
OpenVolumeMesh - A Versatile Index-Based
Data Structure for 3D Polytopal Complexes

Michael Kremer1, David Bommes2, and Leif Kobbelt1

1 Computer Graphics Group, RWTH Aachen University, Germany.
{mkremer,kobbelt}@cs.rwth-aachen.de

2 INRIA Sophia Antipolis - Méditerranée, France. david.bommes@inria.fr

Summary. We present a data structure which is able to represent heterogeneous
3-dimensional polytopal cell complexes and is general enough to also represent non-
manifolds without incurring undue overhead. Extending the idea of half-edge based
data structures for two-manifold surface meshes, all faces, i.e. the two-dimensional
entities of a mesh, are represented by a pair of oriented half-faces. The concept
of using directed half-entities enables inducing an orientation to the meshes in an
intuitive and easy to use manner.

We pursue the idea of encoding connectivity by storing first-order top-down
incidence relations per entity, i.e. for each entity of dimension d, a list of links to the
respective incident entities of dimension d−1 is stored. For instance, each half-face as
well as its orientation is uniquely determined by a tuple of links to its incident half-
edges or each 3D cell by the set of incident half-faces. This representation allows for
handling non-manifolds as well as mixed-dimensional mesh configurations. No entity
is duplicated according to its valence, instead, it is shared by all incident entities in
order to reduce memory consumption. Furthermore, an array-based storage layout is
used in combination with direct index-based access. This guarantees constant access
time to the entities of a mesh.

Although bottom-up incidence relations are implied by the top-down incidences,
our data structure provides the option to explicitly generate and cache them in
a transparent manner. This allows for accelerated navigation in the local neighbor-
hood of an entity.

We provide an open-source and platform-independent implementation of the
proposed data structure written in C++ using dynamic typing paradigms. The li-
brary is equipped with a set of STL compliant iterators, a generic property system
to dynamically attach properties to all entities at run-time, and a serializer/deseri-
alizer supporting a simple file format. Due to its similarity to the OpenMesh data
structure, it is easy to use, in particular for those familiar with OpenMesh. Since
the presented data structure is compact, intuitive, and efficient, it is suitable for
a variety of applications, such as meshing, visualization, and numerical analysis.
OpenVolumeMesh is open-source software licensed under the terms of the LGPL.

2 Michael Kremer, David Bommes, and Leif Kobbelt

1 Introduction

Most techniques in computational engineering sciences are based on discretiza-
tions of the underlying domain (e.g. 2D or 3D) in terms of meshes consisting
of polytopal elements. Depending on the application, the data structures used
to handle these meshes have to meet various requirements. Several data struc-
tures have been proposed for various applications that significantly differ in
the way they encode adjacency and/or incidence relations between the entities
of a mesh.

The extent to which navigation on the mesh is possible along with its ac-
cess time essentially depends on the amount of encoded incidence relations.
In many applications it is oftentimes sufficient to solely encode a subset of all
possible local incidence/adjacency relations. Mesh generation, for instance,
requires the data structure to be flexible in terms of local modifications to the
topology while providing means for efficiently navigating on it using local in-
cidence information. In this case, the most suitable data structure is certainly
a trade-off between fast local navigation by storing extra incidence informa-
tion on one hand and keeping the extra amount of storage space needed for
these additional information as small as possible on the other hand. When per-
forming finite element analysis on a mesh, most of this additional incidence
information is not needed anymore since in most cases it suffices to address
the nodes or cells of a mesh only leading to the need for data structures that
rather fulfill the requirement to be as compact as possible. Most of the data
models proposed in earlier work come with a set of serious limitations in favor
of being optimized for the demands of particular application fields. These limi-
tations may comprise the restriction to homogeneous meshes, i.e. meshes only
consisting of one type of element (e.g. triangles, quadrilaterals, tetrahedra,
hexahedra, etc.), or the restriction to manifold configurations only. As a con-
sequence, many engineering laboratories and researchers develop their own
data structures respecting their individual needs but clearly lacking universal
applicability.

1.1 Our Contribution

In this work, we propose a data structure for polytopal meshes that is efficient
and easy to use regarding local modification operations while being memory
efficient.

The basic concept of the presented approach adopts the idea of half-edge
based surface mesh representations as proposed by Mäntylä [23] (also see [4])
and carries it over to 3-dimensional meshes, leading to the notion of half-faces
(also described in [20]). For this, each of the faces, the 2-dimensional entities,
is represented by a pair of oriented half-faces.

The concepts of this mesh representation are simple and easy to use while
still being suitable for various application fields. In the presented data struc-
ture, incidence/adjacency relations are not encoded in terms of fixed sets of

OpenVolumeMesh 3

pointers to neighboring entities per entity as this restricts the class of repre-
sentable meshes to manifolds only. Instead, an array-based approach is used
to store top-down and optionally bottom-up incidence relations (as in the
Incidence Graph data structure described in [12]) that allows for represent-
ing non-manifold and even mixed-dimensional meshes. Only storing one half
of each paired half-entity in combination with the use of indices instead of
pointers to reference entities additionally reduces the amount of consumed
memory. For instance, in our test setting, the memory footprint of a hexahe-
dron in a regular hexahedral mesh (cf. Sec. 5) is approximately 254 byte with
bottom-up incidence relations and 133 bytes without.

We offer a complete open-source implementation of the presented data
structure. Additionally, the framework is equipped with a set of useful tools
such as a dynamic property system that can be used to attach generic proper-
ties to the entities of a mesh at run-time, a file reader/writer implementation,
and means to keep a mesh consistent after the deletion of entities. Since the
handling of the data structure is similar to OpenMesh, a half-edge based data
structure for two-manifold surface meshes introduced by Botsch et al. [3], we
name the proposed data structure OpenVolumeMesh.

