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Rationalization of Triangle-Based Point-Folding Structures

Henrik Zimmer Marcel Campen David Bommes Leif Kobbelt

RWTH Aachen University

Figure 1: Point-folding structure built from pyramidal elements according to a triangulated free-form base surface. Although
almost all base triangles are non-similar, thanks to rationalization only 21 mold dies are necessary to produce the 270 elements.

Abstract
In mechanical engineering and architecture, structural elements with low material consumption and high load-
bearing capabilities are essential for light-weight and even self-supporting constructions. This paper deals with so
called point-folding elements – non-planar, pyramidal panels, usually formed from thin metal sheets, which exploit
the increased structural capabilities emerging from folds or creases. Given a triangulated free-form surface, a cor-
responding point-folding structure is a collection of pyramidal elements basing on the triangles. User-specified
or material-induced geometric constraints often imply that each individual folding element has a different shape,
leading to immense fabrication costs. We present a rationalization method for such structures which respects the
prescribed aesthetic and production constraints and finds a minimal set of molds for the production process, lead-
ing to drastically reduced costs. For each base triangle we compute and parametrize the range of feasible folding
elements that satisfy the given constraints within the allowed tolerances. Then we pose the rationalization task
as a geometric intersection problem, which we solve so as to maximize the re-use of mold dies. Major challenges
arise from the high precision requirements and the non-trivial parametrization of the search space. We evaluate
our method on a number of practical examples where we achieve rationalization gains of more than 90%.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The rationalization of complex free-form designs currently
receives increasing attention in Architectural Geometry
and Computer Graphics. Before being fabricated, free-form

shapes are usually tessellated into sets of (discrete) so-called
panels. Here the number and complexity of the panels di-
rectly influence the production cost of the design – if all ele-
ments require unique individual molds, production costs can
quickly become prohibitive. The goal of rationalization is to
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Figure 2: Examples of existing folding structures. Left to right: Two Fuller-inspired domes, one with connected apexes for
increased structural capability. The IBM traveling pavilion by Renzo Piano with quad-based folding elements connected by
beams. A 1:5 scale hexagon-based, two-layered folding structure prototype [SSD] based on the TRADEFAIR model.

find a smaller set of representative panels such that one op-
timized panel or production mold can be re-used as often as
possible. This can be achieved by allowing small changes to
the original shape and/or by exploiting adherent construction
tolerances or structural degrees of freedom. Rationalization
is a complex process usually involving highly non-linear op-
timization methods previously often deemed impracticable,
but becomes increasingly interesting as the geometric under-
standing of such problems as well as computational capaci-
ties increase. This led to several highly reputable rationaliza-
tion approaches which were recently presented in the com-
puter graphics community, e.g. [FLHCO10,SS10,EKS∗10].

Our rationalization deals with so-called folding elements.
In the most general case, a folding element can be thought of
as any non-planar panel with creases, and a folding structure
is an assembly of adjoining folding elements. Just like a sim-
ple crease can transform a sheet of paper from a fluttering to
a much stiffer state, folding or creasing of, e.g., thin metal
sheets can be used to create elements of highly increased in-
herent stiffness without adding mass [SDG10]. Hence, they
are appealing building blocks in the construction of light-
weight, self-supporting structures without the need for heavy
beams or additional support structures [Tra09].

More specifically, we consider the rationalization of struc-
tures with pyramidal elements, so-called point-folding struc-
tures, with triangular bases. Figure 1 shows an architectural
design example. Figure 2 shows existing real-world exam-
ples of such structures (some with quadrilateral and hexag-
onal pyramid elements). Due to the triangular bases, such
a point-folding structure can very naturally be described by
a triangle mesh (plus pyramid apex positions). The poten-
tial benefit of rationalization of such structures was already
pointed out by Herkrath and Trautz [HT11].

1.1. Contributions

For our rationalization task, the input base mesh is assumed
to be purposely designed and shall not be altered. Besides
respecting the designers intent, this opportunely serves the
tractability of the problem. Hence, we propose to directly
exploit other problem-inherent structural degrees of freedom
and tolerances (subject to various hard constraints) to define
a novel approach that completely respects the input.

Considering the constrained degrees of freedom, the range
of feasible folding elements per input triangle is determined
and parameterized. The rationalization task is then posed as
a greedy optimization problem on top of a geometric inter-
section problem which we solve using a carefully designed,
easily parallelizable algorithm. Results are guaranteed to re-
spect user-specified constraints, which might be due to pro-
ductional, constructional, or aesthetic requirements.

