IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

Design Strategy of Serial Manipulators With
Certified Constraint Satisfaction

Denny Oetomo, Member, IEEE, David Daney, and Jean-Pierre Merlet, Member, IEEE

Abstract—This paper presents the design strategy of serial ma-
nipulators with constraint satisfaction. The algorithm provides cer-
tified solutions to the range of values of the manipulator design
parameters that satisfy the given constraints for all points inside a
desired workspace. Alternatively, it can also be used to obtain the
achievable workspace of a particular manipulator topology within
which a set of given constraints are satisfied. This strategy can
therefore be applied to the general case of a serial manipulator
design problem, robots of adjustable parameters, or even reconfig-
urable robot strategy to obtain a suitable topology. The interval-
based algorithm was implemented on an example serial anthro-
pomorphic manipulator with joint displacement constraints and
obtains the possible variations to the manipulator topology that al-
low the required workspace to be achievable under the given joint
displacement constraints. Results are presented and discussed.

Index Terms—Certified workspace, interval analysis, kinemat-
ics, mechanism design, medical robots and systems.

I. INTRODUCTION

HIS PAPER addresses the problem of determining the
T suitable serial-chain topologies such that a set of given
constraints is guaranteed to be satisfied within all points in
the defined workspace. The algorithm can also be utilized to
obtain the certified workspace of a serial-chained mechanism of
specific topology within which all given constraints are satisfied.

It is important to be able to certify whether or not a set
of required constraints is satisfied in the design of a robotics
manipulator. This is especially important as requirements for
robotic tasks get more stringent in the face of many precise,
sensitive, critical, and costly applications today. It is also nec-
essary to provide the high-level intelligence to determine the
required topology of a kinematic chain such that a given set of
requirements are satisfied.

In this paper, the term topology is used to mean the arrange-
ments of joints and linkages forming the mechanism. The term
manipulator configuration is sometimes used in other papers to

Manuscript received April 2, 2008. First published November 18, 2008;
current version published February 4, 2009. This paper was recommended for
publication by Associate Editor F. Thomas and Editor F. Park upon evaluation
of the reviewers’ comments. This work was supported by Assembly of Recon-
figurable Endoluminal System (ARES) Project, an NEST-Adventure European
Union Funded Project, under EU Contract 015653.

D. Oetomo was with the Constraints Solving, Optimization, Robust Interval
Analysis (COPRIN) Project, Institut National de Recherche en Informatique
et en Automatique (INRIA) Sophia-Antipolis, Nice FR-06902, France. He is
now with the Department of Mechanical Engineering, University of Melbourne,
Melbourne, VIC 3010, Australia (e-mail: doetomo@unimelb.edu.au).

D. Daney and J.-P. Merlet are with the Constraints Solving, Opti-
mization, Robust Interval Analysis (COPRIN) Project, Institut National de
Recherche en Informatique et en Automatique (INRIA) Sophia-Antipolis, Nice
FR-06902, France (e-mail: david.daney @sophia.inria.fr; jean-pierre.merlet@
sophia.inria.fr).

Digital Object Identifier 10.1109/TRO.2008.2006867

mean the same thing; however, configuration can also be con-
fused with the joint configuration of a manipulator, which refers
to the pose of the manipulator expressed in joint space. To avoid
the confusion, the term topology is used in this paper to mean the
design/arrangement of joints and linkages of the manipulator.

The problem of design and kinematic workspace of a ma-
nipulator has been extensively investigated in the past. Studies
on serial manipulator designs and the resulting workspace were
presented in [1] and [2]. Workspace definition procedures for
closed-chained mechanisms have been explored through the ge-
ometric approach [3]-[5], screw theory [6], and interval anal-
ysis [7]-[11]. However, design strategies of a manipulator to
satisfy a set of given objectives are less explored. Most of the
design strategies proposed are optimization-based [12]-[14].
Drawbacks associated with optimization-based approaches in-
clude the difficulties in constructing a suitable cost function,
especially when several measures of different physical proper-
ties are involved and the physical meanings of variables are lost
in the construction of the function. Optimization approaches
also often push the solutions to one side of the extreme without
considering whether certain thresholds of the other constraints
are violated.

In addition to designing a kinematic chain, automated gener-
ation of suitable topology is also useful in the area of reconfig-
urable robots [15]. In this topic, various aspects of the problem
have also been studied extensively in the past, such as mod-
ule design [16], [17], docking-and-release strategies [18], [19],
reconfiguration strategy [17], as well as various gait and loco-
motion strategies [20]. However, there are usually a set of prede-
fined topologies to which the reconfigurable robot can rearrange
to. An automated generation strategy of suitable topology con-
sidering the task at hand requires the high-level intelligence that
is still not well established at the moment.

In this paper, an interval-based method is proposed to provide
an automated search in the design parameter space to determine
the ranges of values in the robot design parameters that would
yield an achievable end-effector workspace where all given con-
straints are satisfied for all poses inside the desired workspace.
The design parameters are the parameters such as link lengths
and offset angles that completely describe a serial chain topol-
ogy and configuration, such as the Denavit-Hartenberg param-
eters. In interval-based method, these parameters, as well as the
joint and task space variables, are expressed as bounded ranges
of continuous values (intervals) instead of as real variables. This
renders the algorithm with the ability to accommodate a contin-
uous range of possible values for each parameter and evaluate
the serial-chain performance for all points within these bounds,
not just on point sampling basis. This also allows the algo-
rithm to take into account any uncertainties, such as modeling

1552-3098/$25.00 © 2009 IEEE

uncertainties, fabrication tolerances, and roundoff errors, among
others, to produce the certified solutions to the constraints.

In contrast to optimization-based approaches, interval analy-
sis techniques maintain the physical meanings of various param-
eters and quantitative measures. The techniques are also able to
verify that all these functions meet their required performance
within the given bounds of uncertainties. The result is a set
of windows in the manipulator design parameter space, within
which it is guaranteed that each point defines a manipulator
topology that satisfies all the required constraints for all points
in the desired workspace. If desired, optimization technique can
be performed afterward on the solution boxes found by the in-
terval techniques. This would yield an optimized solution out of
the set of design parameters that are already certified to satisfy
all the given constraints.

The study presented in this paper is carried out under a Euro-
pean Union project Assembly of Reconfigurable Endoluminal
Surgical System (ARES) that aims to perform surgical proce-
dures within the gastrointestinal tract through reconfigurable
robotics modules. Therefore, it is necessary for the algorithm to
consider the reachable workspace of the resulting manipulators
under given constraints. One of the most common constraints
in robotics is the joint displacement limit. It should be noted
that the algorithm proposed in this paper addresses any gen-
eral constraints involved in a design problem, as long as they
can be expressed in mathematical equalities and inequalities. In
this paper, an interval-based verification algorithm of constraint
satisfaction is defined first (Section II). This is placed inside a
nested branch-and-bound loop that searches through (all points
in) the end-effector workspace and the design parameter space,
respectively (Section III). The joint displacement limits are pre-
sented as the constraints in obtaining the reachable workspace
and the design parameters of a serial manipulator. As the ma-
nipulator topology is not initially known in the design process,
an interval inverse kinematic process is proposed for a serial
chain without any explicitly defined topology (Section IV). The
design process and workspace verification of an anthropomor-
phic serial manipulator are presented as examples in the design
exercise (Section V). The results of the algorithm on this ma-
nipulator are presented and discussed.