2 Related Work

Data structures for special purposes, such as meshing or finite element analy-
sis, have been subject to research for many years. Therefore, a variety of con-
cepts aiming at different applications has been proposed in the last decades.
In this section we are going to provide a brief overview of recent work that
has been done in this field.

A detailed overview and comparison of available data structures for sim-
plicial and cell complexes is given by De Floriani et al. in [14] and [15]. Some
of the data structures for simplicial complexes proposed in the work of De Flo-
riani are implemented in the Mangrove Topological Data Structure Library
which is publicly available [5]. For a detailed description and comparison of
a selection of data structures focusing on mesh generation and finite element
analysis, we refer to the work of Garimella [16]. Also a concise overview and
comparison of array-based data structure concepts has been given by Alum-
baugh et al. in [1].

In [13] De Floriani et al. introduce a scalable index-based mesh data struc-
ture that can be used to represent mixed-dimensional non-manifolds. Their
approach differs from the one presented in this work in that it is restricted
to simplicial complexes. Furthermore, there is the work of Gross et al. [18],
Dobkin et al. [11], a survey on data structures for level-of-detail models by
De Floriani et al. [10], and the 3-dimensional triangulations which are part
of the CGAL library described by Teillaud in [31] that are also restricted to
simplicial complexes.

4 Michael Kremer, David Bommes, and Leif Kobbelt

In [6] Celes et al. present a compact data structure restricted to manifolds
and focusing on the requirements of finite element analysis. Also refer to [2]
for a more detailed description. Their approach only encodes vertices and
top elements causing low memory consumption at one hand but high compu-
tational costs when generating edge and face definitions at the other hand.
Related concepts are presented in the MOAB-SD data structure [30]. In [21]
a memory-optimized data structure for arbitrary cell complexes is presented
that is also restricted to manifold mesh configurations.

Another point of view offers the work from Remacle et al. in [26] where
the Algorithm Oriented Mesh Database is presented. In their approach and
its extension for parallel analysis [28], a dynamic mesh representation is used,
i.e. a representation which is able to adapt to the needs of an individual algo-
rithm. This data structure is very flexible while lacking the ease-of-use of the
presented one. An entirely different approach was introduced with the con-
cept of Nef-polyhedra as described by Granados et al. in [17]. Nef-polyhedra
in d-dimensional space are the closure of half-spaces under Boolean set opera-
tions. This concept is a powerful tool to handle non-manifold complexes that
may even contain elements of infinite volume. Yet, obviously, the approach is
hardly usable in meshing and finite element analysis applications because it
is not intuitive and due to its generality lacks efficiency. The radial-edge data
structure [33] is capable of representing non-manifold 3-dimensional meshes
but comes at the price of comparatively high storage costs.

Recently, the Combinatorial Maps data structure [7] based on the work of
Damiand [8] was released as part of the CGAL library. The underlying concept
of this data structure is the generalization of half-edges in arbitrary dimen-
sions, also see the concept of n-dimensional generalized maps as described
by Lienhardt [22]. Combinatorial Maps are used to represent the topology
of a polytopal complex whereas its extension, the Linear Cell Complex data
structure [9] which is also part of the CGAL library is used to attach geometric
information to the vertices of the complex. Due to its similarity to OpenVol-
umeMesh, we focus on the comparison to CGAL’s Linear Cell Complexes in
the evaluation section of this paper.

3 Design

3.1 Terminology

A k-manifold with boundary is a subset of the Euclidean space for which
the neighborhood of each internal point is topologically homeomorphic to an
open k-ball and the neighborhood of each boundary point to an open k-half-
ball. A combinatorial 3-dimensional polytopal complex is a mesh that consists
of a set of conforming d-polytopes, 0 ≤ d ≤ 3, with underlying incidence
and adjacency relations. The 3-dimensional polytopes of such complex are
called cells. They are topological polyhedra and thus bounded by a set of

OpenVolumeMesh 5

2-dimensional entities called faces. Each face is bounded by a set of edges,
the 1-dimensional entities of the complex. Entities of dimension 0 are called
vertices. Each edge spans a 1-manifold between a pair of distinct vertices. If an
entity of dimension d is entirely part of the boundary of an entity of dimension
greater than d they are said to be incident. Two distinct vertices are said to
be adjacent if they are incident to the same edge. Two distinct entities of
dimension d, with 1 ≤ d ≤ 3, are adjacent if they are incident to the same
entity of dimension d − 1. Those faces of a manifold 3-dimensional complex
that are incident to exactly two cells are called interior or simply inner faces,
whereas faces incident to exactly one cell are called boundary faces.

A non-manifold complex which contains parts of different dimensionality,
i.e. entities not incident to at least one entity of maximum dimension, is said
to be non-regular or mixed-dimensional. Analogously, a k-manifold complex
that does not contain any entity that is not incident to a k-dimensional entity
is said to be regular.

In this paper, V denotes the set of vertices, E the set of edges, F the
set of faces, and C the set of cells of a complex. In a combinatorial poly-
topal complex, the vertices are considered abstract entities without geometric
meaning, whereas in a geometric polytopal complex, there exists a function
p : V → Rn, usually n = 3, that assigns each vertex a unique position in
n-dimensional Euclidean space. This function is called geometric embedding.
Note that in engineering sciences this function is also referred to as geometric
classification.