What sets our approach aside from many other rational-
ization methods is the way we deal with given constraints:
no soft-constraints or continuous minimization is used – we
consider the given constraints and tolerances as absolute and
each solution fulfills them exactly rather than approximately,
as it is often required in real-world engineering applications.

1.2. Related Work

Light-Weight Structures. Light-weight structure design
and research was pioneered by Buckminster Fuller in the
1920s [Bal97]. One of the first commercial results was the
Kaiser dome on Hawaii, that was made up from triangular
pyramid elements with rod-connected apexes [Gil61]. An
easy to deploy folding-based structure in later years was the
IBM Traveling Pavilion – a half-cylindric structure covered
by quad-based pyramidal elements [Buc00].

Rationalization. Note that the above mentioned construc-
tions only used simple geometries such as cylinders and
spheres. General (tessellated) free-form surfaces consisting
of all-different elements would have contradicted Fuller’s
idea of efficient designs and affordable housing. With the
availability of today’s computers, rationalization of com-
plex architectural shapes is becoming increasingly feasi-
ble and emerged as an active research topic. Recent high-
profile work includes the rationalization of surfaces based
on triangular panels [SS10], quad panels [FLHCO10], strips
of single-curved panels [PSB∗08], as well as more general
curved panels [EKS∗10,EDS∗10]. In the latter work the pos-
sibility of producing several panels of the same shape but
then cutting them to different sizes and forms is exploited –
a possibility which we also make use of in order to allow the
same pyramid shape to fit onto multiple triangles. The core

c© 2012 The Author(s)
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Figure 3: Incremental Sheet Forming (ISF) can be per-
formed without a die, with a partial die and with a full die.
The sheet is formed by a robot-controlled tool incrementally
pressing down the blank. (Images from [IMF])

of our folding element rationalization is conceptually similar
to the plane rationalization used by Décoret et al. [DDSD03].

Origami and Foldings. Folding elements and structures
can be seen as a utilization and generalization of classi-
cal origami – the difference being that folding elements
not necessarily adhere to taboos of traditional origami like
cutting or gluing/welding. The simulation and synthesis of
classical origami folds is an active area of research (e.g.
Tachi [Tac09, Tac06] and Kilian et al. [KFC∗08]). But also
in the areas of architecture [Tra09, TK09] and structural en-
gineering [SDG10, BW10] the stiffening property of folds
is actively leveraged as it enables high load-bearing capa-
bilities in light-weight materials such as thin-sheet metal.
Recently, self-supporting rigid and kinematic folding struc-
tures were realized in full-scale as described by Buri and
Weinand [BW10] and Künstler and Trautz [KT11].

Production. Besides the traditional possibility of cut-
ting, folding, and welding sheets to creased elements,
we briefly mention another promising production tech-
nique for creating polygon-based folding elements which
can also directly profit from our rationalization technique.
In Incremental Sheet Forming
(ISF) [JMH∗05] metal sheets are
shaped by a robot-arm, incrementally
pressing down points of a blank sheet
with a tool, either without a die, with
a partial die, or with a full die (cf.
Figure 3) – in the order of increasing
accuracy of the resulting shape, but decreasing production
flexibility. A resulting triangular folding element is depicted
in the inset figure. Being cost- and time-efficient for low
volume production, the costs for ISF increase significantly
for large volume production of unique elements, especially
when accuracy demands a different die for each individual
element. Rationalizing the number of different parts can re-
duce this overhead drastically. Trautz and Herkrath [TH09]
present a first approach to point-folding structures and ISF.

2. Point-Folding Structures and Elements

In the following, after introducing the definitions and nota-
tions used throughout the paper, we present the requirements
that are typically posed on folding structures and state the
actual rationalization problem setting we deal with.

2.1. Definitions and Notation

LetM be the input triangle mesh with nF faces Tj and nV
vertices pi. When considering a triangle T ∈ M, we enu-
merate its incident vertices p0, p1, p2. A folding element (or
pyramid) Pa of a face T is completely defined by its apex
a (the pyramid base being formed by the vertices pi of T ).
The crease vectors ua

i = pi−a, i ∈ 0,1,2, connect the apex
to base corners and the three sides of the pyramid have nor-
mals ma

i . See Figure 4 for an illustration.

(a)p0

p1

p2

T

(b)p0

a

ua
0

ma
0

(c)

h+ ε

h− ε

Figure 4: (a) Triangle T . (b) A folding element (pyramid) P
on T , with apex a, side normals ma

i (pink) and crease vectors
ua

i (blue). (c) Simplest variant of a validity range for pyramid
height h over T with tolerance ε.