II. PERFORMANCE CONSTRAINTS IN A SERIAL MANIPULATOR

In the design exercise, the desired workspace is the end-
effector (task-space) range of poses (translations and orienta-
tions) that is required for the given task. Within this workspace,
all constraints are to be satisfied; for example, it is required that
all points within the desired workspace be reachable given the
joint limits of the manipulator, the workspace does not contain
singular configurations, a required amount of force at the end-
effector is achievable given the available joint torques, etc. The
set of constraints is defined as C(x,h) = {C;,Cs,...,Cxc},
where x is the end-effector pose, h represents the design pa-
rameters, C; (x, h) represents a single constraint, and x¢ denotes
the total number of constraints being imposed on the system.
Each constraint C;(x, h) could be defined as an inequality or
equality constraint. It should be noted that an equality con-

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

straint C; (x, h) = 0 is more difficult to accommodate compared
to an inequality constraint C; (x,h) < 0. Fortunately, many of
the workspace constraints can be expressed as inequality con-
straints.

In this paper, interval analysis method [21] is used as a means
to express a variable as a continuous range of values. An inter-
val extension of variable x is denoted by X = [z, 7], where =
and T are the lower and upper bounds of the interval variable,
respectively. Similarly, an interval extension of a function f(x)

is denoted as F'(X) = [f, f]. Introduction to interval analysis
can be found in the literature, such as [22].
A specific interval box X can therefore be defined as an inner

box when

Vo € X, fl@)=0 (D
and as an outer box when
vz ¢ X, f(x) #0. 2

In the case of our manipulator design problem, each con-
straint C; (x, h) can be expressed as the required range of value,
bounded within [¢;, ;]. They represent the minimal and maximal
values that a quantitative property (the constraint) is allowed to
have. An interval box (X, H) is therefore an inner box when the
interval extension of a quantifier F; (X, H) = [f,, f:] evaluates
to an interval value such that

{¥x € X,Vh € H;¢; < f.and f, <&} 3)

for all constraints, (i = 1,...,NC). An interval box (X, H) is
an outer box when

{vxeX,Yhe H; f; <corf >7})

for any of the constraints. When (X, H) does not yield an inter-
val F(X, H) that is completely contained within the limits of
constraints (inner box) or completely outside these limits (outer
box), it is designated as a boundary box.

In Section III, the solution search algorithm in the design
parameter space and the end-effector workspace are elabo-
rated. The algorithms are constructed within branch-and-bound
loop(s) to facilitate the solution search process. The algorithms
are set to yield the inner, outer, and boundary boxes to the given
constraints, in either design parameter space or the end-effector
workspace.

In Section IV, the interval-based inverse kinematic solution
is presented. As the topology of the resulting mechanism is not
known, explicit inverse kinematics cannot be constructed. The
joint limit constraints are presented in obtaining the reachable
workspace and the design parameters of a serial manipulator.
These constraints need to be satisfied for all points within a
defined workspace of the manipulator. The kinematic relation-
ship between the joint and task space displacement of a serial
manipulator can always be expressed in the forward kinematic
form of

x = Fri(q) =0, AT, Ny, 3)

where x is the task space pose of the end-effector, q is the vec-
tor containing joint space displacement (g1, qs, . ..,qy), 1T
is the transformation matrix from link 7 — 1 to link ¢, and NV
denotes the total number of joints in the serial manipulator.

OETOMO et al.: DESIGN STRATEGY OF SERIAL MANIPULATORS WITH CERTIFIED CONSTRAINT SATISFACTION 3

Solving for q through interval analysis yields the N-element
joint displacement (interval) vector QQ for the M -dimensional
interval box containing the range of the end-effector pose vari-
able X. M is the number of degrees of freedom in task space
that the manipulator possesses. An example of the algorithm is
implemented on a workspace analysis and design algorithm of a
6-DOF serial manipulator with the results and discussion given
in Section V.

III. INTERVAL ANALYSIS ALGORITHM
FOR SERIAL KINEMATIC CHAINS

To construct the interval-based algorithm for serial kinematic
chains, a function S(x, h) is defined such that it evaluates the in-
terval extension of the kinematic functions that are constrained
in the design of the system and compares it with the given con-
straints and returns 1, 0, —1, if interval (X, H) forms an inner,
boundary, and outer box to the constraints, respectively. Specif-
ically, when given a set of joint limit constraints [¢min, Gmax]»
the algorithm S(x, h) returns
1) —1 ifgi > @max OF §; < @min for at least one of the joints
and at least one pose in (X, H);

2) 1if q, > @min and G; < @ ax for all joints and all poses of
(X, H);

3) 0 if (QL < Gmin and 51', > Qmin) or (QL < Gmax and 61' >
(max) for at least one of the joints and at least one pose in
X, H).

A pseudocode example of a function S(X;, H) given a set of
joint limit constraints is the I K (X;, H, F) function, used in this
paper to calculate the inverse kinematics of a given workspace
and then compared them to the joint limits [¢min, Gmax] and
decide whether the inverse kinematics solutions fall within or
outside of the allowed joint limits, or it is not decided as the solu-
tion spans across the inner and outer regions of the allowed joint
limits. Function I K (X;, H, F) is elaborated on Section IV.

When there are more than one constraint involved, function
S(x,h) will evaluate and enforce all the constraints and return

1) —1 if (X,H) forms an outer box to one or more con-

straints;

2) 0if (X, H) forms a boundary box to one or more con-

straints and forms no outer box to any constraints;

3) 1if (X, H) forms inner boxes to all constraints.

The function S(x,h) forms the basic procedure to certify
whether or not workspace box x and design parameter box h
satisfy a set of given constraints. In this paper, this function
is utilized to obtain 1) definition of solutions in end-effector
workspace (X) and 2) constraint satisfaction solutions in design
parameter space (H).

In the interval evaluation of a function, numerical values are
substituted into a function, resulting in the loss of the rela-
tionships between various variables. Overestimation [22] oc-
curs as multiple occurrences of the same variables within the
function are regarded as independent variables. The evalua-
tion of a function where all variables involved only appear
once is sharp (within rounding errors), meaning it is bounded
within the smallest possible “box.” For example, let X = [1, 2]
and Y = [3,6]. Evaluating F'(X,Y) = X +Y = [4, 8] would

therefore be sharp. However, evaluating G(X,Y) =X — X =
[1,2] — [1, 2] results in [—1, 1] and is not equal to zero, although
we know it should be. This is because the two variables X are
taken as being independent and not as the same variable. Due to
overestimation, it is difficult to obtain clear solution whether a
box forms an inner or an outer box. This reduces the effective-
ness and efficiency of the algorithm.

Branch-and-bound loops were utilized as the solution search
algorithm. This allows the interval algorithm to consider only on
smaller subsections of the boxes at each iteration. Solutions are
searched throughout the two variables spaces, i.e., end-effector
workspace X and design parameter H. The following sections
further explain the two modes of usage.

A. Definition of Constraint Satisfaction
in the End-Effector Workspace

Evaluating constraints in the end-effector workspace for a
specific set of manipulator design is carried out by setting a
constant design parameter H. This allows the algorithm to an-
alyze only the workspace of a range of mechanisms of specific
design H. (Note that H is a set of interval design parameters.)
In this usage, a single branch-and-bound loop is constructed
to evaluate the end-effector workspace against the set of con-
straints C. The aim is to “categorize” if a box (X, H) forms an
inner or outer box to the constraints. If it yields a boundary box,
then the workspace X; is recursively divided into smaller sub-
boxes to be evaluated further. Some of the smaller subboxes of
the workspace will eventually evaluate to inner or outer boxes.
The splitting of the workspace into smaller spaces is terminated
once a threshold dimension of the workspace X;, which is de-
noted as €,, is reached. The remaining boxes at this point are
assigned as boundary boxes of the system. It should be noted
that the overestimation of interval analysis decreases with the
size of the input intervals; hence, the process of splitting the
workspace into smaller spaces also improves the accuracy of
the interval extension.