3.2 Connectivity Representation

Half-Edge Based Data Structures

In half-edge based representations used for 2-manifold surface meshes, the
edges of a mesh are split into pairs of directed half-edges as described in
detail in [23] and [4]. For each half-edge a set of links (e.g. pointers) to neigh-
boring entities is stored. Usually this set comprises a link to one of the incident
vertices, the incident face, the opposite half-edge as well as an adjacent half-
edge within the current face (cf. Fig. 1). The notion of half-edges intrinsically
induces an orientation to the mesh. A face is well-defined if its incident bound-
ary half-edges form a closed and consistently oriented loop. By convention,
the front-side of a face is defined to be the one where all incident half-edges
are oriented in counter-clockwise manner. In a 2-manifold surface mesh repre-
sented by half-edges, each half-edge can be incident to either zero or one face.
Half-edges incident to no face are called boundary.

This representation benefits from the fact that many of the commonly used
iterators can be generated with little computational cost. Furthermore, this
data structure concept allows for efficient local modifications of the surface
mesh by changing only a few pointers. Hence, this concept is highly suitable
for meshing and geometry processing applications. However, one of the major

6 Michael Kremer, David Bommes, and Leif Kobbelt

drawbacks is the restriction to manifold mesh configurations since in some
meshing applications temporarily non-manifold configurations may occur.

Top-Down Incidence Relations

finc

henxt

vsrc

heopp

Fig. 1. An illustration of
a simple half-edge based
mesh. For each half-edge
a set of pointers is stored.
These pointers are links to
the following neighboring
entities: Source (or target)
vertex (vsrc), opposite half-
edge (heopp), incident face
(finc), next half-edge in face
(henxt). The incident half-
edges of each of the faces
form a closed and consis-
tently oriented loop. Usu-
ally the front-side of a face
is defined to be the one
where this loop is oriented
in counter-clockwise sense.

In the presented data structure we adopt the gen-
eral idea of representing the edges by directed
half-edges. Furthermore, we carry over this con-
cept to the faces. Each face of a mesh is then rep-
resented by a pair of oppositely oriented half-faces
(cf. [20]). A half-face as well as its orientation is
uniquely determined by its incident half-edges.

In contrast to the traditional half-edge based
data structures for 2-manifolds, in the proposed
data structure connectivity is not encoded as
unique links to neighboring entities per entity.
Instead, an (ordered) list of links, called han-
dles, to the respective incident first-order lower-
dimensional entities is stored, similar to the in-
cidence graph data structure [12]. Consequently,
each entity of dimension d as well as its orienta-
tion is defined by an (ordered) list of handles to its
incident entities of dimension d− 1. For instance,
a half-edge is uniquely defined by an ordered 2-
tuple of handles to its incident vertices (one source
and one target vertex). These relations are called
the (intrinsic) top-down incidence relations. With
the notion of orientation it is easy to check for the
consistency of an entity. For example, in analogy
to half-edge based representations, a half-face’s incident half-edges have to
be specified in an order such that their union forms a closed, connected, and
consistently oriented 1-manifold. A cell is well-defined if the union of all in-
cident half-faces forms a closed and consistently oriented 2-manifold which
is the case if each incident half-edge occurs exactly once and the number of
involved edges is half the number of involved half-edges. See Figure 2 for an
illustration of this concept.

Handles are simply indices of the entities referring to their position in the
respective linear storage container and thus allow for constant access time.
Using top-down incidence relations rather than the traditional pointer-based
half-edge approach circumvents the restriction to quasi-manifold configura-
tions.

Bottom-Up Incidence Relations

The described top-down incidence relations are complete in a sense that they
define all possible incidence and adjacency relations between each pair of

OpenVolumeMesh 7

v0

v1

v0, v1 ∈ V

he0 he1

hei ∈ V × V

hf

hf ∈ HE × . . .×HE

c

c ∈ HF × . . .×HF

Fig. 2. Illustration of the top-down incidence relations at the example of a hexa-
hedron. Each entity, except for vertices, is uniquely defined via an (ordered) list of
handles to the respective incident first-order lower-dimensional entities. The order
in which these handles are given determines the entity’s orientation.

distinct entities of a mesh. Consequently, bottom-up incidences, i.e. links to
incident entities of dimension d + 1 for an entity of dimension d, can be en-
tirely extracted from top-down incidences. However, this causes unnecessary
computational costs that scale linearly with the complexity of a mesh. Con-
sequently, it is possible to explicitly generate and cache bottom-up incidence
relations for all entities except for cells in a straightforward manner.

This is accomplished by storing a list of handles to the respective inci-
dent first-order higher-dimensional entities per entity. For instance, for each
vertex a list of incident outgoing half-edges is stored. Using these incidence
relations allows for constant access time to the higher-dimensional neighbor-
hood of an entity instead of access time in O(n), where n is the number of
elements in the mesh. When adding an entity to the mesh, bottom-up inci-
dences are only updated for the local neighborhood of the considered entity
and its incident lower-dimensional components. Note that these relations can
be computed optionally and come, if needed, at the price of extra memory
consumption. The amount of extra memory consumption scales linearly with
the mesh complexity. Refer to Section 5.1 for an analysis.

Figure 3 shows an illustration of the bottom-up incidence relations in
a simple hexahedral mesh. Note that the order of incident half-faces per half-
edge can only be determined in 3-manifold meshes where each edge is incident
to at most two boundary faces. In non-manifold mesh configurations the in-
cident half-faces are given in no particular order.

Although bottom-up incidences can be computed optionally, they are re-
quired for some of the provided iterators. Furthermore, they are needed in
order to determine the boundary of a mesh.

