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has been evaluated on a variety of benchmarks from kinematics, mechanics, and robotics. On these
benchmarks, it outperforms classical interval methods as well as constraint satisfaction problem
solvers and it compares well with state-of-the-art optimization solvers.
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1. Introduction. Many applications in engineering sciences require finding all
isolated solutions to systems of constraints over real numbers. These systems may
be nonpolynomial and are difficult to solve: the inherent computational complexity
is NP-hard and numerical issues are critical in practice (e.g., it is far from being
obvious to guarantee correctness and completeness as well as to ensure termination).
These systems, called numerical CSP (constraint satisfaction problem) in the rest
of this paper, have been approached in the past by different interesting methods:1

interval methods [35, 24, 38, 20, 40], continuation methods [37, 2, 62], and constraint
satisfaction methods [30, 6, 11, 61]. Of particular interest is the mathematical and
programming simplicity of the latter approach: the general framework is a branch and
prune algorithm that requires only specifying the constraints and the initial range of
the variables.

The purpose of this paper is to introduce and study a new branch and bound
algorithm called QuadSolver. The essential feature of this algorithm is a global
constraint—called Quad—that works on a tight and safe linear relaxation of the poly-
nomial relations of the constraint systems. More precisely, QuadSolver is a branch
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M’Naouar Oran, Algeria (Yahia.Lebbah@sophia.inria.fr).
‡Université de Nice-Sophia Antipolis, I3S-CNRS, 930 route des Colles, BP 145, 06903 Sophia

Antipolis Cedex, France (Claude.Michel@sophia.inria.fr, rueher@essi.fr).
§INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France (David.Daney@

sophia.inria.fr, Jean-Pierre.Merlet@sophia.inria.fr).
¶COPRIN Project INRIA–I3S–CNRS, 2004 route des Luciales, BP 93, Sophia Antipolis Cedex

06903, France.
1Alternative methods have been proposed for solving nonlinear systems. For instance, algebraic

constraints can be handled with symbolic methods [13] (e.g., Groebner basis, resultant). However,
these methods can neither handle nonpolynomial systems nor deal with inequalities.

2076



EFFICIENT AND SAFE GLOBAL CONSTRAINTS 2077

and prune algorithm that combines Quad, local consistencies, and interval methods.
That is to say, QuadSolver is an attempt to merge the best interval and constraint
programming techniques. QuadSolver has been evaluated on a variety of benchmarks
from kinematics, mechanics, and robotics. On these benchmarks, it outperforms clas-
sical interval methods as well as CSP solvers and it compares well with state-of-the-art
optimization solvers.

The Quad-filtering algorithm [27] has first been defined for quadratic constraints.
The relaxation of quadratic terms is adapted from a classical linearization method,
the reformulation-linearization technique (RLT) [54, 53]. The simplex algorithm is
used to narrow the domain of each variable with respect to the subset of the linear
set of constraints generated by the relaxation process. The coefficients of these linear
constraints are updated with the new values of the bounds of the domains and the
process is restarted until no more significant reduction can be done. We have demon-
strated [27] that the Quad algorithm yields a more effective pruning of the domains
than local consistency filtering algorithms (e.g., 2b-consistency [30] or box-consistency
[6]). Indeed, the drawback of classical local consistencies comes from the fact that the
constraints are handled independently and in a blind way.2 That is to say, classical
local consistencies do not exploit the semantic of quadratic terms; in other words,
these approaches do not take advantage of the very specific semantic of quadratic
constraints to reduce the domains of the variables. Conversely, linear programming
techniques [1, 54, 3] do capture most of the semantics of quadratic terms, e.g., convex
and concave envelopes of these particular terms.3

The extension of Quad for handling any polynomial constraint system requires
replacing nonquadratic terms by new variables and adding the corresponding identi-
ties to the initial constraint system. However, a complete quadrification [58] would
generate a huge number of linear constraints. Thus, we introduce here an heuristic
based on a good tradeoff between a tight approximation of the nonlinear terms and
the size of the generated constraint system. This heuristic works well on classical
benchmarks (see section 8).

A safe rounding process is a key issue for the Quad framework. Let us recall that
the simplex algorithm is used to narrow the domain of each variable with respect to
the subset of the linear set of constraints generated by the relaxation process. The
point is that most implementations of the simplex algorithm are unsafe. Moreover,
the coefficients of the generated linear constraints are computed with floating point
numbers. So, two problems may occur in the Quad-filtering process.

1. The whole linearization may become incorrect due to rounding errors when
computing the coefficients of the generated linear constraints.

2. Some solutions may be lost when computing the bounds of the domains of
the variables with the simplex algorithm.

We propose in this paper a safe procedure for computing the coefficients of the
generated linear constraints. Neumaier and Shcherbina [42] have addressed the second

23b-consistency and kb-consistency are partial consistencies that can achieve a better pruning
since they are “less local” [11]. However, they require numerous splitting steps to find the solutions
of a system of quadratic constraints; so, they may become rather slow.

3Sherali and Tuncbilek [55] have also proposed four different filtering techniques for solving
quadratic problems. Roughly speaking, the first filtering strategy performs a feasibility check on
inequality constraints to discard subintervals of the domains of the variables. This strategy is very
close to box-consistency filtering (see [60]). The three other techniques are based on specific properties
of optimization problems with a quadratic objective function: the eigenstructure of the quadratic
objective function, fathoming node, and Lagrangian dual problem. Thus, these techniques can be
considered as local consistencies for optimization problems (see also [59] and Neumaier’s survey [41]).
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problem.4 They have proposed a simple and cheap procedure to get a rigorous upper
bound of the objective function. The incorporation of these procedures in the Quad-
filtering process allows us to call the simplex algorithm without worrying about safety.
So, with these two procedures, linear programming techniques can be used to tackle
continuous CSPs without losing any solution.

The rest of this paper is organized as follows. Section 2 gives an overview of the
approach whereas section 3 contains the notation. Sections 4 and 5 recall the basics
of interval programming and constraint programming. Section 6 details the principle
of the Quad algorithm, the linearization process, and the extension to polynomial
constraints. Section 7 introduces the rounding process we propose to ensure the safe
relaxations. Section 8 describes the experimental results and discusses related work.
Concluding remarks are given in section 9.

2. Overview of the approach. As mentioned, QuadSolver is a branch and
prune algorithm that combines Quad and a box-consistency.

Box-consistency is the most successful adaptation of arc-consistency [31] to
constraints over the real numbers. The box-consistency implementation of Van-
Hentenryck, McAllester, and Kapur [60] is computed on three-interval extensions
of the initial constraints: the natural interval extension, the distributed interval ex-
tension, and the Taylor interval extension with a conditioning step. The leftmost and
the rightmost zeros are computed using a variation of the univariate interval Newton
method.

The QuadSolver we propose here combines Quad-filtering and box-consistency
filtering to prune the domain of the variables of numerical constraint systems. Oper-
ationally, QuadSolver performs the following filtering processes:

1. box-consistency filtering,
2. Quad-filtering.

The box-consistency is first used to detect some inconsistencies before starting
the Quad-filtering algorithm which is more costly. These two steps are wrapped into a
classical fixed point algorithm which stops when the domains of the variables cannot
be further reduced.5

To isolate the different solutions, Quad uses classical branching techniques.
Before going into the details, let us outline the advantages of our approach on a

couple of small examples.

