper, along with the average and maximum deviation of the
photogrammetry scan from the target surface. Note that we did
not scan some models that require additional intervention to sup-
port their own weight, as discussed below. While the plastic rib-
bons produce small-scale relief over the fabricated surface, our
method captures the overall shape well with an average deviation
of around 1.4%, which corresponds to 1.6 mm on such small-scale
objects (11 cm average bounding box diagonal). This level of ac-
curacy is on par with the one of prior methods that exploit similar
mechanisms for the lightweight fabrication of deployable structures
[POT17; PIC*21]. Table 1 also provides the average deviation from
the prescribed direction k1, as well as the percentage of triangles
that exceed the stretching bounds, along with the maximum devia-
tion from the bounds. This deviation remains small for all models,
even though some models reach the bounds on a relatively large
portion of the surface.

Limitations. The maximum length distortion achievable using our
technique, as the surface deploys from the flat to curved state, is
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Figure 9: Representative results produced with our method, including freeform doubly-curved surfaces (Neumunster and Shell) and a nearly-
developable surface achieved by printing on both sides of the fabric (Skirt). We visualize the deviation of the scanned fabricated shape from
the target surface, expressed as percentages of the bounding box diagonal of the target.
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Figure 10: Visualization of the two principal curvature values sampled over some of our target surfaces. While we expect our method to be
most effective at controlling extrinsic curvature where the target shape is nearly-developable (k2 ≈ 0, such as throughout the Skirt), most of
the surfaces we reproduced also exhibit positive and negative Gaussian curvature (Mask, Vault and Torus), or even solely negative Gaussian
curvature (Octopus Saddle).

Table 1: For each result shown in the paper, we report the computation time, curvature field smoothing λ, average and maximum deviation
between the scanned fabricated shape and the target (99th percentile to remove scanning outliers), average deviation of the ribbon direction
from the target direction k1, maximum deviation from the bounds on σ1 and σ2, percentage of triangles that violate the bounds, and average
residual energy after convergence. While some shapes exhibit a large portion of triangles outside the bounds, this deviation remains small.
The two shapes that have the highest deviation in direction and percentage of triangles out of the bounds are Octopus saddle (Fig. 1) and
Vault (Fig. 13). We note that these two models contain an umbilical region in their center, where the direction field exhibits a singularity.

Model Nb. faces Time (s) λ Dev. (avg // max) k1 dev. (avg. ◦) Max dev. (s1 // s2) Bad σ1 //σ2 (%) Avg. energy
Shell 105792 7.13 0 0.979 // 4.11 0.169 0.004 // 0.002 6.114 // 7.386 0.169
Octopus saddle 49152 0.91 0 2.63 // 8.01 0.731 0.0002 // 0.002 0.191 // 15.448 0.075
Neumunster 147456 5.20 -0.1 0.771 // 3.09 0.058 0.0002 // 0.027 2.100 // 2.740 0.192
Torus 159744 4.31 -0.1 1.14 // 4.96 0.070 0.003 // 0.002 1.127 // 7.699 0.201
Skirt 92160 2.90 -0.01 1.49 // 5.30 0.090 0.008 // 0.003 7.850 // 11.763 0.195
H. A. Center 55296 4.64 0 0.471 0.033 // 0.004 5.619 // 6.104 0.170
Vault 41472 7.53 -0.01 3.777 0.029 // 0.072 28.369 // 16.802 0.077
Mask 67584 1.35 0 0.069 0.007 // 0.003 2.477 // 4.903 0.196
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(a) Automatic layout (b) Hand-designed layout

Figure 11: Limitation. On umbilic surfaces like the sphere, our au-
tomatic method aligns the ribbon pattern along an arbitrary di-
rection. This layout offers limited room to flatten the surface while
satisfying the stretch bounds, restricting the method to a spherical
cap of low curvature (a). Our flattening algorithm can accommo-
date higher curvature if provided with a hand-designed radial lay-
out (b), but the surface curves too much at its center, possibly due
to the singularity of the layout at this location.

bounded by the fabric pre-stretch factor (which is s = 1.6 for the
knitted lycra we used). Consequently, our method cannot repro-
duce surfaces with patches of large total Gaussian curvature. (One
workaround would be to introduce cuts in the parameterization, and
stitch the fabric along those cuts to form the surface after print-
ing [SPS18; GMB17].) Although our flattening algorithm is guar-
anteed to converge, running it on surfaces that cannot be flattened
while satisfying the principal stretch bounds will yield a flattening
with significant cost function residual (Equation 3): in this case,
either the right singular vectors of the resulting mapping J do not
align well with the prescribed directions, i.e. the flattening does
not stretch the surface along the curvature directions; or the sin-
gular values of J do not lie within the prescribed bounds and the
desired flattening violates the ribbon minimal or maximal spacing
constraints.