3.3 Storage

Internally, all entity objects are stored in array-based storage containers us-
ing handles to access them, i.e. indices referring to their position within the
respective array. As mentioned in the previous section, an entity of dimen-
sion d, except d = 0, is internally represented by a list of handles to incident

8 Michael Kremer, David Bommes, and Leif Kobbelt

Fig. 3. Illustration of the bottom-up incidence relations at the example of a simple
hexahedral mesh. Left: For each vertex a list of incident outgoing half-edges is stored
(marked in orange). Middle: For each half-edge an ordered list of incident half-faces
is stored. The half-faces are stored in counter-clockwise order with respect to the
respective half-edge pointing towards the viewer. Note that this order can only be
determined in a 3-manifold mesh. Right: For each half-face a handle to the incident
cell is stored. For all boundary half-faces a sentinel handle is stored.

entities of dimension d − 1. By construction, all opposing half-entities have
consecutive indices because they are always created in pairs. We can exploit
this fact in a way that we physically store only one of the two half-entities as
we know that the opposite of each half-entity is defined by the inverse list of
incident lower-dimensional entities. The operation of generating the opposite
of an half-entity is accomplished by the opp()-operator as described in Fig-
ure 4. When accessing a half-entity that is not explicitly stored, it is generated
on-the-fly using this operator.

v0

v1

he0 he1

he0 = (v0, v1)

he1 = (v1, v0)

he1 = opp(he0) = (v1, v0)

he0 = opp(he1) = (v0, v1)

hf1

he1

he3

he5

he7

he0

he2

he4

he6

hf0

hf0 = (he0, he2, he4, he6)

hf1 = (he7, he5, he3, he1)

hf1 = opp(hf0) =

(opp(he6), opp(he4), opp(he2), opp(he0))

hf0 = opp(hf1) =

(opp(he1), opp(he3), opp(he5), opp(he7))

Fig. 4. Description of the opp()-operator. Left: The opposite of a given half-edge is
generated by simply inverting the ordered list of handles to the respective incident
vertices. Right: The definition of the opposite of a given half-face is obtained by
inverting the ordered list of handles to the incident half-edges and replacing each
element in this list by its opposite, respectively.

OpenVolumeMesh 9

Since these handles are only indices, the inversion can be performed at
very small computational cost. The benefit of this technique is the reduction
of memory consumption for the half-edges and half-faces by a factor of two.

Access to the half-entities is accomplished via the following mapping (at
the example of half-edges):

half edge(h) =

{
he array[h2] if h is even,

opp(he array[h−12]) otherwise,

with h ∈ [0, 2 · |E| − 1],

where he array is the array in which the half-edge objects are stored, h is
a half-edge handle, and he array[i], with 0 ≤ i < |E|, evaluates to the half-
edge object stored at position i in the array. This works analogously for the
half-faces.

4 Implementation Details

y

z

x

ZF

XF

YB

Fig. 5. The half-faces of
a hexahedron induce a “vir-
tual” coordinate system if
given in a fixed order, e.g.
(XF, XB, YF, YB, ZF,
ZB), where “XF” denotes
the front-face and “XB” the
back-face on the virtual x-
axis, etc.

The presented library is entirely written in C++
using the standard template library and template
programming paradigms. At the implementation
level we make a clear distinction between the
topology and geometry of a complex. The topol-
ogy as well as the geometry is implemented in so
called kernel classes. Class TopologyKernel pro-
vides all basic topological functions and relations
of a complex including top-down and bottom-up
incidences, as well as means to add and/or delete
entities. It is designed to handle heterogeneous
polytopal meshes. If needed, it is possible to de-
rive specializations from this class in order to han-
dle e.g. homogeneous polytopal meshes of certain
kinds of polytopes, such as tetrahedra, hexahedra,
etc., where special functionality may be needed.
The library already includes a specialized topol-
ogy class for hexahedra where an additional consistency check assures that
the number of incident half-faces of a hexahedron is exactly six and that they
induce a “virtual” coordinate system as shown in Figure 5. In this figure “XF”
denotes the front-face and “XB” denotes the back-face on the virtual x-axis
oriented front-to-back. This works analogous for the two other axes.

If, in addition to the topology, a geometric embedding is needed, one may
use class GeometryKernel which inherits a specified topology kernel and which
provides a geometric embedding of the vertices into some vector space as
well as some common functions such as the computation of barycenters, edge
lengths, etc. The embedded space is specified as template parameter to the

10 Michael Kremer, David Bommes, and Leif Kobbelt

Resource
Manager

Manage mem-
ory allocation
for properties

Topology Kernel

Polyhedral mesh
base topology

Hexmesh
Topology Kernel

Hexahedral
mesh topology
specialization

...
Topology Kernel

Some other
topology kernel
specialization

Geometry
Kernel

<VectorType,
KernelType>

Provide geometric
embedding

Iterator Classes

Specialized
hexmesh iterators

Iterator Classes

STL compat-
ible iterators

Iterator Classes

Other special-
ized iterators

Specializations

Fig. 6. The class diagram of OpenVolumeMesh. All kernel classes inherit from the
resource manager which manages memory allocation for the dynamic properties.
Class TopologyKernel as well as its derived specializations represent the topol-
ogy of a polytopal complex. If needed, a geometric embedding is provided by class
GeometryKernel which inherits a topology kernel and expects the vector type of
the respective embedding as template parameter. All iterator classes expect a mesh
reference as construction parameter.

geometry kernel. The library provides some commonly used predefined vector
types that can be used for this purpose. The library also provides means to dy-
namically attach properties of arbitrary type to the entities and the mesh itself
at run-time. The memory management for these properties is implemented in
the ResourceManager class which is at the top of the inheritance hierarchy.
The (de)allocation of memory for a property works analogously to the concept
of smart pointers [29]. Furthermore, OpenVolumeMesh is equipped with many
common STL-compliant iterators allowing for navigation on the mesh. Each
specialized topology kernel may additionally provide its own set of iterators
adapted to the respective topology. Figure 6 shows an overview of the main
classes in OpenVolumeMesh as well as their inheritance relations.