2.1. Quad-filtering. Consider the constraint system C = {2xy+y = 1, xy = 0.2}
which represents two intersecting curves (see Figure 2.1). Suppose that x = [−10,+10]
and y = [−10,+10] are the domains of the variables x and y. An interval x = [x, x]
denotes the set of reals {r|x ≤ r ≤ x}.

The RLT (see section 6.2) yields the following constraint system:⎧⎪⎪⎨
⎪⎪⎩

y + 2w = 1, w = 0.2,
yx + xy − w ≤ xy, yx + xy − w ≥ xy,
yx + xy − w ≥ xy, yx + xy − w ≤ xy,
x ≥ x, x ≤ x, y ≥ y, y ≤ y,

(a)

where w is a new variable that stands for the product xy. Note that constraint system
(a) implies that w ∈ [x, x] ∗ [y, y].

4They have also suggested a solution to the first problem though their solution is dedicated to
mixed integer programming problems.

5In practice, the loop stops when the domain reduction is lower than a given ε.
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Fig. 2.1. Geometrical representation of {2xy + y = 1, xy = 0.2}.

Substituting x, y, x, and y by their values and minimizing (resp., maximizing) x, y,
and w with the simplex algorithm yield the following new bounds:

x = [−9.38, 9.42], y = [0.6, 0.6], w = [0.2, 0.2].

By substituting the new bounds of x, y, and w in the constraint system (a), we ob-
tain a new linear constraint system. One more minimizing (resp., maximizing) step
is required to obtain tight bounds of x. Note that numerous splitting operations are
required to find the unique solution of the problem with a 3b-consistency filtering
algorithm. The proposed algorithm solves the problem by generating 6 linear con-
straints and with 8 calls to the simplex algorithm. It finds the same solution as a
solver based on 3b-consistency but without splitting and in less time.

2.2. A safe rounding procedure. Consider the constraint system

C =

{
w1 + w2 = 1, w1x1 + w2x2 = 0,
w1x1x1 + w2x2x2 = 1, w1x1x1x1 + w2x2x2x2 = 0,

which represents a simple Gaussian quadrature formula to compute integrals [9]. Sup-
pose that the domains of variables x1, x2, w1, and w2 are all equal to [−1,+1]. This
system has two solutions:

• x1 = −1, x2 = 1, w1 = 0.5, w2 = 0.5,
• x1 = 1, x2 = −1, w1 = 0.5, w2 = 0.5.

A straightforward implementation of Quad would only find one unsafe solution
with

x2 ∈ [+0.9999 . . . 944,+0.9999 . . . 989].

Indeed, when we examine the Quad-filtering process, we can identify some linear pro-
grams where the simplex algorithm steps to the wrong side of the objective.

With the corrections we propose in section 7, we obtain a tight approximation
of the two correct solutions (with x2 ∈ [−1.000000 . . . ,−0.999999 . . . ] and x2 ∈
[0.999999 . . . , 1.000000 . . . ]).

3. Notation and basic definitions. This paper focuses on CSPs where the
domains are intervals and the constraints Cj(x1, . . . , xn) are n-ary relations over the
reals. C stands for the set of constraints.

x or Dx denotes the domain of variable x, that is to say, the set of allowed values
for x. D stands for the set of domains of all the variables of the considered constraint
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system. R denotes the set of real numbers whereas F stands for the set of floating
point numbers used in the implementation of nonlinear constraint solvers; if a is a
constant in F, a+ (resp., a−) corresponds to the smallest (resp., largest) number of F

strictly greater (resp., lower) than a.
x = [x, x] is defined as the set of real numbers x verifying x ≤ x ≤ x. x, y denote

real variables, X,Y denote vectors whereas X,Y denote interval vectors. The width
w(x) of an interval x is the quantity x − x while the midpoint m(x) of the interval
x is (x + x)/2. A point interval x is obtained if x = x. A box is a set of intervals:
its width is defined as the largest width of its interval members, while its center is
defined as the point whose coordinates is the midpoint of the ranges. IR

n denotes the
set of boxes and is ordered by set inclusion.

We use the RLT notation introduced in [54, 3] with slight modifications. More
precisely, we will use the following notations: [c]L is the set of linear constraints
generated by replacing the nonlinear terms by new variables in constraint c, and [c]LI

denotes the set of equations that keep the link between the new variables and the
nonlinear terms while [c]R contains linear inequalities that approximate the semantics
of nonlinear terms of constraint c. These notations will be used indifferently whether
c is a constraint or C is a set of constraints.

Rounding is necessary to close the operations over F (see [18]). A rounding func-
tion maps the result of the evaluation of an expression to available floating-point num-
bers. Rounding x towards +∞ maps x to the least floating point number xf such that
x ≤ xf . �(x) (resp., �(x)) denotes a rounding mode of x towards −∞ (resp., +∞).

4. Interval programming. This section recalls the basic concepts of interval
arithmetic that are required to understand the rest of the paper. Readers familiar
with interval arithmetic may skip this section.

4.1. Interval arithmetic. Interval arithmetic has been introduced by Moore [35].
It is based on the representation of variables as intervals.

Let f be a real-valued function of n unknowns X = (x1, . . . , xn). An interval
evaluation of f for given ranges X = (x1, . . . ,xn) for the unknowns is an interval y
such that

y ≤ f(X) ≤ y for all X = (x1, . . . , xn) ∈ X = (x1, . . . ,xn).(4.1)

In other words, y and y are lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X.

There are numerous ways to calculate an interval evaluation of a function [20, 46].
The simplest is the natural evaluation in which all the mathematical operators in f
are substituted by their interval equivalents. Interval equivalents exist for all classical
mathematical operators. Hence interval arithmetic allows us to calculate an interval
evaluation for all nonlinear expressions, whether algebraic or not. For example, if
f(x) = x + sin(x), then the interval evaluation of f for x ∈ [1.1, 2] can be calculated
as follows:

f([1.1, 2]) = [1.1, 2] + sin([1.1, 2]) = [1.1, 2] + [0.8912, 1] = [1.9912, 3].

Interval arithmetic can be implemented with directed rounding to take into ac-
count round-off errors. There are numerous interval arithmetic packages implementing
this property: one of the most famous library is BIAS/Profil,6 but a promising new

6http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.
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package—based on the multiprecision software MPFR7—is MPFI [47].
The main limitation of interval arithmetic is the overestimation of interval func-

tions. This is due to two well-known problems:
• the so-called wrapping effect [35, 39], which overestimates by a unique vector

the image of an interval vector (which is in general not a vector). That is to
say, {f(X)|X ∈ X} is contained in f(X) but is usually not equal to f(X);

• the so-called dependency problem [20], which is due to the independence of
the different occurrences of some variables during the interval evaluation of
an expression. In other words, during the interval evaluation process there
is no correlation between the different occurrences of a same variable in an
equation. For instance, consider x = [0, 10]. x−x = [x−x, x−x] = [−10, 10]
instead of [0, 0] as one could expect.

In general, it is not possible to compute the exact enclosure of the range for an
arbitrary function over the real numbers [25]. Thus, Moore introduced the concept
of interval extension: the interval extension of a function is an interval function that
computes outer approximations on the range of the function over a domain [20, 36].
Two main extensions have been introduced: the natural extension and the Taylor
extension [46, 20, 38].8 Due to the properties of interval arithmetic, the evaluation of
a function may yield different results according to the literal form of the equations.
Thus, many literal forms may be used as, for example, factorized form (Horner for
polynomial system) or distributed form [60].