Our choice of aligning to the direction of principal curvature
is particularly effective for nearly-developable surfaces, where the
difference between principal curvatures is large. In umbilic regions,
the principal curvature direction is not well-defined, and currently
our approach chooses one direction arbitrarily in such regions. As a
consequence, the ribbon layout is sometimes suboptimal near um-
bilic points; notice for instance that the Octopus Saddle (Fig. 1)
and Vault (Fig. 13), which feature prominent umbilic regions, also
have the largest shape deviation among our examples (Table 1).
Fig. 11(a) illustrates failure of our method on a purely umbilic sur-
face, where the arbitrary direction field yields a poor distribution
of stretch, to the point where our flattening algorithm only man-
ages to satisfy the bounds for a spherical cap of low curvature,
which curves little once fabricated. Fig. 11(b) shows the result ob-
tained with a hand-designed radial direction field, which does yield
a flattening that satisfies the distortion bounds for a spherical cap
of higher curvature, and a manufactured surface that is positively-
curved but oblong (with higher curvature at the north pole than at
the equator, possibly due to the direction field singularity at the
pole, where ribbons are far from parallel). A potential future im-
provement would be to relax the curvature-alignment constraint
(similar to the soft penalty approach of Panetta et al. [PIC*21]),
perhaps weighting alignment by a factor depending on |κ1− κ2|,

(a) Target surface (b) Without support (c) With support

Figure 12: Limitation. Without additional support, this architec-
tural model sags under its own weight (b). Adding a cardboard
support underneath the structure brings it closer to the target sur-
face (c).

though the optimization would also need to include terms to pre-
vent shape distortion due to ribbon torsion. Another promising idea
for future work is to add anisotropy of the ribbon pattern as an opti-
mization variable, so that the ribbon shape can adjust in response to
the ratio κ1

κ2
(with ribbons degenerating to disks or squares in um-

bilic regions, with only their spacing and not orientation encoding
intrinsic curvature in those regions, similar to the experiments by
Fields et al. [Fie18].)

The small size of the printing area and lim-
ited resolution of commodity desktop 3D print-
ers also prevents us from producing large sur-
faces, or surfaces with geometric features that
are finer than can be resolved by our ribbon-
based metamaterial. Printing on fabric is also
inherently imprecise, as plastic sometimes does not adhere well to
fabric, and plastic sometimes leaks from one ribbon to the next as
the printing head moves over the surface, as shown in the inset fig-
ure. Note however that our algorithm could be applied to larger-
scale, more precise fabrication techniques, such as plywood panels
glued to a large pre-stretched latex sheet [BAB20], or to higher-end
3D printers with larger print volume or finer resolution.

Finally, our method solves the inverse design task purely geo-
metrically, without simulating the complex interactions between
the elastic fabric and the plastic ribbons, nor the effect of exter-
nal forces like gravity or additional load. Figure 12 and Figure 13
show results on shapes that tend to sag under the effect of gravity,
which we corrected for by adding external support or by applying
a textile strengthener (Powertex). Nevertheless, our geometric ap-
proach also has its strengths, as it achieves a good agreement with
the target surface without costly physics-based optimization as part
of the design loop. We also note that any simulation-based algo-
rithm would require a good ribbon pattern initialization to converge
to a good solution, which our method provides.