2.2. Typical Requirements

Extensive discussions with architects and construction engi-
neers [SSD, IMF] revealed a set of requirements that have
to be fulfilled and properties that should be controllable in
order to come up with desirable and realizable folding struc-
tures. These requirements can be due to structural as well
as aesthetic considerations. In essence, given a (tessellated)
free-form surface, design and rationalization tools for point-
folding structures should be able to

• control height and centricity of each pyramid,
• respect production constraints for producible elements,
• prevent collisions between neighboring pyramids,
• preserve the given free-form shape (and even its often

purposely crafted tessellation).

Respecting the fourth point, i.e. considering the given tri-
angle mesh (and thus the pyramid bases) fixed, all pyramids
are completely defined by the apex positions. Hence, han-
dling all other conditions reduces to control over the apexes.
In our approach we thus define validity volumes (VVs) for
the apexes such that inlying (= valid) positions fulfill all re-
quirements of a given scenario. For a simple example, see
Figure 4 (c) – more complex settings are considered later.

2.3. Problem Statement

The input to our rationalization method is a tessellated free-
form surfaceMwith triangular faces and a set of constraints
that implicitly defines a volume VVi of valid pyramid apex
positions per triangle Ti. Obviously, two incongruent faces
require differently shaped pyramids (even when ignoring the
constraints). Now the key to rationalization is the observa-
tion that a whole class of triangular pyramids can be ob-
tained from one and the same trihedron (infinite pyramid) by

c© 2012 The Author(s)
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Figure 5: Various pyramids cut from the same trihedron

clipping it using differently oriented planes at different dis-
tances from the apex (cf. Figure 5). Hence, if two triangles
happen to have any two valid pyramids that can be clipped
from the same trihedron, one could simply produce a large
enough representative pyramid of that class twice and cut it
differently to cover both triangles. ISF inherently employs
laser-cutting at the end of the process to cut out the pyramid
from the sheet, i.e., this way of proceeding might even come
at no additional cost depending on the production method.

Exploiting this observation, we can now concisely state
the problem we have to solve as:

Find a small set of trihedra such that for each tri-
angle a valid pyramid can be cut from one of them.

The smaller the set we find (compared to the trivial solution
of using all unique trihedra) the higher is the rationalization
gain; e.g., in the example depicted in Figure 1, 21 trihedra
(color-coded) sufficed to form pyramids for 270 triangles. In
the following sections we formalize this problem and present
a method to produce valid solutions.

3. Rationalization of Point-Folding Structures

We first note that the set of all trihedra is of dimension three.
It can be parametrized by the three side facets’ angles at the
apex, i.e., a trihedron is uniquely defined by an angle triplet
α := (α0,α1,α2) ∈ A3, where A3 := [0◦,180◦]3.

The angle triplet α
T(a) of the trihedron defined by an apex

position a over a given base triangle T can be computed by

α
T
i (a) := arccos

(
ua

i
Tua

i+1 mod 3
‖ua

i ‖‖ua
i+1 mod 3‖

)
, i ∈ {0,1,2}, (1)

where ua
i are the crease vectors of the corresponding pyra-

mid (cf. Section 2.1). This essentially allows us to map the
validity volumes from R3 to A3, and we define the angu-
lar validity volumes AVVi := α(VVi). The search for trihedra
that can be cut to pyramids fitting multiple triangles while
having valid apex positions can then be posed as an inter-
section problem on the AVVs. The rationale behind this is
the fact that an angle triplet which lies in the intersection of
multiple AVVs corresponds to (i.e. is the image under α of)
valid apex positions in multiple VVs.

In theory, the truly optimal rationalization solution re-
specting given constraints now could be obtained as follows:

1. Compute the intersection arrangement of the AVVs of all
triangles Ti in A3 and for each region obtain the corre-
sponding subset of {Ti | 0≤ i < nF}.

2. Solve the Set Cover problem on the collection of all these
subsets and pick an arbitrary representative angle triplet
within each region corresponding to a subset of the result.

3. Map the representative angle triplets back to R3 to obtain
a valid apex position within each VV.

The problems with this approach are that 1) computing
the intersection arrangement of the AVVs can be considered
computationally intractable – even for the simplest VVs the
AVV boundaries cannot be described polynomially – and 2)
the Set Cover optimization is known to be NP-hard and the
number of subsets to be considered could be as large as 2nF .