Division of an interval pose X; into smaller boxes is termed
the bisection process. There are various methods of bisection,
ranging from the simplistic approaches (e.g., round robin or
largest first) to the more complicated but effective methods [23].
One such example is the smear function [24] that utilizes the
derivative of the system. It aimed at recognizing the dominant
variable that affects the system the most, hence potentially pro-
ducing the most improvement through bisection process.

The result of this exercise is a map in the task space
(workspace) showing the regions of inner and outer boxes, as
well as boundary boxes, to the set of constraints, for a partic-
ular set of design parameters H. The algorithm is summarized
in Table I. In this summary, lists Lin, LouT, £p contain the
subregions of X forming the inner, outer, and boundary boxes
to the constraints, respectively.

B. Constraint Satisfaction Solutions
in Design Parameter Space

To search for solutions in the design parameter space H such
that all constraints C(X, H) are satisfied for all points x € X,

TABLE I
SUMMARY OF BRANCH-AND-BOUND LOOP TO OBTAIN THE DEFINITION OF
SOLUTIONS IN END-EFFECTOR WORKSPACE

Input: X and H
Output: 1, 0, -1, (representing inner, boundary,
and outer solutions, respectively).
Initialise empty lists Ly, LouT, and LB.
2 Initialise list £ containing initial task space intervals Xp to be analysed.
While (£ not empty)
(a) Extract interval pose X; from £
(b) Remove interval pose X; from list £
(¢) Evaluate function S(X;, H),
@IfsSX;,H)==1
add X to list L7 n
(e) Else If S(X;, H) == —1
add X; to list Loy
(f) Else If S(X;,H) ==0
(i) If Dimension (X; > €z)
Bisect X; into X;(1) and X;(2)
Add X;(1) and X;(2) to L.
(ii) Else If Dimension(X; < €;)
Add X; to Lg.
(iii) End If
(g) End If
4 End While

—

w

two (nested) branch-and-bound loops are required to search
both the X and H spaces. While the algorithm in Section III-A
produces the description of the regions in the given workspace
that satisfy the set of constraints, the algorithm in this section
produces the regions in the design parameter space that are
certified to form serial-chain mechanism where all the given
constraints are satisfied in the desired workspace. In other words,
the aim of the algorithm is to obtain all design parametersh € H
of the serial manipulator that would allow all constraints C to be
satisfied within all pose in x € X. In contrast to the algorithm
in Section III-A, the design parameter H is now an interval
parameter and is included in the bisection process and not set
as constant. This implies that all the constraints have to be
satisfied for all points x € X in order for a set of interval design
parameter H; to qualify as an inner box. A branch-and-bound
loop, which is similar to that in Section III-A, is carried out
to obtain the design parameters that produces inner and outer
solutions. A function S*(X, H;) is defined in a similar manner
to S(X, H;) such that it returns 1, —1, 0 if H; forms an inner,
outer, and boundary boxes to the design constraints. The branch-
and-bound loop that searches the design parameter space calls
the function S*(X, H;) to evaluate the design parameter space
H against the given constraints. This is summarized in Table II.

Function S* (X, H;) is in turn constructed as another branch-
and-bound loop that assigns H; to an inner, outer, or bound-
ary box—given the required workspace X—by calling function
S(X, H;). Within iteration ¢ of S*(X, H;), where a box H; out
of the design parameter is evaluated, a search in the workspace
X is carried out using the previously defined function S(X, H;).
Bisection is performed to refine the search on a smaller region
of the workspace. If S(x, H;) == —1 for any point x, then the
set of design parameters H; is an outer box. If no outer box
is found while executing S(x, H;), but S(x, H;) == 0 for any
point within X, then H; is a boundary box. If no outer and
no boundary box is found, then H; is an inner box. Therefore,

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

TABLE 11
SUMMARY OF BRANCH-AND-BOUND LOOP TO OBTAIN THE DESIGN
PARAMETER RANGE OF VALUES WHERE ALL CONSTRAINTS ARE SATISFIED
WITHIN THE GIVEN WORKSPACE X

Input: X and H;
Output: 1, 0, -1, (representing inner, boundary,
and outer solutions, respectively).
Initialise empty lists £Lrn, LouT, and LB.
Initialise list £ containing initial design parameter
intervals Ho to be analysed.
3 While (£ not empty)
(a) Extract design parameter box H; from £
(b) Remove design parameter box H; from £
(c) Evaluate function S*(X, H;),
@ If S*(X,H;) ==1
add H; to list Ly
(e) Else If S*(X,H;) == —1
add H»L to list LOUT
(f) Else If S*(X,H;) ==0
(i) If Dimension (H; > €4)
Bisect H; into H;(1) and H;(2)
Add H;(1) and H;(2) to list L.
(i) Else If Dimension(H; < €g4)
Add H; to Lg.
(iii) End If
(f) End If
4 End While

N —

TABLE III
SUMMARY OF ALGORITHM FOR FUNCTION S* (X, H;) USED IN THE
ALGORITHM IN TABLE IT

Input: X; and H;
Output: 1, 0, -1, (classifying (X, H) as inner, boundary,
and outer boxes, respectively).
Initialise empty lists Lp.
Initialise list £ containing initial pose X.
3 While (£ not empty)
(a) Extract interval pose X; from £
(b) Evaluate function S(X;, H;),
© If S(X;,H;) == -1
Return (-1)
Exit function S*(X, H;)
(e) Else If S(X;,H;) ==0
(i) If Dimension (X; > €z)
Bisect X; into X;(1) and X;(2)
Add X;(1) and X;(2) to list L.
(ii) Else If Dimension(X; < €;)

N —

Add X; to Lg.
(iii) End If
(f) End If

4 End While
5 If (Lp is empty)

Return 1
6 Else

Return 0
7 End If

S*(X, H;) can be defined as a function that describes a design
parameter box H; by returning

1) —1 for if for any pose x € X, S(x,H;) == —1;

2) lifforall pose x € X, S(x,H;) == 1;

3) 0 if threshold dimension ¢, is reached and there is at least
one boundary box X; where S(x, H;) == 0 and no outer
solution was found.

The algorithm of function S*(X,H;) is summarized in

Table II1.

OETOMO et al.: DESIGN STRATEGY OF SERIAL MANIPULATORS WITH CERTIFIED CONSTRAINT SATISFACTION 5

Simplification can be performed on S*(X, H;) by substitut-
ing real numbers (can be thought of as intervals with zero width
or degenerate intervals) for X; at the beginning of the procedure
in order to find any possibility of rejecting H; as an outer box
early in the loop. Calculation with real variables offer a much
faster evaluation. An interval box X; can be sampled quickly
but taking its vertices (combination of all the extremal values) as
well as its center point. If any of these yields an outer solution,
the algorithm as summarized in Table III returns (—1) and im-
mediately exits the function S*(X, H;). It should be noted that
even if a point interval is used, the calculation is still interval-
based; therefore, roundoff errors will not affect the process, and
the results are still certified.