9. Conclusion

We introduced a metamaterial composed of a pattern of flexible, in-
compressible ribbons embedded into a pre-stretched elastic mem-
brane, and described how leveraging the stretch in-between the rib-
bons and the bilayer effect at the ribbon-fabric interface allows
programming the intrinsic and extrinsic curvature of deployable
surfaces covered by such a pattern. We also introduced a tailored
flattening algorithm that bounds stretch along and across the prin-
cipal directions of curvature of a target surface, such that lay-

© 2022 The Author(s)
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Figure 13: Architectural model (Vault) and fashion items (Skirt
and Mask) prototyped with our method.

ing out ribbons over the flattened surface yields an accurate re-
production of the target when deployed. Finally, we showed how
these contributions allow the rapid inverse design and fabrication of
lightweight structures made of plastic ribbons printed on lycra. Po-
tential exciting directions for future research include applying our
pattern and the associated algorithms to new kinds of elastic sub-
strates that allow for the creation of larger deployable structures;
design of more complex composites with multiple fabric layers;
study of how printing n-RoSys or other more complex primitive
shapes, beyond stripes, affects the deployed surface geometry; and
algorithms for designing structures that deploy into multiple pro-
grammed metastable shapes, or that deploy and flatten automati-
cally in response to programmed loads or environmental stimuli.
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[KCD*16] KONAKOVIĆ, MINA, CRANE, KEENAN, DENG, BAILIN, et al.
“Beyond Developable: Computational Design and Fabrication with Aux-
etic Materials”. ACM Transactions on Graphics 35.4 (July 2016), 89:1–
89:11. DOI: 10.1145/2897824.2925944 3, 4.

[KCPS13] KNÖPPEL, FELIX, CRANE, KEENAN, PINKALL, ULRICH, and
SCHRÖDER, PETER. “Globally optimal direction fields”. ACM Trans-
actions on Graphics 32.4 (July 2013), 59:1–59:10. DOI: 10.1145/
2461912.2462005 2, 6, 7.

[KCPS15] KNÖPPEL, FELIX, CRANE, KEENAN, PINKALL, ULRICH, and
SCHRÖDER, PETER. “Stripe Patterns on Surfaces”. ACM Transac-
tions on Graphics 34 (4 July 2015), 39:1–39:11. DOI: 10 . 1145 /
2767000 2, 4, 8.

[KHB*12] KIM, JUNGWOOK, HANNA, JAMES A., BYUN, MYUNGH-
WAN, et al. “Designing Responsive Buckled Surfaces by Halftone Gel
Lithography”. Science 335.6073 (2012), 1201–1205. DOI: 10.1126/
science.1215309 3.

[KMM17] KILIAN, MARTIN, MONSZPART, ARON, and MITRA, NILOY
J. “String Actuated Curved Folded Surfaces”. ACM Transactions on
Graphics 36.3 (May 2017), 25:1–25:13. DOI: 10.1145/3015460 3.

[KPCP18] KONAKOVIĆ-LUKOVIĆ, MINA, PANETTA, JULIAN, CRANE,
KEENAN, and PAULY, MARK. “Rapid Deployment of Curved Surfaces
via Programmable Auxetics”. ACM Transactions on Graphics 37.4 (July
2018), 106:1–106:13. DOI: 10.1145/3197517.3201373 1, 2.

[Kyc19] KYCIA, AGATA. “Hybrid Textile Structures as Means of Material-
informed Design Strategy”. CA2RE Berlin Proceedings: Conference for
Artistic and Architectural (Doctoral) Research. Berlin, 2019, 34–35 3.

[LZX*08] LIU, LIGANG, ZHANG, LEI, XU, YIN, et al. “A Local/Global
Approach to Mesh Parameterization”. Proceedings of the Symposium on
Geometry Processing. SGP ’08. Copenhagen, 2008, 1495–1504. DOI:
10.5555/1731309.1731336 2, 4, 6.

[MLB16] MIGUEL, EDER, LEPOUTRE, MATHIAS, and BICKEL, BERND.
“Computational Design of Stable Planar-Rod Structures”. ACM Trans-
actions on Graphics 35.4 (July 2016), 86:1–86:11. DOI: 10.1145/
2897824.2925978 4.

[MPI*18] MALOMO, LUIGI, PÉREZ, JESÚS, IARUSSI, EMMANUEL, et al.
“FlexMaps: Computational Design of Flat Flexible Shells for Shaping
3D Objects”. ACM Transactions on Graphics 37.6 (Dec. 2018), 241:1–
241:14. DOI: 10.1145/3272127.3275076 3.