To remedy the first problem, we combine adaptive
discretization and sampling techniques. This renders ap-
proximate determination of the intersection arrangement
tractable. The algorithm is presented in detail in Section 5,
where we also describe how we ensure that no intersections
beyond a certain size are missed and at the same time no
false positives violating any constraints are produced.

In order to solve the second problem, we use the greedy
algorithm for set covering – a best-possible approximation
algorithm for the Set Cover problem with polynomial time
complexity [Fei98]. This algorithm chooses subsets in the
order of decreasing cardinality until the whole universe (the
set of all triangles T ofM) is covered.

4. Basic Constraint Handling

Before proceeding with the description of the actual ratio-
nalization algorithm, let us first consider the most important
type of constraints (height constraints) and how they trans-
late into validity volumes. Incorporation of other, more ad-
vanced constraints is then treated afterwards in Section 7.

4.1. Pyramid Height

In the basic setting a prescribed pyramid height plus al-
lowed tolerances is given for each triangle. In architectural
applications desired heights h are typically in the range of
[10%,30%] of the average edge length. The allowed toler-
ances depend on the specific application and on the material
– hence, unless stated otherwise, we rather aggressively as-
sume allowed height deviations ε to be constrained to ≤ 2%
of the height, i.e., about 2-6mm in the case of 1m elements.

For a triangle Ti, these constraints easily translate into a
VVi bounded by two offset planes of Ti, with offset distances
h− ε and h+ ε in normal direction, respectively (cf. Figure
4 (c)). We furthermore clip such a VV by the three planes
spanned by the three edge vectors of the triangle with its
normal, obtaining a prism (cf. Figure 6 (a)). This rules out
pyramid elements with protruding apexes.

c© 2012 The Author(s)
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Figure 6 shows the kind of AVVs that arise when map-
ping the prismatic VVs to A3. We call them parachutes.
Subfigure (c) shows an arrangement of 11 such parachutes
corresponding to different base triangles (with equal height
constraints and large tolerances for visualization purposes).
Note that mapping (1) depends on the (random) ordering of
the indices of vertices pi of T , i.e., each apex position could
actually be assigned three angle triplets. To be independent
of this ordering we use the union of three AVVs for each VV
in practice. To keep the following explanations and figures
simple, however, we shall only consider one of these.

(a)

T

(b) (c)

Figure 6: (a) Validity volume (VV) defined over a trian-
gle T by pyramid height constraints and tolerances. (b) The
corresponding angular validity volume (AVV) (or parachute)
mapped by Eq. (1). (c) An exemplary intersection arrange-
ment of AVVs in A3 resulting from a mesh with 11 triangles.

5. Solving the Intersection Problem

We now proceed to (approximately) determine the intersec-
tion arrangement of the AVVs in A3. To achieve efficiency
we discretize both, the AVVs and A3 – the former using a
conservative variant of prism refinement (cf. Section 5.1),
the latter using an adaptive sampling of the space. How-
ever, care has to be taken when doing so, since 1) chances
of missing potential good solutions due to the discretiza-
tion should be really low and 2) chances of producing in-
valid “solutions” should be zero – contradicting goals in
the context of discretization with limited resolution. A fur-
ther challenge is posed by very high resolution require-
ments. A simple computation demonstrates that with a typ-
ical pyramid height constraint of 10% of the edge length
and a tolerance of, e.g., 2%, angle resolutions lower than
arctan(1/0.098)− arctan(1/0.102) ≈ 0.23◦ might not be
enough to even distinguish between the upper and lower
boundary of a validity volume in A3, i.e. in the worst case
whole AVVs might be missed when sampling A3 with res-
olutions lower than (210)3. The sought intersection volumes
of multiple AVVs are typically even much thinner. Hence,
we would like to work with resolutions up to about (215)3.

5.1. Discretizing the Parachutes

Even the simple prismatic VVs we introduced so far map
to curved AVVs. We represent them using a piecewise lin-
ear boundary representation for efficiency. This can be done
quite naturally to any desired accuracy by repeatedly per-
forming 1-to-4 splits on the prismatic VVs in R3, then map-
ping the generated sub-prism vertices to A3. Unfortunately,

these representations are far from being conservative on
coarse levels of the refinement – and we want to exploit also
these coarse levels of the inherent multilevel hierarchy of
prisms, as described in the following section. In Figure 7
this “lossy” representation is illustrated.