In addition to the discussed core components of the data structure it-
self, OpenVolumeMesh is equipped with various useful tools. The set of avail-
able tools comprises a (de)serializer implementation that can be used to load
meshes from files as well as to save meshes to files. It uses a simple ASCII file
format that also supports serialization of properties. Also a file converter tool
is included that can be used to convert finite element mesh data generated
with the help of external tools, e.g. NETGEN [27], to OpenVolumeMesh’s

OpenVolumeMesh 11

file format. An additional attribute class can be used to mark the entities of
a mesh with several flags and which also provides a garbage collection imple-
mentation that is used to keep the mesh consistent and optionally manifold
after the deletion of a subset of entities. Many of the library’s core functions
are verified using a unit testing framework.

5 Evaluation and Comparison

In this section we evaluate the performance of the presented data structure.
Our main focus is the memory consumption as well as the CPU load caused by
a set of various algorithms computed on some meshes shown in Figure 7. Due
to its similarity, we directly compare the presented data structure to CGAL’s
Linear Cell Complex data structure [9]. The test code has been compiled using
GCC 4.6.3 with level 2 optimization. It is run on an Intel Core i7 CPU at
2.6 GHz and 6 GB of RAM.

Bunny

Type Tetrahedra

Vertices 13,247

Edges 82,841

Faces 135,361

Cells 65,766

Drill Hole

Type Hexahedra

Vertices 12,782

Edges 35,734

Faces 33,213

Cells 10,260

Buddha

Type Tetrahedra

Vertices 1,017,902

Edges 4,155,275

Faces 6,250,094

Cells 3,112,720

Fig. 7. The meshes used for the evaluation of the proposed data structure. All
meshes are 3-manifold and homogeneous with respect to their cell type.

5.1 Storage Costs

In the Linear Cell Complex data structure, the notion of darts is the exten-
sion of the classical half-edge to arbitrary dimensions. Links to neighboring
entities are represented by a set of so-called β-pointers. The entire topology
of a manifold cell complex can be represented by darts and β-pointers. Also
only darts are used to represent the entities of any dimension of a complex. In

12 Michael Kremer, David Bommes, and Leif Kobbelt

a 3-dimensional mesh, each dart contains four β-pointers, one link to an inci-
dent entity of each dimension. For a more detailed description of this concept,
refer to the work of Damiand [8, 7] and Lienhardt [22].

The number of required darts in a manifold 3-dimensional mesh can be
approximated as follows:

nD ≈ |C| · vC · vF ,

where |C| is the number of cells, vC the average cell valence, and vF the average
face valence. Furthermore, let the amount of memory (in byte) used to encode
the geometric embedding of a single vertex be denoted as sV and let sβ be the
physical size of a β-pointer. So the theoretical overall memory consumption
of a 3-manifold cell complex represented in the Linear Cell Complex data
structure is computed as follows:

sLCC = nD · 4 · sβ + |V| · sV byte, (1)

where |V| is the number of vertices in the mesh.
In OpenVolumeMesh all entities except vertices are represented by lists of

handles. The number of required handles to encode the top-down incidences
(abbr. TD) of a mesh is approximated as follows:

nTD ≈ |E| · 2 + |F| · vF + |C| · vC ,

where |E| is the number of edges and |F| the number of faces in the mesh.
For the representation of the bottom-up incidences (abbr. BU) the number of
stored handles is:

nBU ≈ |V| · vV + |E| · vE + |F| · 2,

where vV is the average vertex valence, i.e. the number of incident edges, and
vE is the average edge valence, i.e. the number of incident faces.

In analogy to Linear Cell Complexes, each vertex uses another sV bytes
of memory for its embedding. Let the size of a handle be denoted as sh. So
the overall memory consumption of a mesh represented with the OpenVol-
umeMesh data structure is computed as follows:

sOVM = (nTD + nBU) · sh + |V| · sV byte. (2)

Note that nBU is 0 when no bottom-up incidences are needed.
Assuming a β-pointer’s size to be 8 byte on a 64-bit computing architec-

ture, the theoretical size of a dart in a 3-dimensional mesh is 32 byte due to
the mentioned four β-pointers. In practice, a dart’s size turns out to be 48 byte
because it does not only encapsulate the β-pointers but also includes a bitset
used to mark darts as well as some attribute related data. In contrast, the
size of a handle in the proposed data structure is 4 byte (the size of a 32-bit
integer). In both cases, we use an embedding into 3-dimensional Euclidean
space with double precision, thus sV = 24 byte.

OpenVolumeMesh 13

Table 1 shows the amount of memory consumed at the example of the test
meshes. In all cases the total number of used darts in a Linear Cell Complex
is slightly smaller than the number of stored handles in an OpenVolumeMesh.
However, the amount of stored links (in terms of β-pointers of handles) in
Linear Cell Complexes is approximately 2 times (4 times without bottom-up
incidences) greater than in OpenVolumeMesh. In addition, the size of a dart
(48 byte) is comparatively large, so the used memory is significantly smaller
for a mesh represented with OpenVolumeMesh. Of course, these results may
vary on different computer architectures.