Any point contained in the resulting boxes of design param-
eters is certified to constitute a manipulator where all points
in its workspace satisfy the given constraints. Having interval
design parameters means that any bounded uncertainty known
to affect the design parameters is also included in the consid-
eration when certifying the boxes. The design solution result-
ing from this process is therefore robust with respect to such
uncertainties.

IV. SOLVING INVERSE KINEMATICS OF SERIAL MANIPULATORS
IN INTERVAL ANALYSIS

The limit of displacements for the manipulator joints is se-
lected as the design constraints in this paper as it is one of
the most common in design problems. As joint displacement is
involved given the end-effector pose requirements, it is neces-
sary to be able to evaluate or solve the inverse kinematics of
the manipulator. In this section, the strategies for solving inter-
val kinematic relationships of serial manipulators are presented.
These calculations are carried out within S(X, H).

Conventionally, the inverse kinematics of nonredundant serial
manipulators are solved symbolically to obtain the closed-form
solutions. However, explicit solution to the inverse kinematics is
specific to the manipulator design/topology. When the topology
of the mechanism is unknown, as is the case in this paper (e.g.,
during design process or in the case of reconfigurable robots),
explicit inverse kinematics does not exist. Hence, it is neces-
sary to construct an inverse kinematics algorithm that is general
enough to be able to evaluate the performance of all possible
topologies within a specified window of design parameters. In
our algorithm, the forward kinematic relationship is utilized as
kinematic constraints in establishing the inverse kinematic so-
lutions. It is well known that the forward kinematics of a serial
manipulator is simpler to obtain than its inverse kinematics and
that the opposite is true for parallel manipulators.

As previously mentioned, the evaluation of interval func-
tions result in overestimation due to multiple occurrences of a
single variable. Therefore, evaluating the forward kinematics
would result in an overestimation of the resulting workspace.
Hence, to certify that a specific workspace is achievable by
a given joint displacement range, it is necessary to obtain
the inverse kinematics—which yields an overestimated joint
space displacement required for the workspace. If the overes-
timated joint displacement required is within the joint limits,

then it is guaranteed that the required end-effector workspace is
achievable—although it is an underestimation of the true achiev-
able workspace. A major challenge is to obtain the minimum
overestimation possible for an accurate result.

Two methods were proposed for solving the inverse kinemat-
ics of serial manipulator: 1) solving method using interval New-
ton and 2) consistency filtering with solution existence check.

A. Solving Using Interval Newton Method

Interval Newton method is a solving method based on eval-
uation of a function about the center point of the intervals. It is
based on a first-order Taylor series expansion, where

F(Q) = fgm) + Jo(Q) - (@ = gm) (6)

where @ is the interval extension of variable ¢ (i.e., ¢ € @),
F(Q) is the interval extension of function f(q), J,(Q) is the
derivative of function f(q) with respect to variable g, evalu-
ated at interval @, and g, is the center of interval (). For a
multivariate function, for example, f(q1,¢2)

F(QlaQ?) = f(qlmanW) + Jq1 (Ql,Q2) : (Ql - qlm)
+ J(I‘Z (Q17Q2) : (Q? - q?m)- (7)

Solving for F'(Q1,Q2) = 0, the equation can be rearranged to
be

_f(qlquQm) = [th (Q17Q2)Jq2 (Q17Q2)] [8; : Z;: :|

(®)

Itis well established that evaluating and solving for equations
with real variables requires considerably less computational re-
sources than with interval variables. Equation (8) can therefore
be rearranged to develop the Taylor series expansion in sub-
sequent order of the variables involved. For the example of
F(Q1,Q2), Taylor expansion is first carried out with respect to

q1
F(QMQ?) = f(Q1m7Q2) + th (QlaQZ) : (Ql - q1m) ©)]

then with respect to ¢

f(qlm) Q?) = f(qlm) q2m) + Jq2 (qlm) Q?) . (Q2 - q2m)~
(10)
From (9) and (10), and solving F'(Q1,Q2) =0

I @ dem) = [y (@1 Q2) Ty, (41 Q2)] {gl _ Ziﬂ |

1D

The difference between (8) and (11) is that it is now possible
to replace some of the interval variables in matrix J by real vari-
ables q;,,, for some joint variables g;, providing a large improve-
ment in computational efficiency. Equation (11) involves only
two joint variables for the simplicity of presentation; however,
it is obvious that this simplification in interval Taylor expansion
becomes more significant with larger number of joint variables
involved.

In solving for the inverse kinematics problem, let the given
end-effector interval pose be described as X, the interval joint
displacement vector as Q, and the forward kinematics of the
serial manipulator as fr (q). Solving the inverse kinematics

solution becomes a problem of solving for joint displacement
interval (), given the task space displacement X, with the fol-
lowing constraints:

Frr(Q)—X =0 (12)
fre(am) =X +3(Q.qn)- (Q—an) =0 (13)
where
JI(Q1,Q2,...,QnN) ’
I (@im, Q2, -, Q)
J= Jg (@my @y -, QN) (14)
LA @um s @ms - AN —1)m > QN)

and q,, is the vector containing the middle values of the in-
tervals of the joint displacement (i.e., the mid of Q). The joint
displacement intervals were initialized at the allowable joint
displacement limits, and the middle values q,, are calculated
accordingly. Solving for (Q — qy,) through the linear equations
results in

X_fFK(QW) :J(Q;Qm)'(Q_Q7n)~ (15)

In iterative manner, the interval inverse kinematic solutions of
the serial manipulator is obtained.

B. Consistency Filtering Method

Instead of directly solving for the solutions of q, it is also pos-
sible to perform consistency filtering on the forward kinematic
equations. Consistency filtering techniques originated from the
constraint programming field of study. These techniques serve
to contract interval variables by removing part(s) of each inter-
val variable that is not consistent within the given constraints.
To perform this, each joint displacement variable is expressed
initially as an interval bounded by the allowable joint limits as
dictated by the physical constraints. For a given value of the
end-effector interval pose, consistency filtering removes the ex-
tremal part(s) of the intervals that do not conform to the forward
kinematic equations of the manipulator. One of the following
cases could happen.

1) If consistency filtering fails, then the allowable joint space
displacements inside the joint limits are inconsistent with
the forward kinematic equations. This means that there is
no inverse kinematic solutions to the given manipulator
end-effector pose, in which case end-effector pose X is an
outer box.

2) If consistency filtering causes the N-dimensional interval
joint displacement variables Q to contract on all sides, it
means that there is no inverse kinematic solution at the
boundary of the joint limits. If inverse kinematic solu-
tion exists, it would lie completely within the joint limits.
To verify the existence of the inverse kinematic solution,
a Newton method could be performed on the contracted
joint displacement intervals Q. If Newton method shows
that solution exists within the box, then X is an inner box.
Otherwise, X is an outer box. Another approach can be as

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

simple as evaluating the forward kinematics of manipula-
tor at the center point of the resulting joint displacement
interval. If the forward kinematics evaluated at mid(Q)
results in a point within the given end-effector pose X,
then solution to inverse kinematics within the joint limits
is shown to exist. However, the opposite does not neces-
sarily mean that no solution exists within box Q; hence,
box X is assigned to be bisected further. As mid(Q) is
a real vector, evaluating the forward kinematics of this
(noninterval) point requires much less computational ef-
fort than solving for interval Newton method to establish
the existence of the solution.