Nevertheless, in general, neither the natural form nor the Taylor expansion allows
us to compute the exact range of a function f . For instance, considering f(x) =
1 − x + x2 and x = [0, 2], we have

ftay([0, 2]) = f(x) + (2x − 1)(x − x) = f(1) + (2[0, 2] − 1)([0, 2] − 1) = [−2, 4],

f([0, 2]) = 1 − x + x2 = 1 − [0, 2] + [0, 2]2 = [−1, 5],(4.2)

ffactor([0, 2]) = 1 + x(x − 1) = 1 + [0, 2]([0, 2] − 1) = [−1, 3],

whereas the range of f over X = [0, 2] is [3/4, 3]. In this case, this result could directly
be obtained by a second form of factorization: ffactor2([0, 2]) = (x − 1/2)2 + 3/4 =
([0, 2] − 1/2)2 + 3/4 = [3/4, 3].

4.2. Interval analysis methods. This section provides a short introduction
to interval analysis methods (see [35, 20, 38, 40] for a more detailed introduction).
We limit this overview to interval Newton-like methods for solving a multivariate
system of nonlinear equations. Their use is complementary to methods provided by
the constraint programming community.

The aim is to determine the zeros of a system of n equations fi(x1, . . . , xn) in n
unknowns xi inside the interval vector X = (x1, . . . ,xn) with xi ∈ xi for i = 1, . . . , n.

First, consider solving an interval linear system of equations defined as follows:

AX = b, A ∈ A, b ∈ b,(4.3)

where A is an interval matrix and b is an interval vector. Solving this linear interval
system requires us to determine an interval vector X containing all solutions of all
scalar linear systems noted AX = b such that A ∈ A and b ∈ b. Finding the exact
value of X is a difficult problem, but three basic interval methods exist: Gaussian

7http://www.mpfr.org.
8ftay(X) = f(X) + A(X −X), where A is the Jacobian or the interval slope matrix.
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elimination, Gauss–Seidel iterative method, or Krawczyk method (see [24, 38, 20, 40]).
They may provide an overestimated interval vector X1 including X. However, in
general the computed intervals are too wide and a preconditioning is required, that
is to say, a multiplication of both sides of (4.3) by the inverse of a midpoint of A.
The matrix m(A)−1A is then “closer” to the identity matrix and the width of X1 is
smaller [20].

To solve nonlinear systems, an interval Newton algorithm is often used—see
[20] or [38]. The basic idea is to solve iteratively a linear approximation of the
nonlinear system obtained by a Taylor expansion. Many improvements [24, 19], based
on variations of the resolution of the linear subsystem or the preconditioning, have
been proposed. Note that many interesting properties are provided by Newton-like
methods: existence and/or uniqueness of a root, convergence area/rate, . . . .

5. Constraint programming. This section recalls the basics of constraint pro-
gramming techniques which are required to understand the rest of this paper. A
detailed discussion of these concepts and techniques can be found in [6, 26].

5.1. The general framework. The constraint programming framework is based
on a branch and prune scheme which was inspired by the traditional branch and bound
approach used in optimization problems. That is to say, it is best viewed as an itera-
tion of two steps [60]:

1. pruning the search space;
2. making a choice to generate two (or more) subproblems.

The pruning step ensures that some local consistency holds. In other words, the
pruning step reduces an interval when it can prove that the upper bound or the lower
bound does not satisfy some constraint. Informally speaking, a constraint system C
satisfies a partial consistency property if a relaxation of C is consistent. For instance
consider x = [x, x] and c(x, x1, . . . , xn) ∈ C. Whenever c(x, x1, . . . , xn) does not hold
for any values a ∈ x = [x, x′], then x may be shrunk to x = [x′, x]. Local consistencies
are detailed in the next subsection. Roughly speaking, they are relaxations of arc-
consistency, a notion that is well known in artificial intelligence [31, 34].

The branching step usually splits the interval associated to some variable in two
intervals with the same width. However, the splitting process may generate more than
two subproblems and one may split an interval at a point different from its midpoint.
The choice of the variable to split is a critical issue in difficult problems. Sophisticated
splitting strategies have been developed for finite domains but few results [23] are
available for continuous domains.

5.2. Local consistencies [11, 26]. Local consistencies are conditions that fil-
tering algorithms must satisfy. A filtering algorithm can be seen as a fixed point
algorithm defined by the sequence {Dk} of domains generated by the iterative appli-
cation of an operator Op : IR

n −→ IR
n (see Figure 5.1).

Dk =

{
D if k = 0
Op(Dk−1) if k > 0

Fig. 5.1. Filtering algorithms as fixed point algorithms.

The operator Op of a filtering algorithm generally satisfies the following three
properties:

• Op(D) ⊆ D (contractance);
• Op is conservative; that is, it cannot remove any solution;
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• D′ ⊆ D ⇒ Op(D′) ⊆ Op(D) (monotonicity).

Under those conditions, the limit of the sequence {Dk}, which corresponds to the
greatest fixed point of the operator Op, exists and is called a closure. A fixed point
for Op may be characterized by an lc-consistency property, called a local consistency.
The algorithm achieving filtering by lc-consistency is denoted lc-filtering. A CSP is
said to be lc-satisfiable if lc-filtering of this CSP does not produce an empty domain.

Consistencies used in numerical CSP solvers can be categorized in two main
classes: arc-consistency-like consistencies and strong consistencies. Strong consis-
tencies will not be discussed in this paper (see [30, 26] for a detailed introduction).

Most of the numerical CSP systems (for example, BNR-prolog [43], Interlog [8],
CLP(BNR) [7], PrologIV [12], UniCalc [4], Ilog Solver [22], Numerica [61], and
RealPaver [5]) compute an approximation of arc-consistency [31] which will be named
ac-like-consistency in this paper. An ac-like-consistency states a local property on a
constraint and on the bounds of the domains of its variables. Roughly speaking, a
constraint cj is ac-like-consistent if for any variable xi in var(cj), the bounds xi and
xi have a support in the domains of all other variables of cj .

The most famous ac-like consistencies are 2b-consistency and box-consistency.

2b-consistency (also known as hull consistency) [10, 7, 28, 30] requires only to
check the arc-consistency property for each bound of the intervals. The key point is
that this relaxation is more easily verifiable than arc-consistency itself. Informally
speaking, variable x is 2b-consistent for constraint “f(x, x1, . . . , xn) = 0” if the lower
(resp., upper) bound of the domain of x is the smallest (resp., largest) solution of
f(x, x1, . . . , xn). The box-consistency [6, 21] is a coarser relaxation (i.e., it allows less
stringent pruning) of arc-consistency than 2b-consistency. Variable x is box-consistent
for constraint “f(x, x1, . . . , xn) = 0” if the bounds of the domain of x correspond to
the leftmost and rightmost zeros of the optimal interval extension of f(x, x1, . . . , xn).
2b-consistency algorithms actually achieve a weaker filtering (i.e., a filtering that
yields bigger intervals) than box-consistency, more precisely when a variable occurs
more than once in some constraint (see Proposition 6 in [11]). This is due to the
fact that 2b-consistency algorithms require a decomposition of the constraints with
multiple occurrences of the same variable.