Linear Cell Complex Bunny Drill Hole Buddha

Number of darts 789,192 246,240 37,352,640

Total # of links (β-pointers) 3,156,768 984,960 149,410,560

KByte (cf. Eq. 1) 37,303 11,842 1,774,762

OpenVolumeMesh Bunny Drill Hole Buddha

Number of handles (TD) 834,829 265,880 39,511,712

Number of handles (BU) 857,138 286,054 42,437,681

Total # of links (handles) 1,691,967 551,934 81,949,393

KByte (cf. Eq. 2, TD only) 3,571 1,338 178,199

KByte (cf. Eq. 2, TD + BU) 6,919 2,455 343,971

Table 1. A comparison of the memory consumption of three different meshes
(cf. Fig. 7) represented in the Linear Cell Complex and in the OpenVolumeMesh
data structure. In this example, all average valences have been rounded up to the
next higher integer. One can see that even with bottom-up incidences the amount of
consumed memory is significantly smaller for meshes in OpenVolumeMesh compared
to Linear Cell Complexes.

5.2 Computational Costs

For the evaluation of the computational performance we compare timing re-
sults of six different algorithms performed on the bunny and the drill hole mesh
(cf. Fig. 7). We test two different classes of algorithms: Three algorithms that
leave the topology of the meshes static but only affect the geometry as well
as three algorithms that change the topology of the meshes.

In the first example, 100 iterations of Laplacian smoothing are performed
on the interior vertices of the meshes by simply placing each vertex into its
barycenter in each iteration step. A vertex attribute/property is used to tem-
porarily store the new position of each vertex during one iteration. In this
algorithm only the vertex positions of the mesh are modified, the topology is
left unchanged.

The second static algorithm simply computes the barycenter of each cell
by summing up the positions of all incident vertices interpreted as vectors and
dividing them by the total number of incident vertices per cell.

14 Michael Kremer, David Bommes, and Leif Kobbelt

In the third algorithm, the Scaled-Jacobian metric is evaluated per vertex
per cell of a hexahedral mesh. The Scaled-Jacobian is computed as depicted
in Figure 8.

4 5

67

0 1

23

c0 = (0, 1, 4, 3)

c1 = (1, 5, 0, 2)

c2 = (2, 3, 6, 1)

c3 = (3, 7, 2, 0)

c4 = (4, 0, 5, 7)

c5 = (5, 4, 1, 6)

c6 = (6, 2, 7, 5)

c7 = (7, 6, 3, 4)

δ(i, j, k, l) = det[
vj − vi

‖vj − vi‖
,

vk − vi

‖vk − vi‖
,

vl − vi

‖vl − vi‖
]

Scaled-Jacobian = min
0≤j≤7

δ(cj)

Fig. 8. The Scaled-Jacobian metric
for all-hexahedral meshes. For each
vertex of a cell its three incident
edges are interpreted as normalized
vectors having the vertex as origin.
For each of these triplets of vectors
an orthonormal matrix is formed such
that the vectors are the column en-
tries ordered so that they form a right-
handed coordinate system. The min-
imum determinant of these matrices
is then the desired value per cell. The
metric ranges between −1 and 1. The
higher the metric the least distorted
the hexahedron.

For the class of non-static algorithms
we test two subdivision schemes (refine-
ment) as well as a series of edge col-
lapses (decimation) on the meshes. For
the refinement operations, a 1-4-split is
performed on each element of the bunny
mesh by inserting a vertex in the cell’s
barycenter and creating 4 tetrahedra by
connecting all vertices of the tetrahe-
dron with the new center vertex. On
the hexahedral mesh, a 1-7-split is per-
formed, that is, for each hexahedron an-
other smaller hexahedron is placed in the
center of it such that both hexahedra,
the outer and the inner one, are equally
aligned. Then another six hexahedra are
created by connecting all edges of the in-
ner hexahedron with the corresponding
edges of the outer hexahedron forming
a face each. This is also known as the
pillow operation performed on each hex-
ahedron separately as described in [19].
These subdivision schemes serve as an
artificial example of refinement applica-
tions. In the third non-static algorithm
a series of edge collapses is performed on
the bunny mesh. These operations are used to simplify tetrahedral meshes.
See [32] for a detailed description of the operation. We use bottom-up in-
cidences for all algorithms, whereas for the subdivision algorithms we test
different variants: With bottom-up incidences enabled and with only a subset
of the bottom-up incidences enabled (those necessary for the computations).
Those bottom-up incidences turned off in the second variant are generated
afterwards in a third variant.

The timing results for the algorithms run on the tetrahedral bunny and
the hexahedral drill hole mesh can be seen in Figure 9.

5.3 Discussion

One can see that, in the tested static and some refinement algorithms, Open-
VolumeMesh performs better than Linear Cell Complex. Iterating over all
entities of a type is very efficient in OpenVolumeMesh since all elements are
stored in STL vectors that are coherently aligned in memory and thus benefit

OpenVolumeMesh 15

2000

4000

6000

8000

10000

12000
9780

LC
C

2490

O
V
M

ms

Laplace Smoothing
100 Iterations

400

800

1200

1600

2000

2400
2040

LC
C

90

O
V
M

ms

Compute
Barycenters

20
40
60
80

100
120
140
160
180

50

LC
C

170

O
V
M

ms

Edge Collapse
100 Iterations

800

1600

2400

3200

4000 3580

LC
C

1150

O
V
M
1

3230

O
V
M
2

13400
ms

O
V
M
3

1-4-split

500

1000

1500

2000

2500
ms

2260

LC
C

380

O
V
M

Laplace Smoothing
100 Iterations

20
40
60
80

100
120
140
160
180
ms

160

LC
C

20

O
V
M

Compute
Barycenters

20
40
60
80

100
120
140
160
180
200
ms

180

LC
C

30

O
V
M

Scaled Jacobian

50
100
150
200
250
300
350
400
450
500
ms

330

LC
C

370

O
V
M
1

480

O
V
M
2

4690

O
V
M
3

1-7-split

Fig. 9. Top row: The timing results of a selection of algorithms run on the all-
tetrahedral bunny mesh (cf. Fig. 7, left). Bottom row: The timing results of a selec-
tion of algorithms run on the all-hexahedral drill hole mesh (cf. Fig. 7, center). In
OVM1 only those bottom-up incidences needed for the computations are enabled.
In OVM2 the disabled bottom-up incidences from variant OVM1 are additionally
computed in one chunk afterwards. In OVM3 all bottom-up incidences are enabled.