First of all, in order to obtain (deformed) prisms with pla-
nar sides in A3 (to simplify intersection tests) we do not map
the prism vertices but take the five planes tangential to the

VV AVV

AVV boundary at the im-
ages of the five sides’
centers as depicted on the
right. The corresponding
plane normals are com-
puted by restricting (1) to the (triangulated) sides 4ABC ⊂
R3 of sub-prisms, yielding three restricted coordinate-maps

fi :4ABC→ A, (λ0,λ1,λ2) 7→ αi(λ0A+λ1B+λ2C)

with barycentric coordinates λ j , from which the directional
derivatives can be computed. Computing the cross-product
of the directional derivatives of two directions oriented
counter-clockwise in 4ABC yields the normal of that prism
side at the point (λ0,λ1,λ2) mapped to A3.

We then shift these planes outwards such that the (cor-
responding part of the) actual AVV volume is contained in
the (deformed) prism defined by these planes (as depicted in
Figure 7 right). Due to the absence of inflections on the AVV
boundaries, the amount of shifting necessary could be deter-
mined using gradient ascents along the edges and within the
face of each side. For simplicity, in our current implementa-
tion we shift to the maximum of several samples.

5.2. Discretizing A3

We could now naïvely sample A3 regularly in (215)3 points,
perform pairwise inclusion tests for these with the sub-
prisms of all parachutes, and (in the manner of a greedy Set
Cover algorithm) pick the one sample included in the largest
number of parachutes, as it corresponds to the first best rep-
resentative trihedron. This could be iterated for the remain-
ing parachutes until all base triangles are “covered”.

It is immediately clear, that this is computationally utopis-
tic. We hence use an adaptive multilevel discretization of
both, the AVVs and the space A3: we simultaneously per-
form an octree-based subdivision of A3 and a 1-4-split-based
refinement of the AVVs in an interlocked manner. Initially
all level 0 conservative parachute prisms are associated with
the octree root cell (encompassing all parachutes). Then, it-
erating over the subsequent levels, for each associated pair
of octree cell and prism, the eight child cells and four child
prisms are checked for intersections and associated accord-
ingly (as illustrated in Figure 8 left). By subdividing space
adaptively in this way and performing the intersection tests
in this doubly-hierarchical manner, spatial regions contained
in many parachutes can be located with practicable perfor-
mance.

c© 2012 The Author(s)
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Figure 7: Left: Lossy discretization of an AVV with 44, 45, 46, and 47 prisms. Right: Conservative prisms at various levels.

5.3. Memory Efficient Greedy Set Cover

Further measures need to be taken, however, to reduce mem-
ory requirements to an acceptable level – the storage needed
for (1) the geometry of prisms and cells as well as for (2) all
cell-prism associations would by far exceed common main
memory sizes at levels beyond 10.

On-Demand Geometry. We address the first issue by not
storing the actual geometries of cells and prisms, but rather
simple indices encoding their position in the octree resp. 1-
4-split hierarchy. The actual geometry is then only created
temporarily for the intersection tests. As generating the ge-
ometry of a cell from its index is a simple matter compared
to constructing a conservative sub-prism (cf. Section 5.1),
we let the outer refinement loop run over the prisms and the
inner loop over the associated cells. This avoids the need to
create the same sub-prism geometry multiple times. Pseudo-
code for this routine is given in Figure 8 top right.

Two-Phase Processing. The second issue (size of associa-
tions) is addressed in the following way: the refinement is
performed in the described way (which we call phase I) un-
til the memory budget is nearly exhausted, then we switch
to an extremely memory-friendly depth-first search (called
phase II) to be able to proceed through the remaining octree
levels (up to usually level 15). Note that the approximation
accuracy of the prisms grows quadratically with the refine-
ment level (in contrast to linear increase of octree resolution)
and our experiments revealed that prism refinement beyond
level 7 never improved the results. Since phase II usually
starts after that, we can efficiently rely on fixed prisms in
phase II and only traverse the octree hierarchy further on.
Also note that the association between cells and prisms only
approximately and conservatively signifies an intersection in
the corresponding region. To ensure that all constraints are
respected, during the depth-first traversal of the remaining
levels, the center points of the cells on the final refinement
level are mapped back to R3 (cf. Section 6) and then tested
for validity to exactly determine how many input base tri-
angles are validly covered by the corresponding trihedron.
Pseudo-code for the depth-first search in a cell is provided in
Figure 8 – explanation of the employed bounding follows.