2b-consistency [30] states a local property on the bounds of the domains of a
variable at a single constraint level. A constraint c is 2b-consistent if, for any variable
x, there exist values in the domains of all other variables which satisfy c when x is
fixed to x and x.

The filtering by 2b-consistency of P = (D, C) is the CSP P ′ = (D′, C) such that

• P and P ′ have the same solutions;
• P ′ is 2b-consistent;
• D′ ⊆ D and the domains in D′ are the largest ones for which P ′ is 2b-

consistent.

Filtering by 2b-consistency of P always exists and is unique [30], that is to say it is a
closure.

The box-consistency [6, 21] is a coarser relaxation of arc-consistency than 2b-
consistency. It mainly consists of replacing every existentially quantified variable
but one with its interval in the definition of 2b-consistency. Thus, box-consistency
generates a system of univariate interval functions which can be tackled by numerical
methods such as interval Newton. In contrast to 2b-consistency, box-consistency
does not require any constraint decomposition and thus does not amplify the locality
problem. Moreover, box-consistency can tackle some dependency problems when each
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constraint of a CSP contains only one variable which has multiple occurrences. More
formally we have the following definition.

Definition 5.1 (box-consistency). Let (D, C) be a CSP and c ∈ C a k-ary con-
straint over the variables (x1, . . . , xk). c is box-consistent if, for all xi, the following
relations hold:

1. c(x1, . . . ,xi−1, [xi, x
+
i ),xi+1, . . . ,xk),

2. c(x1, . . . ,xi−1, (x
−
i , xi],xi+1, . . . ,xk).

Closure by box-consistency of P is defined similarly as closure by 2b-consistency
of P .

Benhamou et al. have introduced HC4 [5], an ac-like-consistency that merges
2b-consistency and box-consistency and which optimizes the computation process.

6. Quad basics and extensions. This section first introduces Quad, a global
constraint that works on a tight and safe linear relaxation of quadratic subsystems of
constraints. Then, it generalizes Quad to the polynomial part of numerical constraint
systems. Different linearization techniques are investigated to limit the number of
generated constraints.

6.1. The Quad algorithm. The Quad-filtering algorithm (see Algorithm 1) con-
sists of three main steps: reformulation, linearization, and pruning.

The reformulation step generates [C]R, the set of implied linear constraints. More
precisely, [C]R contains linear inequalities that approximate the semantics of nonlinear
terms of C.

The linearization process first decomposes each nonlinear term in sums and prod-
ucts of univariate terms; then it replaces nonlinear terms with their associated new
variables. For example, considering constraint c : x2x3x

2
4(x6 + x7) + sin(x1)(x2x6 −

x3) = 0, a simple linearization transformation may yield the following sets:

• [c]L = {y1 + y3 = 0, y2 = x6 + x7, y4 = y5 − x3},
• [c]LI = {y1 = x2x3x

2
4y2, y3 = sin(x1)y4, y5 = x2x6}.

[c]L is the set of linear constraints generated by replacing the nonlinear terms by
new variables and [c]LI denotes the set of equations that keep the link between the
new variables and the nonlinear terms. Note that the nonlinear terms which are not
directly handled by the Quad are taken into account by the box-filtering process.

Finally, the linearization step computes the set of final linear inequalities and
equations LR = [C]L ∪ [C]R, the linear relaxation of the original constraints C.

The pruning step is just a fixed point algorithm that calls iteratively a linear
programming solver to reduce the upper and lower bounds of every original variable.
The algorithm converges and terminates if ε is greater than zero.

Now we are in the position to introduce the reformulation of nonlinear terms.
Section 6.2 first introduces the handling of quadratic constraints while section 6.3
extends the previous results to polynomial constraints.

6.2. Handling quadratic constraints. Quadratic constraints are approximated
by linear constraints in the following way. Quad creates a new variable for each
quadratic term: y for x2 and yi,j for xixj . The produced system is denoted as

⎡
⎣ ∑

(i,j)∈M

ak,i,jxixj +
∑
i∈N

bk,ix
2
i +

∑
i∈N

dk,ixi = bk

⎤
⎦
L

.

.
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Function Quad filtering(IN: X , D, C, ε) return D′

% X : initial variables; D: input domains; C: constraints; ε: minimal reduction
% D′: output domains

1. Reformulation: generation of linear inequalities [C]R for the nonlinear terms
in C.

2. Linearization: linearization of the whole system [C]L.
We obtain a linear system LR = [C]L ∪ [C]R.

3. D′ := D.

4. Pruning:
While the amount of reduction of some bound is greater than ε and ∅ �∈ D′

Do

(a) D ← D′.
(b) Update the coefficients of the linearizations [C]R according to the do-

mains D′.
(c) Reduce the lower and upper bounds x′

i and x′
i of each initial variable

xi ∈ X by computing min and max of xi subject to LR with a linear
programming solver.

Algorithm 1

The Quad-algorithm.

A tight linear (convex) relaxation, or outer-approximation to the convex and con-
cave envelope of the quadratic terms over the constrained region, is built by generating
new linear inequalities.

Quad uses two tight linear relaxation classes that preserve equations y = x2 and
yi,j = xixj and that provide a better approximation than interval arithmetic [27].

6.2.1. Linearization of x2. The term x2 with x ≤ x ≤ x is approximated by
the following relations:

[x2]R =

{
L1(α) ≡ [(x− α)2 ≥ 0]L, where α ∈ [x, x],

L2 ≡ [(x + x)x− y − xx ≥ 0]L.
(6.1)

Note that [(x − αi)
2 = 0]L generates the tangent line to the curve y = x2 at the

point x = αi. Actually, Quad computes only L1(x) and L1(x). Consider for instance
the quadratic term x2 with x ∈ [−4, 5]. Figure 6.1 displays the initial curve (i.e.,
D1) and the lines corresponding to the equations generated by the relaxations: D2

for L1(−4) ≡ y + 8x + 16 ≥ 0, D3 for L1(5) ≡ y − 10x + 25 ≥ 0, and D4 for
L2 ≡ −y + x + 20 ≥ 0.

We may note that L1(x) and L1(x) are underestimations of x2 whereas L2 is an
overestimation. L2 is also the concave envelope, which means that it is the optimal
concave overestimation.

6.2.2. Bilinear terms. In the case of bilinear terms xy, McCormick [32] pro-
posed the following relaxations of xy over the box [x, x]×[y, y], stated in the equivalent
RLT form [54]:

[xy]R =

⎧⎪⎪⎨
⎪⎪⎩

BIL1 ≡ [(x− x)(y − y) ≥ 0]L,
BIL2 ≡ [(x− x)(y − y) ≥ 0]L,
BIL3 ≡ [(x− x)(y − y) ≥ 0]L,
BIL4 ≡ [(x− x)(y − y) ≥ 0]L.

(6.2)
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D2,D3
D4

0

y

x

Fig. 6.1. Approximation of x2.

Cu
D1, D3
D2, D4

0

y

x

Fig. 6.2. Illustration of xy relaxations.

BIL1 and BIL3 define a convex envelope of xy whereas BIL2 and BIL4 define a
concave envelope of xy over the box [x, x] × [y, y]. Al-Khayyal and Falk [1] showed
that these relaxations are the optimal convex/concave outer-estimations of xy.