greatly from modern processors’ caching strategies. In contrast, iterating over
the darts of a certain entity type in the Linear Cell Complex data structure
causes a lot of pointer dereferences and random memory access (unless they
are precached) which in general is more expensive than addressing linearly
aligned memory. Especially the static algorithms benefit from the bottom-
up incidences because they provide precached arrays of handles to an entity’s
local neighborhood. This may also be a major advantage when creating finite-
element matrices as this is a typical example of such a static application. In
the refinement applications, Linear Cell Complex supposedly benefits from the
fact that the insertion and deletion of entities is accomplished via only a few
pointer modifications. In particular when it comes to more complex mesh-
ing algorithms as in the 1-7-split, results showed that Linear Cell Complexes
perform slightly better than OpenVolumeMesh. If bottom-up incidences are
used in meshing algorithms, a lot of undue computational overhead is caused
since at every insertion and deletion of an entity all locally affected bottom-up
incidences are re-computed by extracting them from the top-down incidences
of the local neighborhood of the entity. Therefore, in these cases it is bet-

16 Michael Kremer, David Bommes, and Leif Kobbelt

ter to disable unnecessary bottom-up incidences beforehand and, if needed,
completely generate them in one chunk afterwards. However, at the example
of decimation algorithms such as the edge collapses, one can see that array-
based representations as implemented in OpenVolumeMesh suffer from the
disadvantage that entity deletions are computationally expensive (compared
to deletions from a linked list representation as in Linear Cell Complex).

Furthermore, OpenVolumeMesh also has some important limitations by
design that we do not want to hold back. Since Linear Cell Complex is the
general extension of the half-edge concept, it is suitable to handle meshes in
arbitrary dimensions. In contrast, OpenVolumeMesh can only handle meshes
of dimension up to three. Indeed, OpenVolumeMesh is suitable for many of the
common engineering applications, but there exist as well applications where
higher dimensional manifolds are needed. Furthermore, due to the fact that in
OpenVolumeMesh each half-entity is shared by its incident entities and thus
only exists once, no matter which valence, no unique intrinsic ordering of the
bottom-up incidences is provided. For example, unless explicitly computed,
there exists no specific order in which a half-edge’s incident half-faces are
given. In Linear Cell Complex these orderings are intrinsically predetermined.
Note that, in general, this order can be determined in manifold meshes only.

6 Conclusion

The results presented in the previous section are promising and legitimate
OpenVolumeMesh’s position as general purpose data structure for arbitrary 3-
dimensional polytopal meshes among other publicly available data structures.
We showed that it is suitable for a variety of applications. Furthermore, it
is possible to represent non-manifold mesh configurations including mixed-
dimensional entities. Additionally, OpenVolumeMesh is fully integrated into
the OpenFlipper geometry processing framework [24]. OpenVolumeMesh is
open-source software licensed under the terms of the GNU LGPL and available
at www.openvolumemesh.org.

7 Acknowledgment

The authors thank Hans-Christian Ebke and Marcel Campen for valuable
advice and support. We are also very grateful to Guillaume Damiand from
LIRIS, Lyon, for kind help with CGAL’s Linear Cell Complex data structure.
The bunny mesh is courtesy of the Stanford Computer Graphics Laboratory.

This work was funded by the AICES Graduate School and the European
Research Council (ERC Starting Grant “Robust Geometry Processing”, Grant
agreement 257474).

REFERENCES 17

References

[1] T. J. Alumbaugh and X. Jiao. “Compact Array-Based Mesh Data Structures”.
In: IMR. Ed. by Byron W. Hanks. Springer, 2005, pp. 485–503. isbn: 978-3-
540-25137-8.

[2] M. W. Beall and M. S. Shephard. “A General Topology-Based Mesh Data
Structure”. In: International Journal for Numerical Methods in Engineering
40.9 (1997), pp. 1573–1596. issn: 1097-0207.

[3] M. Botsch et al. “OpenMesh – a generic and efficient polygon mesh data
structure”. In: In OpenSG Symposium. 2002.

[4] S. Campagna, L. Kobbelt, and H.-P. Seidel. “Directed Edges - A Scalable
Representation for Triangle Meshes”. In: Journal of Graphics Tools 3.4 (1998).

[5] D. Canino. Mangrove Topological Data Structure. url: http://mangrovetds.
sourceforge.net.

[6] W. Celes, G. H. Paulino, and R. Espinha. “A compact adjacency-based topo-
logical data structure for finite element mesh representation”. In: International
Journal for Numerical Methods in Engineering 64.11 (2005), pp. 1529–1556.
issn: 1097-0207.

[7] G. Damiand. “Combinatorial Maps”. In: CGAL User and Reference Manual.
4.0. CGAL Editorial Board, 2012.

[8] G. Damiand. “Contributions aux Cartes Combinatoires et Cartes
Généralisées: Simplification, Modèles, Invariants Topologiques et Applica-
tions”. Habilitation à Diriger des recherches. Université Lyon 1, 2010.

[9] G. Damiand. “Linear Cell Complex”. In: CGAL User and Reference Manual.
4.0. CGAL Editorial Board, 2012.