Branch-and-Bound. The search efficiency can drastically
be improved in a branch-and-bound manner, i.e., if the best
point found so far is included in k parachutes, all sub-trees
of cells associated with prisms of no more than k parachutes
can safely be skipped subsequently (in the pseudo-code
this current bound k is kept track of in the global variable
bound). This is due to the fact, that the number of associ-
ated parachutes (#parachutes(C)) provides an upper bound
on the number of parachutes that might overlap any com-
mon point contained in the cell. At the end of the traversal,
the point that established the last such bound (i.e. bestRep-
resentative) signifies the trihedron that is valid for the largest
number of base triangles. Following the greedy approach to
Set Cover, the parachute prisms corresponding to these base
triangles are then removed from the octree leafs that resulted
from phase I, and phase II is repeated to find the next best
trihedra until all base triangles are covered.

associated
overlapping
cell-prism
pair

refinement

intersection
tests

new
associations

phase_I():
for each level L from 0 to . . .
for each prism P of level L
for each child prism p of P
gp = geometry(p)
for each associated cell C of P
for each child cell c of C
gc = geometry(c)
if intersects(gp,gc):
associate(p,c)

depthTraverse(C):
if #parachutes(C)≤bound: return
if finalLevel(C): updateBound(C)
for each child c of C
intersect&associate(c,prisms(C))
depthTraverse(c)
delete c and its associations

updateBound(C):
n = #validlyCovered(center(C))
if n > bound:
bound = n
bestRepresentative = center(C)

Figure 8: Left: illustration of one step of the refinement pro-
cess. Right: Pseudo-code of the important parts of the algo-
rithm: phase_I() constructs an initial octree. In phase II
for each of its leaf cells C (in descending order w.r.t. the
number of associated parachutes) depthTraverse(C) is in-
voked. Afterwards the best representative found is output, its
associated parachutes removed from the cells and phase II
repeated until all base triangles are covered.

c© 2012 The Author(s)
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6. Representative Folding Element Construction

Having found the desired representative angle triplets in A3,
we map them back to R3 to determine the apex positions
and construct the pyramids. Our map (1) is non-injective and
a global closed-form inverse is not available, but the con-
struction of the pyramid P on a triangle T given an apex an-
gle triplet (α0,α1,α2) is equivalent to the perspective three-
point pose (P3P) problem well-known in Computer Vision
[FB81]: the position of the camera (here: the apex a) is re-
constructed from three sighted points (here: the vertices p0,
p1, p2) resp. the angles between the corresponding sight rays
by finding the real roots of a quartic polynomial.

7. Advanced Constraint Handling

Having described our general rationalization pipeline, we
now take a closer look at how further constraints can be in-
corporated. So far, production and construction constraints
have not been taken care of. Furthermore, explicit control
over the centricity of the elements might be desirable. To
gain control over the rationalization process in this regard,
we only have to modify the VVs to suit our needs, the rest
of the pipeline remains unchanged.

7.1. Collision Prevention

In non-convex regions of the base mesh, the simple VVs (cf.
Section 4.1) of neighboring triangles might be non-disjoint,
potentially leading to solutions with intersecting pyramids
that could not be assembled physically. Unless unusually
high pyramids shall be placed in extremely curved concave
regions or narrow passages, we may safely assume that in-
tersections might only happen between pyramids on faces
sharing a common edge or vertex.

By replacing the base-orthogonal clipping plane on an
edge by that containing the edge normal (averaged incident
face normals), intersections between VVs of directly adja-
cent triangles can be prevented, but intersections across ver-
tices potentially remain. These are additionally be ruled out
by, for each edge of a triangle, instead taking the inner-
most plane of the base-orthogonal clipping plane and the two
that contain either incident vertex’s normal. Here innermost
means the plane whose outwards normal has the largest dot
product with the base triangle normal.

7.2. Centricity Control

The prismatic VVs can be modified further to gain control
over the centricity of the resulting apexes. We here consider
the case that apexes shall be restricted to lie no further than
some distance r apart from the base-orthogonal line through,
e.g., the in-center or the center-of-gravity of a base triangle.
Obviously, the corresponding VV is a cylinder.

Since usually collision constraints are to be considered ad-
ditionally, we are interested in the intersection of this cylin-

der with a prism obtained as above. As the rationalization al-
gorithm relies on adaptive refinement of the VVs’ discretiza-
tion, we do not want to give up on the convenient, regularly
refinable triangular structure. Hence, we keep the prismatic
VV with its refinement structure and simply mark those sub-
prisms as inactivate that lie outside the cylinder. These are
then ignored in the process. Prisms partially on the outside
are kept active to not miss any solutions – the final validity
check (cf. Section 5.3) rules out false positives.