Consider for instance the quadratic term xy with x ∈ [−5, 5] and y ∈ [−5, 5].
The work done by the linear relaxations of the three-dimensional curve z = xy is well
illustrated in two dimensions by fixing z. Figure 6.2 displays the two-dimensional
shape, for the level z = 5, of the initial curve (i.e., Cu) and the lines corresponding to
the equations generated by the relaxations (where z = 5): D1 for BIL1 ≡ z+5x+5y+
25 ≥ 0, D2 for BIL2 ≡ −z+5x− 5y+25 ≥ 0, D3 for BIL3 ≡ −z− 5x+5y+25 ≥ 0,
and D4 for BIL4 ≡ z − 5x− 5y + 25 ≥ 0.

6.3. Extension to polynomial constraints. In this section, we show how
to extend the linearization process to polynomial constraints. We first discuss the
quadrification process and compare it with RLT. Then, we present the linearizations
of product and power terms.

6.3.1. Transformation of nonlinear constraints into quadratic constraints.
In this section, we show how to transform a polynomial constraint system into an
equivalent quadratic constraint system, a process called quadrification [58].

For example, considering the constraint c : x2x3x
2
4 + 3x6x7 + sin(x1) = 0, the

proposed transformation yields

{y1y2 + 3y2 + s1 = 0, y1 = x2x3, y2 = x4x4, y3 = x6x7}

and the set {y1 = x2x3, y2 = x2
4, y3 = x6x7, s1 = sin(x1)} of equations that keep

the link between the new variables and the nonlinear terms that cannot be further
quadrified. Such a transformation is one of the possible quadrifications. It is called a
single quadrification.

We could generate all possible single quadrifications, or all quadrifying identities,
and perform a so-called complete quadrification. For example, the complete quadrifi-
cation of E = {x2x3x

2
4 + 3x6x7 + sin(x1) = 0} is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1 + 3y2 + s1 = 0, y2 = x6x7,
y1 = y3y4, y3 = x2x3, y4 = x2

4,
y1 = y5y6, y5 = x2x4, y6 = x3x4,
y1 = x2y7, y7 = x3y4, y7 = x4y6,
y1 = x3y8, y8 = x2y4, y8 = x4y5,
y1 = x4y9, y9 = x2y6, y9 = x3y5, y9 = x4y3,
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where s1 = sin(x1).

A quadrification for polynomial problems was introduced by Shor [58]. Sherali
and Tuncbilek [57] have proposed a direct reformulation/linearization (RLT) of the
whole polynomial constraints without quadrifying the constraints. They did prove the
dominance of their direct reformulation/linearization technique over Shor’s quadrifi-
cation [56].

A complete quadrification generates as many new variables as the direct RLT.
Linearizations proposed in RLT are built on every nonordered combination of δ vari-
ables, where δ is the highest polynomial degree of the constraint system.

The complete quadrification generates linearizations on every couple of nonordered
combined variables [vi, vj ] where vi (resp., vj) is the variable that has been introduced
for linearizing the nonordered combination of variables.

Complete quadrification and direct RLT yield a tighter linearization than the
single quadrification but the number of generated linearizations grows in an exponen-
tial way for nontrivial polynomial constraint systems. More precisely, the number of
linearizations depends directly on the number of generated new variables.

To sum up, the linearization of polynomial systems offers two main possibilities:
the transformation of the initial problem into an equivalent quadratic constraint sys-
tem through a process called quadrification, or the direct linearization of polynomial
terms by means of RLT. Theoretical considerations, as well as experimentations, have
been conducted to exclude as practical a complete quadrification which produces a
huge amount of linear inequalities for nontrivial polynomial systems. The next two
subsections present our choices for the linearization of product and power terms.

6.3.2. Product terms. For the product term

x1x2 . . . xn(6.3)

we use a two-step procedure: quadrification and bilinear relaxations.

Since many single quadrifications exist, an essential point is the choice of a good
heuristic that captures most of the semantics of the polynomial constraints. We use a
“middle” heuristic to obtain balanced degrees on the generated terms. For instance,
considering T ≡ x1x2 . . . xn, a monomial of degree n, the middle heuristic will identify
two monomials T1 and T2 of highest degree such that T = T1T2. It follows that
T1 = x1x2 . . . xn÷2 and T1 = xn÷2+1 . . . xn.

The quadrification is performed by recursively decomposing each product xi . . . xj

into two products xi . . . xd and xd+1 . . . xj . Of course, there are many ways to choose
the position of d. Ryoo and Sahinidis [49] and Sahinidis and Twarmalani [51] use
what they call rAI, “recursive interval arithmetic,” which is a recursive quadrification
where d = j − 1. We use the middle heuristic Qmid, where d = (i + j)/2, to obtain
balanced degrees on the generated terms. Let us denote by [E]RI the set of equations
that transforms a product terms into a set of quadratic identities.

The second step consists of a bilinear relaxation [[C]RI ]R of all the quadratic
identities in [C]RI with the bilinear relaxations introduced in section 6.2.2.

Sherali and Tuncbilek [57] have proposed a promising direct reformulation/
linearization technique (RLT) of the whole polynomial constraints without quadri-
fying the constraints. Applying RLT on the product term x1x2 . . . xn generates the
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following n-ary inequalities:9∏
i∈J1

(xi − xi)
∏
i∈J2

(xi − xi) ≥ 0 for all J1, J2 ⊆ {1, . . . , n} : |J1 ∪ J2| = n,(6.4)

where {1, . . . , n} is to be understood as a multiset and where J1 and J2 are multisets.
We now introduce Proposition 6.1, which states the number of new variables and

relaxations, respectively, generated by the quadrification and RLT process on the
product term (6.3).

Proposition 6.1. Let T ≡ x1x2 . . . xn be some product of degree n ≥ 1 with n
distinct variables. The RLT of T will generate up to (2n − n− 1) new variables and
2n inequalities whereas the quadrification of T will generate only (n−1) new variables
and 4(n− 1) inequalities.

Proof. The number of terms of length i is clearly the number of combinations
of i elements within n elements, that is to say Ci

n. In the RLT relaxations (6.4),
we generate new variables for all these combinations. Thus, the number of variables
is bounded by

∑
i=2,...,n Ci

n =
∑

i=0,...,n Ci
n − n − 1, that is to say 2n − n − 1 since∑

i=0,... ,n Ci
n = 2n. In (6.4), for each variable we consider alternatively the lower

bound and the upper bound: thus there are 2n new inequalities.
For the quadrification process, the proof can be done by induction. For n = 1, the

formula is true. Now suppose that for length i (with 1 ≤ i < n), (i− 1) new variables
are generated. For i = n, we can split the term at the position d with 1 ≤ d < n. It
results from the induction hypothesis that we have d − 1 new variables for the first
part, and n− d− 1 new variables for the second part, plus one more new variable for
the whole term. So, n − 1 new variables are generated. Bilinear terms require four
relaxations, thus we get 4(n− 1) new inequalities.

Proposition 6.2 states that quadrification with bilinear relaxations provides con-
vex and concave envelopes with any d. This property results from the proof given in
[49] for the rAI heuristic.

Proposition 6.2. [[x1x2 . . . xn]RI ]R provides convex and concave envelopes of
the product term x1x2 · · ·xn.