[10] L. De Floriani, L. Kobbelt, and E. Puppo. “A Survey on Data Structures
for Level-of-Detail Models”. In: Advances in Multiresolution for Geometric
Modelling Series in Mathematics and Visualization 243 (2007). Ed. by Neil
A. Dodgson, Michael S. Floater, and Malcolm A. Sabin, p. 523.

[11] D. P. Dobkin and M. J. Laszlo. “Primitives for the manipulation of three-
dimensional subdivisions”. In: Proceedings of the third annual symposium on
Computational geometry. SCG ’87. Waterloo, Ontario, Canada: ACM, 1987,
pp. 86–99. isbn: 0-89791-231-4.

[12] H. Edelsbrunner. Algorithms in combinatorial geometry. New York, NY, USA:
Springer-Verlag New York, Inc., 1987. isbn: 0-387-13722-X.

[13] L. De Floriani and A. Hui. “A scalable data structure for three-dimensional
non-manifold objects”. In: Symposium on Geometry Processing. 2003.

[14] L. De Floriani and A. Hui. “Data Structures for Simplicial Complexes: An
Analysis And A Comparison”. In: Symposium on Geometry Processing. 2005.

[15] L. De Floriani and A. Hui. “Shape Representations Based on Simplicial and
Cell Complexes”. In: Eurographics 2007 - State of the Art Reports. Ed. by
Dieter Schmalstieg and Jiri Bittner. Prague: Eurographics Association, 2007.

[16] R. V. Garimella. “Mesh Data Structure Selection for Mesh Generation and
FEA Applications”. In: International Journal of Numerical Methods in Engi-
neering 55.4 (Oct. 2002), pp. 451–478.

[17] M. Granados et al. “Boolean Operations on 3D Selective Nef Complexes: Data
Structure, Algorithms, and Implementation”. In: Algorithms - ESA 2003. Ed.
by Giuseppe Di Battista and Uri Zwick. Vol. 2832. Lecture Notes in Computer

18 REFERENCES

Science. Springer Berlin / Heidelberg, 2003, pp. 654–666. isbn: 978-3-540-
20064-2.

[18] P. W. Gross and P. R. Kotiuga. “Data Structures for Geometric and Topolog-
ical Aspects of Finite Element Algorithms”. In: Progress in Electromagnetics
Research 32 (2001), pp. 151–169. issn: 1070-4698.

[19] P. Knupp, L. Subcase, and S. A. Mitchell. Integration of Mesh Optimization
with 3D All-Hex Mesh Generation. 1999.

[20] M. Lage et al. “CHF: a scalable topological data structure for tetrahedral
meshes”. In: Sibgrapi 2005 (XVIII Brazilian Symposium on Computer Graph-
ics and Image Processing). Natal, RN: IEEE, 2005, pp. 349–356.

[21] F. Ledoux, J.-C. Weill, and Y. Bertrand. “GMDS: A Generic Mesh Data
Structure”. In: 17th International Meshing Roundtable. United States, 2008.

[22] P. Lienhardt. “Topological models for boundary representation: a compari-
son with n-dimensional generalized maps”. In: Computer-Aided Design 23.1
(1991), pp. 59 –82. issn: 0010-4485.

[23] M. Mäntylä. An Introduction to Solid Modeling. New York, NY, USA: Com-
puter Science Press, Inc., 1987. isbn: 0-88175-108-1.

[24] J. Möbius and L. Kobbelt. “OpenFlipper: An Open Source Geometry Process-
ing and Rendering Framework”. In: Curves and Surfaces. Ed. by Jean-Daniel
Boissonnat et al. Vol. 6920. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2012, pp. 488–500. isbn: 978-3-642-27412-1.

[25] P. Murdoch et al. “The spatial twist continuum: a connectivity based method
for representing all-hexahedral finite element meshes”. In: Finite Elem. Anal.
Des. 28.2 (Dec. 1997), pp. 137–149. issn: 0168-874X.

[26] J.-F. Remacle and M. S. Shephard. “An algorithm oriented mesh database”.
In: International Journal for Numerical Methods in Engineering 58.2 (2003),
pp. 349–374. issn: 1097-0207.

[27] J. Schöberl. “NETGEN An advancing front 2D/3D-mesh generator based on
abstract rules”. In: Computing and Visualization in Science 1 (1 1997), pp. 41–
52. issn: 1432-9360.

[28] E. Seegyoung Seol and M. S. Shephard. “Efficient distributed mesh data struc-
ture for parallel automated adaptive analysis”. In: Eng. with Comput. 22.3
(Dec. 2006), pp. 197–213. issn: 0177-0667.

[29] B. Stroustrup. The C++ programming language (3. ed.) Addison-Wesley-
Longman, 1997, pp. I–X, 1–910. isbn: 978-0-201-88954-3.

[30] T. J. Tautges. “MOAB-SD: integrated structured and unstructured mesh rep-
resentation.” In: Eng. Comput. (Lond.) 20.3 (2004), pp. 286–293.

[31] M. Teillaud. Three Dimensional Triangulations in CGAL. 1999.
[32] I. J. Trotts et al. “Simplification of tetrahedral meshes”. In: Proceedings of

the conference on Visualization ’98. VIS ’98. IEEE Computer Society Press,
1998, pp. 287–295. isbn: 1-58113-106-2.

[33] K. J. Weiler. “Radial Edge Structure: A Topological Representation for Non-
manifold Geometric Boundary Modeling”. In: Geometric Modeling for CAD
Applications (1988). Ed. by M.J. Wozney, H.W. McLaughlin, and J.L. Encar-
nacao, pp. 3–36.