[MWS*20] MA, ZHAO, WALZER, ALEXANDER, SCHUMACHER, CHRIS-
TIAN, et al. “Designing Robotically-Constructed Metal Frame Struc-
tures”. Computer Graphics Forum 39.2 (2020), 411–422. DOI: 10 .
1111/cgf.13940 4.

[NAH*18] NARAYANAN, VIDYA, ALBAUGH, LEA, HODGINS, JESSICA,
et al. “Automatic Machine Knitting of 3D Meshes”. ACM Transactions
on Graphics 37.3 (Aug. 2018). DOI: 10.1145/3186265 4.

[NBB*16] NA, JUN-HEE, BENDE, NAKUL P., BAE, JINHYE, et al.
“Grayscale gel lithography for programmed buckling of non-Euclidean
hydrogel plates”. Soft Matter 12 (22 2016), 4985–4990. DOI: 10 .
1039/C6SM00714G 3.

[OR07] OXMAN, NERI and ROSENBERG, JESSE LOUIS. “Material-based
Design Computation An Inquiry into Digital Simulation of Physi-
cal Material Properties as Design Generators”. International Journal
of Architectural Computing 5.1 (2007), 25–44. DOI: 10 . 1260 /
147807707780912985 3.

[PIC*21] PANETTA, JULIAN, ISVORANU, FLORIN, CHEN, TIAN, et al.
“Computational Inverse Design of Surface-Based Inflatables”. ACM
Transactions on Graphics 40.4 (July 2021), 40:1–40:14. DOI: 10 .
1145/3450626.3459789 1–5, 9, 11.

[PKI*19] PANETTA, J., KONAKOVIĆ-LUKOVIĆ, M., ISVORANU, F., et al.
“X-Shells: A New Class of Deployable Beam Structures”. ACM Trans-
actions on Graphics 38.4 (July 2019), 83:1–83:15. DOI: 10.1145/
3306346.3323040 1, 3.

[PLBM20] PILLWEIN, STEFAN, LEIMER, KURT, BIRSAK, MICHAEL,
and MUSIALSKI, PRZEMYSLAW. “On Elastic Geodesic Grids and Their
Planar to Spatial Deployment”. ACM Transactions on Graphics 39.4
(July 2020), 125:1–125:12. DOI: 10.1145/3386569.3392490 3.

[POT17] PÉREZ, JESÚS, OTADUY, MIGUEL A., and THOMASZEWSKI,
BERNHARD. “Computational Design and Automated Fabrication of
Kirchhoff-Plateau Surfaces”. ACM Transactions on Graphics 36.4 (July
2017), 62:1–62:12. DOI: 10.1145/3072959.3073695 2, 3, 7, 9.

[PSJH17] PEZZULLA, MATTEO, STOOP, NORBERT, JIANG, XIN, and
HOLMES, DOUGLAS. “Curvature-driven morphing of non-Euclidean
shells”. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 473.2201 (May 2017). DOI: 10.1098/rspa.
2017.0087 3.

[RHS17] RABINOVICH, MICHAEL, HOFFMANN, TIM, and SORKINE-
HORNUNG, OLGA. “Discrete Geodesic Nets for Modeling Developable
Surfaces”. ACM Transactions on Graphics 37 (July 2017). DOI: 10.
1145/3180494 3.

[RPC*21] REN, YINGYING, PANETTA, JULIAN, CHEN, TIAN, et al. “3D
Weaving with Curved Ribbons”. ACM Transactions on Graphics 40.4
(July 2021), 127:1–127:15. DOI: 10.1145/3450626.3459788 4.

[RPPS17] RABINOVICH, MICHAEL, PORANNE, ROI, PANOZZO,
DANIELE, and SORKINE-HORNUNG, OLGA. “Scalable Locally In-
jective Mappings”. ACM Transactions on Graphics 36.2 (2017). DOI:
10.1145/2983621 6.

[SC*19] SHARP, NICHOLAS, CRANE, KEENAN, et al. geometry-central.
www.geometry-central.net. 2019 12.

[SC17] SAWHNEY, ROHAN and CRANE, KEENAN. “Boundary First Flat-
tening”. ACM Transactions on Graphics 37.1 (Dec. 2017), 5:1–5:14.
DOI: 10.1145/3132705 4.