Generalization for sums of products, the so-called multilinear terms∑
i=1,... ,t

ai
∏
j∈Ji

xj ,

have been studied recently [14, 52, 48, 49]. It is well known that finding the convex or
concave envelope of a multilinear term is an NP-hard problem [14]. The most common
method of linear relaxation of multilinear terms is based on the simple product term.
However, it is also well known that this approach leads to a poor approximation of
the linear bounding of the multilinear terms. Sherali [52] has introduced formulae for
computing convex envelopes of the multilinear terms. It is based on an enumeration
of vertices of a pre-specified polyhedra which is of exponential nature. Rikun [48] has
given necessary and sufficient conditions for the polyhedrality of convex envelopes.
He has also provided formulae of some faces of the convex envelope of a multilinear
function. To summarize, it is difficult to characterize convex and concave envelopes
for general multilinear terms. Conversely, the approximation of “product of variables”
is an effective approach; moreover, it is easy to implement [51, 50].

9Linearizations proposed in RLT on the whole polynomial problem are built on every nonordered
combination of δ variables, where δ is the highest polynomial degree of the constraint system.
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6.3.3. Power terms. A power term of the form xn can be approximated by
n + 1 inequalities with a procedure proposed by Sherali and Tuncbilek [57], called
“bound-factor product RLT constraints.” It is defined by the following formula:

[xn]R = {[(x− x)i(x− x)n−i ≥ 0]L, i = 0, . . . , n}.(6.5)

The essential observation is that this relaxation generates tight relations between
variables on their upper and lower bounds. More precisely, suppose that some original
variable takes a value equal to either of its bounds. Then all the corresponding new
RLT linearization variables that involve this original variable take relative values
that conform with actually fixing this original variable at its particular bound in the
nonlinear expressions represented by these new RLT variables [57].

Note that relaxations (6.5) of the power term xn are expressed with xi for all
i ≤ n, and thus provide a fruitful relationship on problems containing many power
terms involving some variable.

The univariate term xn is convex when n is even, or when n is odd and the value
of x is negative; it is concave when n is odd and the value of x is positive. Sahinidis
and Twarmalani [50] have introduced the convex and concave envelopes when n is
odd by taking the point where the power term xn and its underestimator have the
same slope. These convex/concave relaxations on xn are expressed with only [xn]L
and x. In other words, they do not generate any relations with xi for 1 < i < n.

That is why we suggest implementing the approximations defined by formulae
(6.5). Note that for the case n = 2, (6.5) provides the concave envelope.

7. A safe rounding procedure for the Quad-algorithm. This section details
the rounding procedure we propose to ensure the completeness of the Quad algorithm
[33]. First, we show how to compute safe coefficients for the generated linear con-
straints. In the second subsection we explain how a recent result from Neumaier and
Shcherbina [42] allows us to use the simplex algorithm in a safe way.

7.1. Computing safe coefficients.

(a) Approximation of L1. The linear constraint L1(y, α) ≡ y − 2αx + α2 ≥ 0
approximates a term x2 with α ∈ [x, x]. L1(y, α) corresponds to the tangent lines to
the curve y = x2 at the point (α, α2).

Thus, the computation over the floats of the coefficients of L1(y, α) may change
the slope of the tangent line as well as the intersection points with the curve y = x2.
Consider the case where α is negative: the solutions are above the tangent line; thus
we have to decrease the slope to be sure to keep all of the solutions. It follows that
we have to use a rounding mode towards +∞. Likewise, when α is positive, we have
to set the rounding mode towards −∞. More formally, we have

L1F(y, α) ≡
{
y −�(2α)x + �(α2) ≥ 0 if α ≥ 0,

y −�(2α)x + �(α2) ≥ 0 if α < 0,

where �(x) (resp., �(x)) denotes a rounding mode of x towards −∞ (resp., +∞).

(b) Approximation of L2. The case of L2 is a bit more tricky since the “rotation
axis” of the line defined by L2 is between the extremum values of x2 (L2(y) is an
overestimation of y). Thus, to keep all the solutions we have to strengthen the slope
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of this line at its smallest extremum. It follows that

L2F ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(x + x)x− y −�(xx) ≥ 0 if x ≥ 0,

�(x + x)x− y −�(xx) ≥ 0 if x < 0,

�(x + x)x− y

−�(xx + Ulp(�(x + x))x) ≥ 0 if x > 0, x < 0, |x| ≤ |x|,
�(x + x)x− y

−�(xx−�(Ulp(�(x + x))x)) ≥ 0 if x > 0, x < 0, |x| > |x|,

where Ulp(x) computes the distance between x and the float following x.
(c) Approximation of BIL1, BIL2, BIL3, and BIL4. The general form of BIL1,

BIL2, BIL3, and BIL4 is xixj + s1b1xi + s2b2xj + s3b1b2 ≥ 0, where b1 and b2 are
floating point numbers corresponding to bounds of xi and xj whereas si ∈ {−1, 1}.

The term s3b1b2 is the only term which results from a computation: all the other
terms use constants which are not subject to round-off errors. Thus, these linear
constraints can be rewritten in the following form: Y + s3b1b2.

A rounding of s3b1b2 towards +∞ enlarges the solution space, and thus ensures
that all these linear constraints are safe approximations of x2.

It follows that BIL{1, . . . , 4}F ≡ Y + �(s3b1b2) ≥ 0.
(d) Approximation of multivariate linearizations. We are now in the position to

introduce the corrections of multivariate linearizations as introduced for the power of
x. Such linearizations could be rewritten in the following form:

n∑
i=1

aixi + b ≥ 0,

where ai denotes the expression used to compute the coefficient of variable xi, and b is
the expression used to compute the constant value. Proposition 7.1 takes advantage
of interval arithmetic to compute a safe linearization with coefficients over the floating
point numbers.

Proposition 7.1.

n∑
i=1

aixi + sup

(
b +

n∑
i=1

sup(sup(aixi) − aixi)

)
≥

n∑
i=1

aixi + b ≥ 0 for all xi ∈ xi.

Proof. For all xi ∈ xi, we have

n∑
i=1

aixi + sup

(
b +

n∑
i=1

sup(sup(aixi) − aixi)

)
≥

n∑
i=1

aixi + b +

n∑
i=1

(sup(aixi) − aixi)

and

n∑
i=1

aixi + b +

n∑
i=1

(sup(aixi) − aixi) =

n∑
i=1

(ai(xi − xi) + sup(aixi)) + b.

As for all i ∈ {1, . . . , n}, we have ai ≥ ai, sup(aixi) ≥ aixi, and for all xi ∈ xi,
xi − xi ≥ 0. Therefore,

n∑
i=1

(ai(xi − xi) + sup(aixi)) + b ≥
n∑

i=1

(ai(xi − xi) + aixi) + b =

n∑
i=1

aixi + b.
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This proposition provides a safe approximation of a multivariate linearization
which holds for any ai, xi, and b. This result could be refined by means of the
previous approximations. For instance, whenever xi ≥ 0, aixi ≥ aixi. In this case,
there is no need for an additional correction.

(e) Approximation of initial constant values. Initial constant values are real num-
bers that may not have an exact representation within the set of floating point num-
bers. Thus, a safe approximation is required.

Constant values in inequalities have to be correctly rounded according to the
orientation of the inequality. The result presented in the previous paragraph sets the
rounding directions which have to be used.