3) The N-dimensional interval joint displacement variable Q
does not contract on all sides after the consistency filtering
process. In this case, the box () is assigned to be bisected
further.

In this paper, interval 2B and 3B consistency techniques
[25]-[27] were utilized to solve the system of equation. Other
filtering techniques are available in interval methods such as
Newton-based techniques [21], [22], [28], [29].

C. Bisection on the Joint (Solution) Space

It is well known that inverse kinematics problem can possess
multiple solutions, even for well-constrained problems (nonre-
dundant serial manipulators). For example, a planar two-link RR
manipulator can have an elbow up and elbow down joint dis-
placement solutions for one end-effector position. When such
case exists, the consistency filtering technique will converge
only to the outer bounds of the multiple solutions, instead of
to the individual sets of solution. A quick bisection procedure
on the interval joint variables Q is therefore necessary. The
summary of the procedure is described in Table IV. In the pro-
cedure, each set of possible solution goes through a bisection
process, which splits the interval along joint displacement in-
terval variable Q;, for ¢ = 1,..., N, where N is the number
of joints (steps 6(b) in Table IV). Each time a set of possible
solution is bisected, the algorithm tries to solve for the inverse
kinematics [steps 10(b)—(d)]. If the bisected branch produces a
solution, then an inverse kinematic solution within the joint limit
is found. If it is confirmed to have no solution, then the branch
of possible solution is eliminated. If the result is not sufficient
to conclude either way, then the branch is kept for bisection on
subsequent joint variable [steps 10(e)—(1)].

The essential point about the bisection process in the solution
space (Q) is to be able to isolate the individual solutions such that
the solving or consistency filtering algorithm is able to converge.
When there are two sets of solutions, for instance, splitting the
solution space in between the solutions would tremendously
increase the efficiency of the solving or filtering techniques.
However, not knowing where the solutions are, it is possible
that the bisection is carried out at the point of solution/in the
range that contains the solution. Hence, the proposed procedure
also checks whether or not the bisection process produces two
separate solutions. If no separate solutions are found after bi-
section, the set of joint displacement Q; is returned as the Hull
(i.e., the union box) of the two bisected halves.

OETOMO et al.: DESIGN STRATEGY OF SERIAL MANIPULATORS WITH CERTIFIED CONSTRAINT SATISFACTION 7

TABLE IV
SUMMARY OF ALGORITHM I K (X;, H, F): INTERVAL INVERSE KINEMATICS
FOR A SERIAL MANIPULATOR WITH JOINT LIMIT CONSTRAINTS

Input: X;, H, and F
Output: 1, 0, -1, (representing inner, boundary,
and outer solutions, respectively).
Initialise empty list for solutions Ls.
2 Initialise initial estimates for the joint displacements
Q% =(Q?,Q9,..Q%) at the joint limits.
3 Q= SolveQ(X;, H,Q, F)
4 If (solution Q' does not exist)
(a) Return (-1)
(b) Exit function 1K (X;, H, F)
5 Else If (solution Q' exists)
(a) Load Q' onto Lg
(b) Return (1)
(c) Exit function I K (X;, H, F)
6 Else
(a) SolutionFound = 0; i = 1;
(b) While i <= N AND SolutionFound # 1
SolutionFound = Bisect-and-Solve(Lr v, LouT, 1);
Lin = LouT;
(c) End While
(d) Return (SolutionFound)
7 End If

o}

Sub-Procedure:
9 SolFound = Bisect-and-Solve(L;n, Loy, 1)
Input: L list of joint displacement Q which
possibly contain solutions.
i: index of joint displacement @); to be bisection this round.
Output: SolFound (1 solution is found, -1 no solution,
and 0 when it is not clear).
Loy list of joint displacement Q which
possibly contain solutions for next round of bisections.
10 While (£;n not empty AND SolFound==0)
(a) Extract Q from Ly .
(b) Bisect Q; to Q}(1) and Q}(2) to form Q’(1) and Q’(2)
© Q’(1) = SolveQ(X;, H, Q'(1), F)
(@) Q*(2) = SolveQ(X;, H, Q'(2), F)
(e) If Q”(1) or Q”(2) are inverse kinematic solution
Return SolFound = 1;
exit Bisect — and — Solve.
(f) Else If Q”(1) and Q”(2) do not form separate solutions
Push Hull(Q” (1), Q”(2)) onto Loy
(g) Else If both Q”(1) and Q”(2) do not exist
This entry does not contain solution.
(h) Else If Q”(1) exists
Load Q”(1) onto Loy
(i) Else If Q”(2) exists
Load Q”(2) onto Loyr.
11 End While
12 If no entries contain inverse kinematic solution:
(a) Return SolFound = -1;
13 Else Return SolFound = 0;

Variable SolFound in Table IV denotes the state of whether or
not inverse kinematics solution exists for abox X, H. SolFound
= 1 when an inverse kinematic solution is found, SolFound =
—1 when all possible bisections of the joint space Q; are not
solutions to the inverse kinematics, or SolFound = O when it is
not clear.

D. Implementation on an Example

To decide whether a desired end-effector task space X is
reachable given the joint limit constraints, an inverse kinematic
function TK(X;, H) is defined. It returns 1, 0, —1, if X; yields
an inner, boundary, and outer box, respectively, to the inverse
kinematics, given the allowable joint displacement limits. Note

that function IK(X;, H) can be performed inside S(X;, H), or
it can even replace S(X;, H) if joint limit by inverse kinematics
is the only constraints to be enforced in the analysis and design
process.

Within IK(X;, H), the interval inverse kinematics is solved.
The relationship, as shown in (5), can be expressed as

'xp = Fri(q) ="T) ' Ty ---- N Ty
Reg pr)_ (Rrx(Q) prx(Q) (16)
013 1 o 01x3 1

where Ry and pgp are the given intervals of rotational matrix
and position vector for the end-effector describing the required
workspace and Rypx and ppx contain the expressions of the
interval rotational matrix and position vector, as functions of the
joint displacement variables, obtained through forward kinemat-
ics (multiplication of transformation matrices).

The constraints for the kinematic relationship can therefore
be elaborated as

Fi =prr (i) —pp(i) =0
Fy = Rrk (i,j) — Re(i,j) =0

where i, 7 = 1,2, 3, prk (i), pr (i) are the (z, y, z) components
of the position vectors, and Rpg (i,7), Rg(i,j) are the ele-
ment (4, j) of the 3 x 3 rotational matrices. Additionally, due
to the redundant representation of orientation through rotational
matrix, the following constraints are added:

Fs = Rk (1,1)> + Rpg (,2)* + Rpg (i,3)> =1 =0
Fi=Rpr (1) - Rpr(:,2) =0
Fs = Rrx(5,2) - Rpg (5,3) =0
Fs = Rrk (1) - Rpk (5,3) =0

7)

(18)

where Rp (:,1) is the column number i of Rr i , to enforce the
orthonormality of the rotational matrix.

In the summary of inverse kinematic algorithm in Table IV,
the solving technique is labelled as SolveQ, which could be ei-
ther the interval Newton or the consistency filtering plus solution
existence check method, as described earlier in Section I'V.