[SC18] SHARP, NICHOLAS and CRANE, KEENAN. “Variational Surface
Cutting”. ACM Transactions on Graphics 37.4 (July 2018), 156:1–
156:13. DOI: 10.1145/3197517.3201356 3.

[SCBV19] SAGEMAN-FURNAS, ANDREW O., CHERN, ALBERT, BEN-
CHEN, MIRELA, and VAXMAN, AMIR. “Chebyshev Nets from Com-
muting PolyVector Fields”. ACM Transactions on Graphics 38.6 (Nov.
2019), 172:1–172:16. DOI: 10.1145/3355089.3356564 4.

[SE10] SHARON, ERAN and EFRATI, EFI. “The mechanics of non-
Euclidean plates”. Soft Matter 6 (22 2010), 5693–5704. DOI: 10 .
1039/C0SM00479K 3.

[SGC18] STEIN, ODED, GRINSPUN, EITAN, and CRANE, KEENAN. “De-
velopability of Triangle Meshes”. ACM Transactions on Graphics 37.4
(July 2018), 77:1–77:14. DOI: 10.1145/3197517.3201303 3.

[Sha*19] SHARP, NICHOLAS et al. Polyscope. www.polyscope.run.
2019 12.

[SLMB05] SHEFFER, ALLA, LÉVY, BRUNO, MOGILNITSKY, MAXIM,
and BOGOMYAKOV, ALEXANDER. “ABF++: Fast and Robust An-
gle Based Flattening”. ACM Transactions on Graphics 24.2 (Apr.
2005), 311–330. DOI: 10.1145/1061347.1061354 4.

[SPS18] SCHÜLLER, CHRISTIAN, PORANNE, ROI, and SORKINE-
HORNUNG, OLGA. “Shape Representation by Zippables”. ACM Trans-
actions on Graphics 37.4 (July 2018), 78:1–78:13. DOI: 10.1145/
3197517.3201347 11.

[TBWP16] TANG, CHENGCHENG, BO, PENGBO, WALLNER, JOHANNES,
and POTTMANN, HELMUT. “Interactive Design of Developable Sur-
faces”. ACM Transactions on Graphics 35.2 (Jan. 2016), 12:1–12:12.
DOI: 10.1145/2832906 3.

[TTZ*20] TRICARD, THIBAULT, TAVERNIER, VINCENT, ZANNI, CÉ-
DRIC, et al. “Freely Orientable Microstructures for Designing De-
formable 3D Prints”. ACM Transactions on Graphics 39.6 (Nov. 2020),
211:1–211:16. DOI: 10.1145/3414685.3417790 4.

[VCD*16] VAXMAN, AMIR, CAMPEN, MARCEL, DIAMANTI, OLGA, et
al. “Directional Field Synthesis, Design, and Processing”. Computer
Graphics Forum 35 (2016), 545–572. DOI: 10.1111/cgf.12864 4.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/2897824.2925944
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1145/2767000
https://doi.org/10.1145/2767000
https://doi.org/10.1126/science.1215309
https://doi.org/10.1126/science.1215309
https://doi.org/10.1145/3015460
https://doi.org/10.1145/3197517.3201373
https://doi.org/10.5555/1731309.1731336
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1145/3272127.3275076
https://doi.org/10.1111/cgf.13940
https://doi.org/10.1111/cgf.13940
https://doi.org/10.1145/3186265
https://doi.org/10.1039/C6SM00714G
https://doi.org/10.1039/C6SM00714G
https://doi.org/10.1260/147807707780912985
https://doi.org/10.1260/147807707780912985
https://doi.org/10.1145/3450626.3459789
https://doi.org/10.1145/3450626.3459789
https://doi.org/10.1145/3306346.3323040
https://doi.org/10.1145/3306346.3323040
https://doi.org/10.1145/3386569.3392490
https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1098/rspa.2017.0087
https://doi.org/10.1098/rspa.2017.0087
https://doi.org/10.1145/3180494
https://doi.org/10.1145/3180494
https://doi.org/10.1145/3450626.3459788
https://doi.org/10.1145/2983621
https://doi.org/10.1145/3132705
https://doi.org/10.1145/3197517.3201356
https://doi.org/10.1145/3355089.3356564
https://doi.org/10.1039/C0SM00479K
https://doi.org/10.1039/C0SM00479K
https://doi.org/10.1145/3197517.3201303
https://doi.org/10.1145/1061347.1061354
https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/3197517.3201347
https://doi.org/10.1145/2832906
https://doi.org/10.1145/3414685.3417790
https://doi.org/10.1111/cgf.12864