Equations must be transformed into inequalities when their constant values have
to be approximated.

7.2. Computation of safe bounds with linear programming algorithm.
Linear programming methods can solve problems of the following form:

min CTX
such that B ≤ AX ≤ B

and X ≤ X ≤ X.
(7.1)

The solution of such a problem is a vector Xr ∈ R
n. However, the solution computed

by solvers like CPLEX or SOPLEX is a vector Xf ∈ F
n that may be different from

Xr due to the rounding errors. More precisely, Xf is safe for the objective only if
CTXr ≥ CTXf .

Neumaier and Shcherbina [42] provide a cheap method to obtain a rigorous bound
of the objective and certificates of infeasibility. The essential observation is that the
dual of (7.1) is

max BTZ ′ + B
T
Z ′′

such that AT (Z ′ − Z ′′) = C.
(7.2)

Let Y = Z ′ − Z ′′, and let the residue R = ATY − C ∈ R = [R,R]. It follows that

CTX = (ATY −R)TX = Y TAX −RTX ∈ Y T [B,B] − RT [X,X]

and the value of µ, the lower bound of the value of the objective function, is

µ = inf(Y TB − RTX) = �(Y TB − RTX).(7.3)

Formula (7.3) is trivially correct by construction. Note that the precision of such a
safe bound depends on the width of the intervals [X,X].

So, we just have to apply this correction before updating the lower and the upper
bounds of each variable.

However, the linear program (7.1) may be infeasible. In that case, Neumaier and

Shcherbina show that whenever d = inf(R′TX − Y TB) > 0, where R′ = ATY ∈ R′,
then it is certain that no feasible point exists. However, the precision of interval
arithmetic does not always allow us to get a positive value for d while the linear
program is actually infeasible. In the latter case, we consider it as feasible. Note
that box-consistency may be able to reject most, if not all, of the domains of such
variables.
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8. Experimental results. This section reports experimental results of Quad on
a variety of twenty standard benchmarks. Benchmarks eco6, katsura5, katsura6,
katsura7, tangets2, ipp, assur44, cyclic5, tangents0, chemequ, noon5, geneig,
kinema, reimer5, and camera1s were taken from Verschelde’s web site,10 kin2 from
[60], didrit from [15], lee from [29], and finally yama194, yama195, and yama196

from [63]. The most challenging benchmark is stewgou40 [16]. It describes the 40
possible positions of a Gough–Stewart platform as a function of the values of the
actuators. The proposed modelling of this problem consists of 9 equations with 9
variables.

The experimental results are reported in Tables 8.1 and 8.2. Column n (resp.,
δ) shows the number of variables (resp., the maximum polynomial degree). BP(Φ)
stands for a Branch and Prune solver based on the Φ filtering algorithm, that is to
say, a search-tree exploration where a filtering technique Φ is applied at each node.
quad(H) denotes the Quad algorithm where bilinear terms are relaxed with formulae
(6.2), power terms with formulae (6.5), and product terms with the quadrification
method; H stands for the heuristic used for decomposing terms in the quadrification
process.

The performances of the following five solvers have been investigated.

1. RealPaver: a free Branch and Prune solver11 that dynamically combines
optimized implementations of box-consistency filtering and 2b-consistency
filtering algorithms [5].

2. BP(box): a Branch and Prune solver based on the ILOG12 commercial im-
plementation of box-consistency.

3. BP(box+simplex): a Branch and Prune solver based on box and a simple
linearization of the whole system without introducing linear relaxations of
the nonlinear terms.

4. BP(box+quad(Qmid)): a Branch and Prune solver which combines box and
the Quad algorithm where product terms are relaxed with the Qmid heuristic.

5. BP(box+quad(rAI)): a Branch and Prune solver which combines box and
the Quad algorithm where product terms are relaxed with the rAI heuristic.

Note that the BP(box+simplex) solver implements a strategy that is slightly
different from the approach of Yamamura, Kawata, and Tokue [63].

All the solvers have been parameterized to get solutions or boxes with precision
of 10−8. That is to say, the width of the computed intervals is smaller than 10−8. A
solution is said to be safe if we can prove its uniqueness within the considered box.
This proof is based on the well-known Brouwer fixed point theorem (see [20]) and
requires just a single test.

Sols, Ksplit, and T (s) are, respectively, the number of solutions, the number
of thousands of branchings (or splittings), and the execution time in seconds. The
number of solutions is followed with a number of safe solutions between brackets. A
“–” in the column T (s) means that the solver was unable to find all the solutions
within eight hours. All the computations have been performed on a PC with Pentium
IV processor at 2.66 GHz running Linux. The compiler was GCC 2.9.6 used with the
-O6 optimization flag.

The performances of RealPaver, BP(box), and BP(box+quad(Qmid)) are dis-
played in Table 8.1. The benchmarks have been grouped into three sets. The first

10The database of polynomial systems is available at http://www.math.uic.edu/∼jan/Demo/.
11See http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/main.html.
12See http://www.ilog.com/products/jsolver.
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Table 8.1

Experimental results: comparing Quad and Constraint solvers.

BP(box+quad(Qmid)) BP(box) Realpaver
Name n δ Sols Ksplits T (s) Sols Ksplits T (s) Sols T (s)

cyclic5 5 5 10(10) 0.6 45.8 10(10) 13.4 26.3 10 291.6
eco6 6 3 4(4) 0.4 15.3 4(4) 1.7 3.7 4 1.3

assur44 8 3 10(10) 0.1 49.5 10(10) 15.8 72.5 10 72.6
ipp 8 2 10(10) 0.0 5.7 10(10) 4.6 14.0 10 16.8
katsura5 6 2 16(11) 0.1 9.9 41(11) 8.2 12.7 12 6.7
katsura6 7 2 60(24) 0.5 121.9 182(24) 136.6 281.4 32 191.8
kin2 8 2 10(10) 0.0 6.2 10(10) 3.5 19.3 10 2.6
noon5 5 3 11(11) 0.1 17.9 11(11) 50.2 58.7 11 39.0
tangents2 6 2 24(24) 0.1 17.5 24(24) 14.1 27.9 24 16.5

camera1s 6 2 16(16) 1.0 28.9 2(2) 11820.3 − 0 −
didrit 9 2 4(4) 0.1 14.7 4(4) 51.3 132.9 4 94.6
geneig 6 3 10(10) 0.8 39.1 10(10) 290.7 868.6 10 475.6
kinema 9 2 8(8) 0.2 19.9 15(7) 244.0 572.4 8 268.4
katsura7 8 2 58(42) 1.7 686.9 231(42) 1858.5 11104.1 44 4671.1
lee 9 2 4(4) 0.5 43.3 0(0) 8286.3 − 0 −
reimer5 5 6 24(24) 0.1 53.0 24(24) 2230.2 2892.5 24 733.9
stewgou40 9 4 40(40) 1.6 924.0 11(11) 3128.6 − 8 −
yama194 16 3 9(9) 0.0 11.1 9(8) 1842.1 − 0 −
yama195 60 3 3(3) 0.0 106.1 0(0) 19.6 − 0 −
yama196 30 1 2(1) 0.0 6.7 0(0) 816.7 − 0 −

group contains problems where the QuadSolver does not behave very well. These
problems are quite easy to solve and the overhead of the relaxation and the calls
to a linear solver does not pay off. The second group contains a set of benchmarks
for which the QuadSolver compares well with the two other constraint solvers: the
QuadSolver requires always much less splitting and often less time than the other
solvers. In the third group, which contains difficult problems, the QuadSolver out-
performs the two other constraint solvers. The latter were unable to solve most of
these problems within eight hours whereas the QuadSolver managed to find all the
solutions for all but two of them in less than 8 minutes. For instance, BP(box) re-
quires about 74 hours to find the four solutions of the Lee benchmark whereas the
QuadSolver managed to do the job in a couple of minutes. Likewise, the QuadSolver
did find the forty safe solutions of the stewgou40 benchmark in about 15 minutes
whereas BP(box) required about 400 hours. The essential observation is that the
QuadSolver spends more time in the filtering step but it performs much less splitting
than classical solvers. This strategy pays off for difficult problems.