V. RESULTS AND DISCUSSION

An anthropomorphic arm with spherical wrist is used as an
example. The diagram and frames assignment of the 6-DOF
manipulator is shown in Fig. 1, and its Denavit—Hartenberg pa-
rameters are given in Table V. Two cases are presented, and in
both cases, it is desired to verify the workspace and the topol-
ogy of the manipulator, given a physical limit in its joint dis-
placement. In all the examples given shortly, the joint displace-
ments of all revolute joints were set at +30°. The first example
(Section V-A) considers only a 3-DOF manipulator, using the
first three joints of the manipulator shown in Fig. 1, addressing
only the position of the end-effector, while the second (Sec-
tion V-B) is a 6-DOF problem addressing the position and ori-
entation of the end-effector. The third example (Section V-C)
further explores the variations in the topology by testing various
values of offset angle «; and «. In this example, a mixture

Z

Zy

X4, X5, X6

Xo

Fig. 1. Frame assignment of the robot used in the discussion.
TABLE V
DENAVIT-HARTENBERG PARAMETERS OF THE ROBOT IN FIG. 1 USED
IN THE EXAMPLES

i oi—1 | ai—1 qi d;

1 0 0 q1 dy

2 90° 0 q2 0

3 0 az q3 + 90° 0

4 90° 0 qa dy

5| —90° 0 g5 0

6 | 90° 0 96 0
TABLE VI

VALUES OF THE DENAVIT-HARTENBERG PARAMETERS IN EXAMPLE 2

di [048, 0521 m
az [0.48,0.52] m
ds [0.28,0.32] m

between real and interval variables are utilized to demonstrate
the cases where some design parameters are expressed in dis-
crete real variables. The algorithm was used to validate possible
topologies of the manipulators where the design constraints
(i.e., the joint limit constraint) are satisfied within the desired
workspace. The values for the Denavit—-Hartenberg parameters
used in the example are given in Table VI.

A. Example 1: Position Only

1) Workspace Definition: The algorithm summarized in
Table 1 was implemented, with function IK(X;, H)
(Table 1V) used as constraint evaluating function S(X;, H)
to obtain the workspace definition of the serial manipulator.
The Denavit-Hartenberg parameters used were d; = 0.5, ag =
0.5 m, and dy = 0.3 m. Fig. 2 shows the workspace of
the serial manipulator, evaluated within a boundary box of
([0.76,0.80], [-0.01,0.01], [0.59,0.65])7". The inner solution
of this workspace is certified as the region of workspace that
is reachable by the manipulator (position only), given a joint
displacement limits of +30°. Conversely, it is certified that the
end-effector workspace represented by the outer boxes would
not satisfy the given joint limit constraints. The gap between
the inner and outer boxes are the boundary boxes. The loop
termination thresholds were set at €, = 0.001.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

Fig. 2. Workspace definition of a 3-DOF serial anthropomorphic arm,
based on joint limits constraints of +30°, evaluated within workspace
X = ([0.76,0.80],[—0.01,0.01], [0.59,0.65])T . The inner solution of the
workspace is shown in (a), while the inner and outer solution (in slightly trans-
parent display) is shown in (b).

0.50
dil (m)

0.52 0.32

Fig. 3. Design parameters that guarantee that end-effector position X =
([0.77,0.78],[-0.01, 0.01],[0.59,0.60])T (note: position only) is reachable
by the manipulator within the joint limit of 30°.

2) Design Space Solutions: The design algorithm as sum-
marized in Table II was implemented, utilizing the function
S*(X;,H) (Table III). Function K (X;, H) (Table IV) was
used as the constraint evaluating function S(X;, H). The range
of design parameters in this example is given in Table VI. The
desired workspace where all constraints have to be satisfied is
X = ([0.77,0.78],[—0.01,0.01], [0.59,0.60])". The loop ter-
mination thresholds are ¢, = 0.002 and ¢; = 0.002.

The results in the form of inner boxes to the constraints
are shown in Fig. 3 The design parameters contained within
the inner boxes guarantee that all the points within the desired
workspace is reachable given a joint limit of 30°.

B. Example 2: Position and Orientation

The algorithm proposed allows the evaluation of both position
and orientation workspace of a serial manipulator. For instance,
if the constraint is defined as joint displacements that are no

OETOMO et al.: DESIGN STRATEGY OF SERIAL MANIPULATORS WITH CERTIFIED CONSTRAINT SATISFACTION 9

0.0100
Y (M) 0050

Z (m) 0.62007]

0.7600
0.7700 0.7800

x (m)

0.7900

0.8000

Fig. 4. Constant orientation workspace [as defined in (19)] of the
serial manipulator, as defined in Table V, is evaluated as X =
([0.76,0.80], [—0.01,0.01], [0.59, 0.65])T.

larger than +30°, then it is possible to find the solutions in 6-D
space of end-effector position and orientation that satisfy the
constraint. However, this result will be difficult to present on
paper.

In this paper, an example is presented for the case of constant
orientation in a serial manipulator, while maintaining the joint
limit constraint £30°. For the following results, the constant
orientation required is selected to be

0 0 1
RL=[0 -1 0 (19)
1 0 0

where RY, represents the rotational matrix of the end-effector
with respect to the ground frame. The Denavit—Hartenberg pa-
rameters are still as defined in Table V and the end-effector
frame is attached to the sixth frame.

1) Workspace Definition: The result of constant orientation
workspace can be represented easily in 3-D plots of the position
of the end-effector, as the inner boxes are solutions where the
inverse kinematics of end-effector position and orientation lie
within the joint limits. For a constant orientation workspace, the
end-effector orientation is kept constant throughout the SolveQ
procedure.

The inner solution of the achievable constant orientation
workspace is presented in Fig. 4, evaluating the constraint
within the same workspace bounds as that shown in Fig. 2,
i.e., X = ([0.76,0.80], [-0.01,0.01],[0.59, 0.65],). As can be
seen from the results, the additional orientation constraint has

0.52 0.32

Fig.5. Design parameters that guarantee constant orientation workspace X =
([0.773,0.777], [—0.005,0.005], [0.598,0.602])T is reachable within joint
limit constraints of 30°. The constant orientation is defined in (19).

created two clusters of inner solutions. This is because there
are two sets of admissible solutions to the inverse kinematics
of the end-effector position, corresponding to “elbow up” and
“elbow down” configurations. The gap between the two clusters
of solutions is caused by the joint displacement having to go be-
yond the +30° limit while maintaining the constant orientation.
Compare the results with Fig. 2(a) where no constant orientation
requirement was imposed as a constraint. The loop termination
threshold for the results in Fig. 4 was setat ¢, = 0.001, the same
as that in Section V-Al.

2) Design Space Solutions: For the design parameter space
solution, the example given here was defined such that the in-
ner boxes in the design space would guarantee that the resulting
manipulator would be able to achieve the desired constant orien-
tation workspace within desired workspace, given the constraint
of joint limit (+30°).

Evaluating the problem with the desired workspace of X =
([0.77,0.78],[—0.01,0.01], [0.59, 0.60])7 as used by the ex-
ample in Section V-A2 yields no inner boxes. It means that
the algorithm cannot guarantee any set of design parame-
ters to a manipulator that can achieve a constant orientation
workspace of X = ([0.77,0.78],[—0.01,0.01],[0.59, 0.60])" .
A smaller desired workspace was selected for this example, set at
X = ([0.775 4 0.002], [0 4 0.005], [0.600 & 0.002]) . The de-
sign parameter parameters, certified to produce a manipulator
capable of achieving all points within the desired constant ori-
entation workspace, is given by Fig. 5. The loop termination
thresholds are €, = 0.002 and ¢; = 0.002, the same as those in
the position-only example in Section V-A2.