7.3. Production Constraints

Depending on the method employed to manufacture the fold-
ing elements, different constraints on the attainable element
shapes might be given. Hence, we exemplarily consider the
ISF production method to illustrate how such constraints can
be incorporated.

Incrementally forming metal sheets leads to some thin-
ning of the material [Ame08, JMH∗05], inhibiting large de-
formation angles. On the other hand, the elastic recovery of
the material prevents very small base angles. Safely achiev-
able angles typically are in the range of [minISF ,maxISF ] =
[20◦,50◦]. To guarantee that the folding elements resulting
from the rationalization can be produced, we must modify
the VVs to restrict the solution space correspondingly. Note
that one cannot just measure the angles to the supporting
plane of a triangle T for a given apex a, as this plane is
generally not the actual production blank sheet plane due
to production of multiple, differently cut pyramids from one
representative master – we must base our considerations on
a virtual production plane.

We consider the optimal production plane for a given tri-
hedron to be the one having equal angles to all trihedron
sides – it simultaneously minimizes the maximum angle and
maximizes the minimum angle, resulting in best-possible
production quality. The normal n of this virtual produc-
tion plane for an apex position a can be found as the vec-
tor a− x for the center x of an insphere of arbitrary ra-
dius r of the trihedron. Such a point x is found by solving
maT

i x = r−maT
i a, i ∈ {0,1,2}. Figure 9 shows the result-

ing boundaries of the volume of ISF-manufacturable apex

(a) (b) (c)

Figure 9: (a) Visualization of the surfaces implicitly defined
by a minISF (purple) and maxISF (green) constraint. (b) The
remaining VV between the additional apex height constraint
planes. The inset shows a bottom view – the “carved out”
region contained apex positions that would lead to base an-
gles < minISF . (c) AVV of a standard height constraint – the
sub-volume that remains when additionally considering the
ISF constraints is highlighted in blue.
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SEASHELL, nF = 249 TRADEFAIR,nF = 270 ALPINEHUT, nF = 468 TRAINSTATION, nF = 1038
CP CP+ISF CP+CC CP CP+ISF CP+CC CP CP+ISF CP+CC CP+ISF (level 6) (level 7)

Unique Elements 13 9 32 10 11 21 22 16 50 11 11
Rationalization Gain 95% 96% 87% 96% 96% 92% 95% 97% 89% 99% 99%
Runtime Phase I (min) 9.1 8.6 8.2 8.9 9.1 8.2 15.0 14.8 13.5 16 83
Runtime Phase II (min) 11.0 5.0 2.3 7.5 8.8 10.0 39.0 51.9 14.8 440 337
Peak Memory (GB) 3.2 2.9 2.5 3.1 3.4 2.1 4.9 5.1 4.1 4.1 11.5

Table 1: Statistics of the folding element rationalization for our examples. Columns show results for processing with collision
prevention constraints only (CP), additional ISF production constraints (ISF), as well as additional centricity control (CC).

positions over a triangle. Now that we have a point-wise
test for ISF compatibility, combining the ISF constraint VVs
with other VVs can be performed by deactivating sub-prisms
whose vertices lie in invalid regions as described in the last
section.

Incorporating further production and construction con-
straints is easily imaginable. For instance, considering the
structural capabilities, the VVs can be restricted to regions
that appropriately orient the folding elements into the direc-
tion of compressive forces, etc.

8. Results

We evaluate the proposed rationalization method on four ar-
chitect designed models – SEASHELL (nF = 249), TRADE-
FAIR (nF = 270), ALPINEHUT (nF = 468), and TRAINSTA-
TION (nF = 1038), as shown in Figure 10. All examples have
been processed on a modern standard PC (Intel i7-920 CPU).

Table 1 shows the rationalization results for these models
and compares different constraint configurations. Except in
the ISF cases the apex height was fixed to 0.2m (ca. 20% of
the average edge length) and ε = 2% was used. For the ISF
cases, smoothly varying heights from a range around 20%
were automatically set in a way to adapt to the ISF con-
straints and guarantee non-empty VVs. For comparability,
the switch from phase I to phase II of the algorithm has been
fixed to after level 7. The specified rationalization gain is de-
fined as the percentage of the number of folding elements of
the trivial solution (a unique element per base triangle) made
obsolete by rationalization. Figures 11 and 12 illustrate the
results.