All the problems, except cyclic5 and reimer5, contain many quadratic terms
and some product and power terms. cyclic5 is a pure multilinear problem that
contains only sums of products of variables. The Quad algorithm has not been very
efficient for handling this problem. Of course, one could not expect an outstanding
performance on this bench since product term relaxation is a poor approximation of
multilinear terms. reimer5 is a pure power problem of degree 6 that has been well
solved by the Quad algorithm.

Table 8.2 displays the performances of solvers combining box-consistency and
three different relaxation techniques. There is no significant difference between the
solver based on the Qmid heuristics and the solver based on the rAI heuristics. In-
deed, both heuristics provide convex and concave envelopes of the product terms.
The QuadSolver with relaxations outperforms the BP(box+simplex) approach for all
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Table 8.2

Experimental results: comparing Quad based on different relaxations.

BP(box+simplex) BP(box+quad(Qmid)) BP(box+quad(rAI))

Name Sols Ksplits T (s) Sols Ksplits T (s) Sols Ksplits T (s)

cyclic5 10(10) 15.6 60.6 10(10) 0.6 45.8 10(10) 0.8 76.1
eco6 4(4) 1.1 7.2 4(4) 0.4 15.3 4(4) 0.4 15.3

assur44 10(10) 15.5 261.9 10(10) 0.1 49.5 10(10) 0.1 50.0
ipp 10(10) 3.2 39.7 10(10) 0.0 5.7 10(10) 0.0 5.7
katsura5 41(11) 7.7 47.8 16(11) 0.1 9.9 16(11) 0.1 9.9
katsura6 182(24) 135.2 1156.7 60(24) 0.5 121.9 60(24) 0.5 122.7
kin2 10(10) 3.4 42.5 10(10) 0.0 6.2 10(10) 0.0 6.2
noon5 11(11) 49.6 226.7 11(11) 0.1 17.9 11(11) 0.1 17.8
tangents2 24(24) 11.4 77.7 24(24) 0.1 17.5 24(24) 0.1 17.5

camera1s 4(4) 3298.6 − 16(16) 1.0 28.9 16(16) 1.0 29.9
didrit 4(4) 5.3 93.2 4(4) 0.1 14.7 4(4) 0.1 14.7
geneig 10(10) 202.8 2036.8 10(10) 0.8 39.1 10(10) 0.8 39.2
kinema 13(7) 87.0 1135.1 8(8) 0.2 19.9 8(8) 0.2 20.0
katsura7 231(42) 1867.2 21679.6 58(42) 1.7 686.9 58(42) 1.7 684.0
lee 2(2) 78.1 1791.8 2(2) 0.3 27.1 2(2) 0.3 26.5
lee2 4(4) 117.6 2687.2 4(4) 0.5 43.3 4(4) 0.5 43.3
reimer5 24(24) 2208.7 10433.5 24(24) 0.1 53.0 24(24) 0.1 53.1
stewgou40 13(13) 716.3 − 40(40) 1.6 924.0 40(40) 1.5 914.1
yama194 9(7) 442.0 − 9(9) 0.0 11.1 9(9) 0.0 11.2
yama195 3(2) 0.0 37.7 3(3) 0.0 106.1 3(3) 0.0 106.7
yama196 2(1) 0.0 6.6 2(1) 0.0 6.7 2(1) 0.0 6.7

benchmarks but yama195, which is a quasilinear problem. These performances on
difficult problems illustrate well the capabilities of the relaxations.

Note that Verschelde’s homotopy continuation system, PHCpack [62], required
115 s to solve lee and 1047 s to solve stewgou40 on our computer. PHCpack is a
state-of-the-art system in solving polynomial systems of equations. Unfortunately, it
is limited to polynomial systems and does not handle inequalities. PHCpack searches
for all the roots of the equations, whether real or complex, and it does not restrict its
search to a given subspace. The homotopy continuation approach also suffers from
an exponential growing computation time which depends on the number of nonlinear
terms (PHCpack failed to solve yama195 which contains 3600 nonlinear terms). In
contrast to homotopy continuation methods, QuadSolver can easily be extended to
nonpolynomial systems.

Thanks to Arnold Neumaier and Oleg Shcherbina, we had the opportunity to test
BARON [50] with some of our benchmarks. QuadSolver compares well with this sys-
tem. For example, BARON 6.013 and QuadSolver require more or less the same time
to solve camera1s, didrit, kinema, and lee. BARON needs only 1.59 s to find all
the solutions of yama196 but it requires 859.6 s to solve yama195. Moreover, BARON
loses some solutions on reimer5 (22 solutions found) and stewgou40 (14 solutions
found) whereas it generates numerous wrong solutions for these two problems. We
must also underline that BARON is a global optimization problem solver and that it
has not been built to find all the solutions of a problem.

9. Conclusion. In this paper, we have exploited an RLT schema to take into ac-
count specific semantics of nonlinear terms. This relaxation process is incorporated in
the Branch and Prune process [60] that exploits interval analysis and constraint satis-

13The tests were performed on an Athlon XP 1800 computer.
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faction techniques to find rigorously all solutions in a given box. The reported exper-
imental results show that this approach outperforms the classical constraint solvers.

Pesant and Boyer [44, 45] first introduced linear relaxations in a CLP language
to handle geometrical constraints. However, the approximation of the constraints was
rather weak. The approach introduced in this paper is also related to recent work that
has been done in the interval analysis community as well as to some work achieved in
the optimization community.

In the interval analysis community, Yamamura, Kawata, and Tokue [63] used a
simple linear relaxation procedure where nonlinear terms are replaced by new vari-
ables to prove that some box does not contain solutions. No convex/concave outer-
estimations are proposed to obtain a better approximation of the nonlinear terms.
As pointed out by Yamamura, Kawata, and Tokue, this approach is well adapted to
quasi-linear problems: “This test is much more powerful than the conventional test if
the system of nonlinear equations consists of many linear terms and a relatively small
number of nonlinear terms” [63].

The global optimization community also worked on solving nonlinear equation
problems by transforming them into an optimization problem (see, for example, Chap-
ter 23 in [17]). The optimization approach has the capability to take into account
specific semantics of nonlinear terms by generating a tight outer-estimation of these
terms. The pure optimization methods are usually not rigorous since they do not take
into account rounding errors and do not prove the uniqueness of the solutions found.

Acknowledgments. We thank Arnold Neumaier for his fruitful comments on
an early version of this paper. We are also grateful to Arnold Neumaier and Oleg
Shcherbina for their help in testing BARON.
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