C. Example 3: Design Exercise With Combined
Real Parameters

It should be noted, however, that in most design cases, some
of the design parameters are often of discrete, rather than of

10

TABLE VII
TABULATED VARIATIONS OF OFFSET ANGLES «r; AND v
aq
—90° | —45° 0 | 45° | 90°

—90° X X X X X

—45° X X X X X

a2 0 X X X X 1
45° X X X 1 X

90° X X X X X

Configurations marked by “1” guarantee that the desired constant
orientation workspace is an Inner box (reachable workspace).
An “X” marks an outer box.

continuous values. For example, offset angles «; in Denavit—
Hartenberg parameters, are often in the values of 0, £90°,
or sometimes +45°. In reconfigurable modular robots, offset
lengths are in discrete multiples of the module lengths. Com-
bining real parameters, instead of using the interval continuous
range of values, produces tremendous improvements in the com-
putational time of the algorithm.

If the desired workspace has been determined, and a set of
values for design parameters have been given, then it is only
necessary for the algorithm to evaluate if the entire desired
workspace is an inner box or comprise only inner boxes. That
often takes very few iterations. An algorithm can be constructed
quickly to produce the combinations of all possible design pa-
rameters to be tested, either as sets of real variables, or as sets
of very narrow intervals, reflecting discrete possible values of
the design parameter, plus associated uncertainties.

In this example, we will investigate the possible configura-
tions of the serial manipulator by running for loops on discrete
values of a1 and «p (Table V). The values of dq, as, and d, are
kept at (0.5, 0.5, 0.3), respectively. In this exercise, it is desired
to know what different configurations, obtained by varying the
offset angles «; and ay, would be able to yield the desired
workspace, as defined in Section V-B2, namely, position X =
([0.775 4 0.002], [0 4 0.005], [0.600 + 0.002])7', with constant
orientation defined in (19). The results are tabulated in Table VII.
It is shown that aside from the original configuration where
(o, a2) = (90°,0°) that was evaluated in example Section V-
B2, the desired constant orientation workspace is also achievable
through (o, o) = (45°,45°).

D. Note on Computational Efficiency

The choice of implementation technique used in interval-
based method plays a large role in determining the efficiency of
the algorithm. Most simplistic approaches can yield the same
results with much longer computational time, or even lower
quality results. The quality of the result is determined by the
sharpness of the definition of the inner and outer regions. A large
region of boundary boxes does not provide any certification
information; hence, it is desired to obtain a sharp result by
minimizing the boundary region.

An efficient implementation would allow early determina-
tion on whether a box is an inner or an outer box, reducing
the need for bisection. The termination threshold, at which the
branch-and-bound loop is terminated, also determines the com-
putational expense, as decreasing the threshold would increase
computational time exponentially.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009

TABLE VIII
COMPUTATIONAL TIME AND NUMBER OF BOXES OBTAINED FOR EXAMPLES
IN SECTION V

. . Number of boxes
Example no. | Computation time (s) faner | outer | boundary
V-Al 264 2518 | 2218 17178
V-A2 2374 1507 | 1174 9615
V-Bl1 2442 5245 | 2508 12812
V-B2 1315 1796 383 3393
V-C 9 2 23 0

As the aim of this paper is to propose a concept to generate a
certified serial chain topology and certified workspace against a
set of constraints, the efficiency of implementation techniques
is not emphasized in the content of this paper. Some exam-
ples of more advanced implementation of interval techniques
can be found in [30] and [31]. In this paper, the algorithms
were implemented in C++ with ALIAS library developed upon
BIAS/Profil platform within the COPRIN project. As an indi-
cation of the computational resources required, the examples
in Section V-A1-C were implemented on an Intel Dual-Core
2.4-GHz processor with 1-GB RAM, and the computational
time is given in Table VIII. The termination thresholds were as
given in the description of each example. Note that the last set
of experiment was conducted by combining discrete values of
possible design parameters (offset angles) and was required only
to certify which topologies were able to satisfy the constraints,
thus cutting the computational efforts.

VI. CONCLUSION

In this paper, a certified workspace evaluation algorithm and
a serial-chain design algorithm were proposed and presented. In
the process, an effective interval inverse kinematics algorithm
for serial chain, without explicit inverse kinematic expressions,
was also proposed and presented. These algorithms are shown
to be effective in certifying that the various design constraints,
given in the form of equality or inequality constraints, are satis-
fied. The proposed algorithm is also demonstrated to be effective
in obtaining all variations of the kinematic topology of a serial
manipulator such that the given constraints are satisfied in all
points within the desired workspace. Further work is required to
improve the efficiency of the algorithm in admitting or rejecting
the various interval boxes, such as by exploring an efficient in-
terval representation of serial kinematic transformations, hence
reducing the necessity for further bisections in the process. As
this study was carried out under European Union project ARES
on endoluminal surgery through reconfigurable modular robots,
future work also includes improving and adapting the proposed
strategy to the challenging biomedical environment and require-
ments to compute the most suitable topology for the task.

REFERENCES

[1] R. Vijaykumar, K. Waldron, and M. Tsai, “Geometric optimization of
serial chain manipulator structures for working volume and dexterity,”
Int. J. Robot. Res., vol. 5, no. 2, pp. 91-103, 1986.

[2] E. Ottaviano, M. Husty, and M. Ceccarelli, “Identification of the
workspace boundary of a general 3-r manipulator,” ASME J. Mech. De-
sign, vol. 128, no. 1, pp. 236242, 2006.

OETOMO et al.: DESIGN STRATEGY OF SERIAL MANIPULATORS WITH CERTIFIED CONSTRAINT SATISFACTION 11

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

J.-P. Merlet, C. Gosselin, and N. Mouly, “Workspaces of planar parallel
manipulators,” Mechanism Mach. Theory, vol. 33, no. 1/2, pp. 7-20,
1998.

G. Pennock and D. Kassner, “The workspace of a general geometry planar
three degree of freedom platform manipulator,” ASME J. Mech. Design,
vol. 115, no. 2, pp. 269-276, 1993.

M. Gouttefarde and C. Gosselin, “Wrench-closure workspace of six-dof
parallel mechanisms driven by 7 cables,” Trans. CSME, vol. 29, no. 4,
pp. 541-552, 2005.

V. Kumar, “Characterization of workspaces of parallel manipulators,”
ASME J. Mech. Design, vol. 114, no. 3, pp. 368-375, 1992.

F. Hao and J.-P. Merlet, “Multi-criteria optimal design of parallel manip-
ulators based on interval analysis,” Mechanism Mach. Theory, vol. 20,
no. 2, pp. 151-171, 2005.

Y. Papegay, J.-P. Merlet, and D. Daney, “Exact kinematic analysis of
car’s suspension mechanisms using symbolic computation and interval
analysis,” Mechanism Mach. Theory, vol. 40, pp. 395—413, 2005.

J.-P. Merlet, “Solving the forward kinematics of a Gough-type parallel
manipulator with interval analysis,” Int. J. Robot. Res., vol. 23, pp. 221—
235, 2004.

J. Porta, L. Ros, T. Creemers, and F. Thomas, “Box approximations of
planar linkage configuration spaces,” ASME J. Mech. Design, vol. 129,
pp. 397-405, 2007.

I. Bonev and C. Gosselin, “Analytical determination of the workspace of
symmetrical spherical parallel mechanisms,” IEEE Trans. Robot., vol. 22,
no. 5, pp. 1011-1017, Oct. 2006.