Achieved rationalization gains range from 87% to 97%

TRAINSTATION

ALPINEHUT

SEASHELL

TRADEFAIR

Figure 10: The four base meshes used in our experiments.

for the first three models, whose tessellations have been pro-
vided by architects. For the TRAINSTATION model, which
was quite uniformly meshed based on [BK04], even 99%
were achieved. As expected, tighter constraints usually lead
to lower gains since AVV intersections tend to be rarer for
smaller VVs. The exceptions seen in the table when com-
paring collision prevention constraints only with additional
ISF constraints are due to the variable height constraints ap-
plied in the ISF case, hence incidental. The last two columns
exemplarily illustrate the effect of the transition from phase
I to phase II of the algorithm: switching to phase II earlier
(here at level 6 of the octree refinement) leads to lower mem-
ory consumption but higher runtime compared to switching
later (here at level 7).

Meshes used in architectural designs, like the ones used
in our experiments, usually have
”nice” elements. Still, it is in-
teresting to see to which extent
the rationalization depends on
this circumstance: we exemplar-
ily applied our method to the
rather irregular mesh depicted
on the right. As could be ex-
pected, the gain was lower, but
still 88% were achieved (using collision constraints).

With our current research implementation, computing a
full resolution rationalization on a standard PC is limited to
scenarios with less than about 2000 folding elements. Op-
timization of the employed data structures and redundancy
reduction will likely be able to further raise these bounds.

9. Discussion & Future Work

On the production side current research topics include the
exploration of novel uses of folding structures and the devel-
opment of efficient folding element production techniques.
Our method makes a big step towards usability in large scale,
free-form production scenarios – as the cost of producing the
molds, dies, or tools for element production can be drasti-
cally reduced. In future work, we would like to explore fur-
ther aspects in this context, as outlined in the following.

Weighting. Our rationalization method is completely “dis-
crete” – there are no soft-constraints or “more or less pre-
ferred” solutions; always some valid solution (possibly out
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10 molds 11 molds 21 molds

13 molds 9 molds 32 molds

Figure 11: Results of TRADEFAIR (top) and SEASHELL (bottom) with collision constraints (left), collision and ISF con-
straints (middle), and collision and centricity constraints (right). The insets show the corresponding validity volumes and the
dual structure in gray. Understandably, the dual structure shows increased regularity under centricity constraints. Canonical
representatives of the used element classes (randomly color-coded) are depicted alongside.

of several similarly good alternatives) is found. When soft
constraints are desired, e.g. for mixing aesthetical prefer-
ences with hard construction constraints, one could switch
to using VVs augmented by weighting fields. While defin-
ing such weighted VVs is easy, some work would have to be
done to steer the adaptive discretization accordingly.

Tessellation. The TRAINSTATION example demonstrates
that uniform meshes (e.g. generated by [AMD02, BK04,
YLL∗09, NPPZ11]) facilitate high rationalization gains. We
considered the case of purposely designed input meshes that
shall not be altered. An interesting direction for future work
is the exploration of an combined rationalization and modi-
fication of the base mesh (e.g. akin to [LZKW10]).

Dual Surface. A deeper analysis of the properties and aes-
thetics of the implicitly generated dual surface spanned by
the apexes would be useful. This is particularly important for
double-layered folding structures where primal and dual sur-
faces are represented by panels (cf. Figure 2 right for an ex-
ample). For instance, instead of prescribing constant heights,
one could think of defining a smoothed offset band over the

base surface and constrain the apexes accordingly. This has
already rudimentarily been explored in our experiments for
adjusting the heights to meet ISF production constraints.

Polygonal Bases. In principle, the greedy rationalization
part of our algorithm could also be extended to folding
structures based on, e.g., quadrilateral or hexagonal meshes.
However, as noted in [FB81], challenges could be posed re-
garding the inverse mapping due to non-planarity or non-
convexity of the base polygons.

10. Conclusion

We have analyzed the rationalization possibilities inherent
in the design of point-folding structures and formalized the
rationalization problem accordingly. Transforming this task
into an optimization setting based on geometric intersection
problems led to an algorithm that ultimately allows for the
rationalization of point-folding structures based on triangu-
lated free-form surface designs, where gains around 90%
are realistic and achievable without altering the geometry of
the given triangle mesh. Significant reductions of fabrication
costs might thus be attained in practice. We have shown that
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Figure 12: Left: TRAINSTATION covered with elements cut from only 11 different trihedra (ISF constraints have been used
– centricity was not enforced). Middle: ALPINEHUT covered with 47 unique elements from the outside or 50 unique elements
from the inside, respectively (centricity constraints employed). Right: SEASHELL with 42 unique elements on the inside.

user-specified and material- as well as production-induced
geometric constraints can be incorporated into the process,
leading to true practical applicability of the approach.
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