D. Jourdan, M. Skouras, E. Vouga, A. Bousseau / Computational Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric

[VZF*19] VEKHTER, JOSH, ZHUO, JIACHENG, FANDINO, LUISA F GIL,
et al. “Weaving Geodesic Foliations”. ACM Transactions on Graphics
38.4 (July 2019), 34:1–34:22. DOI: 10.1145/3306346.3323043 4.

[ZSGS04] ZHOU, KUN, SYNDER, JOHN, GUO, BAINING, and SHUM,
HEUNG-YEUNG. “Iso-Charts: Stretch-Driven Mesh Parameterization
Using Spectral Analysis”. Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing. SGP ’04. Nice,
2004, 45–54. DOI: 10.1145/1057432.1057439 4.

Appendix A: Optimal stretching matrices Σ
e

We obtain the per element stretching matrix Σ
e =

(
σ1 0
0 σ2

)
by solv-

ing the problem
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Noting that the Frobenius norm of any matrix A is invariant under
transposition and rotation of the matrix, i.e. ‖At‖2

F = ‖A‖2
F and

‖RA‖2
F = ‖AR‖2

F = ‖A‖2
F for any rotation matrix R, we rewrite the

cost function in Equation (11) as
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Expanding the right term gives us
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where tr[A] denotes the trace of the matrix A, and [Re
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and [Re
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where σ̂i is solution of ∂E
∂σi

(σ1,σ2) = 0, i.e. σ̂i = [Re
θ(Je)

tRe
S̄ ]ii.

Appendix B: Optimal rotation matrices Re
S̄

We obtain the per element rotation matrix Re
S̄ by solving the or-

thogonal Procrustes problem

R̃e
S̄ = argmin

Re
S̄∈SO(2)

∥∥Je−Re
S̄Σ

eRe
θ

∥∥2
F . (15)

Expanding the right hand side of equation (15) gives us∥∥Je−Re
S̄Σ

eRe
θ

∥∥2
F = tr

(
(Je−Re

S̄Σ
eRe

θ)
t(Je−Re

S̄Σ
eRe

θ)
)

= tr
(
(Je)tJe)−2tr

(
(Je)tRe

S̄Σ
eRe

θ

)
+ tr

(
(Re
S̄Σ

eRe
θ)

tRe
S̄Σ

eRe
θ

)
.

(16)

Terms that do not depend on Re
S̄ do not change the minimum of the

function (16) with respect to Re
S̄ and can be discarded so that we

can write

R̃e
S̄ = argmax

Re
S̄∈SO(2)

tr
(
(Je)tRe

S̄Σ
eRe

θ

)
= argmax

Re
S̄∈SO(2)

tr
(
Re
S̄Σ

eRe
θ(J

e)t)
=UV t ,

(17)

where U and V are the orthogonal matrices of the singular value
decomposition of the matrix Je(Re

θ)
t
Σ

e up to flipping the sign of
the column of U corresponding to the smallest singular value so
that det(UV t) > 0. Indeed, in that case, Je(Re

θ)
t
Σ

e = USV t with

S =
(

S1 0
0 S2

)
the diagonal matrix containing the singular values of

Je(Re
θ)

t
Σ

e and UV t ∈ SO(2). This allows us to write

tr
(
Re
S̄Σ

eRe
θ(J

e)t)= tr
(
Re
S̄V SU t)

= tr
(
U tRe
S̄V S

)
= S1[H]11 +S2[H]22, H =U tRe

S̄V.

(18)

Since H ∈ SO(2), [H]11 and [H]22 are of the form [H]11 = [H]22 =
cosθ, θ ∈ R. The maximum of tr

(
Re
S̄Σ

eRe
θ(J

e)t) is thus reached
when H = I, i.e. Re

S̄ =UV t .
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