O. Ma and J. Angeles, “Optimum design of manipulators under dynamic
isotropy conditions,” in Proc. IEEE Conf. Robot. Autom., 1993, vol. 1,
pp. 470-475.

R. Mayorga, J. Carrera, and M. Oritz, “A kinematics performance index
based on the rate of change of a standard isotropy condition for robot
design optimization,” Robot. Auton. Syst., vol. 53, no. 3—4, pp. 153-163,
Dec. 1992.

A. Bowling and O. Khatib, “Design of non-redundant manipulators for
optimal dynamic performance,” in Proc. Int. Conf. Adv. Robot., Monterey,
CA, Jul. 7-9, 1997, pp. 865-872.

M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian, “Modular self-reconfigurable robot systems [Grand
Challenges of Robotics],” IEEE Robot. Autom. Mag., vol. 14, no. 1,
pp. 865-872, Mar. 2007.

F. Masahiro, H. Kitano, and K. Kageyama, “Reconfigurable robot plat-
form,” Robot. Auton. Syst., vol. 29, no. 2, pp. 119-132, Nov. 1999.

M. Yim, D. Duff, and K. Roufas, “Polybot: A modular reconfigurable
robot,” in Proc. IEEE Int. Conf. Robot. Autom., 2000, vol. 1, pp. 514—
520.

Y. Fei and X. Zhao, “Design and dock analysis for the interactive module
of a lattice-based self-reconfigurable robot,” Robot. Auton. Syst., vol. 55,
no. 2, pp. 87-95, Feb. 2007.

W. Shen and P. Will, “Docking in self-reconfigurable robots,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2001, vol. 2, pp. 1049-1054.

K. Stoy, W. Shen, and P. Will, “A simple approach to the control of
locomotion in self-reconfigurable robots,” Robot. Auton. Syst., vol. 44,
no. 3—4, pp. 191-199, Mar. 2003.
R. Moore, Interval Analysis.
1966.

E. Hansen and G. Walster, Global Optimization Using Interval Analysis,
2nd ed. New York: Marcel Dekker, 2004.

R. B. Kearfott, “Corrigenda: Some tests of generalized bisection,” ACM
Trans. Math. Softw., vol. 14, no. 4, pp. 399-399, 1988.

R. B. Kearfott and M. Novoa III, “Algorithm 681: INTBIS, a portable
interval Newton/bisection package,” ACM Trans. Math. Softw., vol. 16,
no. 2, pp. 152-157, Jun. 1990.

F. Benhamou, F. Goualard, and L. Granvilliers, “Revising hull and box
consistency,” in Proc. Int. Conf. Logic Program., Las Cruces, NM, 1999,
pp. 230-244.

M. Collavizza, F. Delobe, and M. Rueher, “Comparing partial consisten-
cies,” Reliable Comput., vol. 5, pp. 1-16, 1999.

O. Lhomme, “Consistency techniques for numeric CSPs,” in Proc. Int.
Joint Conf. Artif. Intell. (IJCAI), Chambery, France, Aug. 1993, pp. 232—
238.

A. Neumaier, Interval Methods for Systems of Equations..
U.K.: Cambridge Univ. Press, 1990.

G. Alefeld, “On the convergence of some interval-arithmetic modifications
of Newton’s method,” SIAM J. Numer. Anal., vol. 21, no. 2, pp. 363-372,
1984.

Englewood Cliffs, NJ: Prentice—Hall,

Cambridge,

[30] J.-P. Merlet and P. Donelan, “On the regularity of the inverse jacobian
of parallel robot,” in Proc. Int. Symp. Adv. Robot Kinematics (ARK),
Ljubljana, Slovenia, Jun. 2006, pp. 41-48.

[31] J. Rohn, “Cheap and tight bounds: The recent result by E.Hansen can be
made more efficient,” Interval Comput., vol. 4, pp. 13-21, 1993.

Denny Oetomo (M’04) received the B.Eng. degree
(with first-class honors) from the Australian National
University, Acton, A.C.T., Australia, in 1997 and the
Ph.D. degree in mechanical engineering from the Na-
tional University of Singapore, Singapore, in 2004.

From 1998 to 1999, he was a Photolithography En-
gineer with Hewlett-Packard Singapore. From 2002
to 2004, he was a Research Engineer at the Singapore
Institute of Manufacturing Technology. From 2004
to 2007, he was a Postdoctoral Fellow at Monash
University, Melbourne, Vic., Australia, and also with
the Institut National de Recherche en Informatique et en Automatique (IN-
RIA) Sophia-Antipolis, France. He is currently a Lecturer with the University
of Melbourne. His current research interests include robotics, specifically the
kinematic and dynamic analysis of manipulators, mobile manipulation, unified
force/motion control, and computational kinematics. He is also involved in the
application of robotics in biomechanics.

David Daney received the Ph.D. degree in robotics
from the University of Nice Sophia-Antipolis, Nice,
France, in 2000.

During 2000, he was a Postdoctoral Associate
with Constructions Mecaniques Des Vosges (CMW)
France, where he studied a parallel kinematic ma-
chining (PKM) milling machine. During 2001, he
was a Postdoctoral Associate with the LORIA Labo-
ratory, Nancy, France, where he worked on computer
arithmetic. In 2002, he was invited to attend Mc Gill
University, Rutgers University, and Laval University.
Since 2003, he has been an Research Scientist with the Constraints Solving,
Optimization, Robust Interval Analysis (COPRIN) Project, Institut National de
Recherche en Informatique et en Automatique (INRIA) Sophia-Antipolis. His
current research interests include the area of robotics, analysis, design, and
calibration of parallel robots. He is also involved in interval analysis and its ap-
plications in robotics, in particular for wire-driven robots performance analysis.

Jean-Pierre Merlet (M’01) received the M.S. de-
gree in mathematics from the University of Nantes,
Nantes, France, in 1978, the Engineer Title from the
National Superior School of Mechanics, Nantes, in
1980, the Ph.D. degree from Paris VI University,
Paris, France, in 1986, and the Research Habilita-
tion degree from Nice University, Nice, France, in
| 1993.
I He was an Engineer in the food industry (Lu) and
V\\\ in civil engineering. He was also a Research Engineer
with the Commissariat a I’ Energie Atomique (CEA)

(French Nuclear Agency) and a Research Associate with Kyoto University, Ky-
oto, Japan, Mechanical Engineering Laboratory (MEL), Tsukuba, Japan, and
McGill University, Montreal, QC, Canada. He is currently a Scientific Leader
with the Constraints Solving, Optimization, Robust Interval Analysis (COPRIN)
Project, Institut National de Recherche en Informatique et en Automatique (IN-
RIA) Sophia-Antipolis, Nice (French National Research Institute in control
theory and computer science). He has authored or coauthored over 200 con-
ference and journal papers in the field of force control of robots, algebraic
geometry, constraint solving, and parallel robots, and a book on the latter sub-
ject with two editions in French and two editions in English (Springer-Verlag,
2001 and 2005). He holds a patent on a parallel robot that is currently licensed
to a U.S. company (Gerber) and a Japanese company (Hephaist Seiko). His cur-
rent research interest includes interval analysis, optimal design for mechanisms,
nanotechnology, and medical robotics. He is an Associate Editor of Mechanism
and Machine Theory.

Dr. Merlet is the Chairman of the French Section of the International Feder-
ation for the Theory of Machines and Mechanisms (IFToMM).

