
Mixed-Integer Quadrangulation

David Bommes Henrik Zimmer Leif Kobbelt

RWTH Aachen University

(a) (b) (c) (d)

Figure 1: Quadrangulation example: (a) A sparse set of conservatively estimated orientation and/or alignment constraints is selected on
the input mesh by some simple heuristic or by the user. (b) In a global optimization procedure a cross field is generated on the mesh which
interpolates the given constraints and is as smooth as possible elsewhere. The optimization includes the automatic generation and placement
of singularities. (c) A globally smooth parametrization is computed on the surface whose iso-parameter lines follow the cross field directions
and singularities lie at integer locations. (d) Finally, a consistent, feature aligned quadmesh can be extracted.

Abstract

We present a novel method for quadrangulating a given triangle
mesh. After constructing an as smooth as possible symmetric cross
field satisfying a sparse set of directional constraints (to capture the
geometric structure of the surface), the mesh is cut open in order to
enable a low distortion unfolding. Then a seamless globally smooth
parametrization is computed whose iso-parameter lines follow the
cross field directions. In contrast to previous methods, sparsely dis-
tributed directional constraints are sufficient to automatically de-
termine the appropriate number, type and position of singularities
in the quadrangulation. Both steps of the algorithm (cross field
and parametrization) can be formulated as a mixed-integer problem
which we solve very efficiently by an adaptive greedy solver. We
show several complex examples where high quality quad meshes
are generated in a fully automatic manner.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Hierarchy and geometric transformations

Keywords: remeshing, quadrangulation, parametrization, direc-
tion field, singularities, mixed-integer

1 Introduction

The problem of generating high quality quad meshes from unstruc-
tured triangle meshes has received a lot of attention recently. The
reason for this interest is that quad meshing converts raw geometric
data into a higher representation which effectively supports sophis-
ticated operations like texturing and shape modification. The diffi-
culties in quad meshing arise from the fact that the quality criteria
are diverse and their optimization often requires the consideration
of global dependencies. The most common quality aspects are:

1. Individual Element Quality: Each quad should be close to
a rectangle or square, i.e. the four corner points should be
coplanar, opposite edges should have equal length and the
four interior angles should be 90 degrees.

2. Orientation: Away from flat or umbilic points on the surface,
mesh edges should be orthogonal to the principal curvature
directions such that the dihedral angle across edges captures
these curvatures in a natural way.

3. Alignment: Sharp features of the surface should be explicitly
represented by a sequence of mesh edges in order to minimize
the Hausdorff-distance between triangulation and quadrangu-
lation and to prevent normal noise.

4. Global Structure: Singularities, i.e. vertices with valence
6= 4, are necessary to compensate for the Gaussian curva-
ture. Their number and position must be chosen carefully to
capture the global geometric structure since otherwise the el-
ement quality and orientation is heavily affected.

5. Semantics: In some applications additional requirements
emerge from the intended usage of the 3D model and cannot
be derived from the geometry alone. In finite element simula-
tion of deformation processes, e.g., the optimal mesh depends

on the rest geometry as well as on the external forces and con-
straints.

A quadrangulation algorithm should optimize the output simulta-
neously with respect to all of these criteria. However, while ele-
ment quality, orientation and alignment are rather simple, the global
structure is much more difficult to handle. Consequently, we focus
on automatically finding good singularity positions which optimize
the global structure of the quadrangulation. Although the overall
method is designed to run fully automatic, the user can still manu-
ally override some decisions, e.g. by manually shifting a singularity
wherever it is necessary to take semantical side-conditions into ac-
count (see criterion 5).

Many recent methods use smoothed (discrete) principal curvature
directions to guide the quad meshing. The problem with these ap-
proaches is that the final singularity positions are effectively deter-
mined by the local smoothing operator applied to the initial curva-
ture estimates. Especially in flat or umbilic regions where the initial
directions have a random orientation, clusters of singularities may
occur. Another problem is oversmoothing which may destroy the
original orientation information in feature regions.

To overcome these problems we propose to select only the most rel-
evant and dominant directions as depicted in Figure 1 (a), which can
be detected, e.g., by conservative thresholding of some anisotropy
measure or by manual selection. Starting with these sparsely dis-
tributed direction constraints we then search for the smoothest in-
terpolating cross field. The singularities in this interpolating cross
field are mostly due to the surface metric deviating from a planar
configuration and not caused by incompatible constraints.

In the second phase of our algorithm the smooth cross field is used
as input for a global parametrization method. We cut the mesh open
such that we create a surface patch with a disk-like topology where
all cross field singularities lie at the boundary. Subsequently, we
can compute two piecewise linear scalar fields u and v whose gra-
dients follow the given cross field. Finally, a consistent quadran-
gulation can be extracted since by construction the parametrization
is compatible at the cuts and all singularities are mapped to integer
positions along the boundary of the parameter domain.

In both steps of the algorithm the task can be formulated in terms of
a mixed-integer problem. These are linear problems where a subset
of the variables is continuous (∈ R) and the others are discrete
(∈ Z). In Section 2 we therefore present a greedy solver for this
class of problem.

1.1 Related Work

A lot of effort has been spent in the last years to compute high qual-
ity quadrangulations. Since there are several nice surveys [Alliez
et al. 2005; Hormann et al. 2007], we will discuss here only the
most related works. Generally, there are two classes of approaches,
namely explicit quadrangulations and parametrization based tech-
niques. Examples of explicit approaches are [Alliez et al. 2003;
Marinov and Kobbelt 2004] which trace curves along the princi-
pal curvature directions or [Lai et al. 2008] which iteratively trans-
forms a triangular mesh into a quad-dominant mesh. For all such
methods it is difficult to obtain coarse meshes consisting of quads
only. Most structure aligned parametrization techniques are guided
by vector or cross fields usually arising from estimated principal
curvature directions [Cohen-Steiner and Morvan 2003] or a manual
design process [Zhang et al. 2006; Fisher et al. 2007]. Especially
cross fields are promising since they can capture singularities of
fractional index which naturally arise in quadrangulations.

Cross fields can be seen as four coupled vector fields. Con-
sequently, smoothing algorithms must be able to handle the dis-
cretely switching vector assignments, which can be achieved by a
non-linear angle formulation like in [Hertzmann and Zorin 2000].
However, such methods often get stuck in local minima and the
result strongly depends on the initial solution.

Recently Ray et al. proposed a formalism to handle N-symmetry
direction fields [Ray et al. 2008b] in a linear manner, enabling the
computation of globally smooth solutions. However, all singularity
positions must be prescribed by the user. In contrast we search for
singularity positions which enable the smoothest cross field for a set
of sparse directional constraints. Besides the automatic singular-
ity placement, another contribution of our approach is the smooth
handling of multiple directional constraints, not possible in [Ray
et al. 2008b]. Their user-given hard angle constraints already fix
the smoothness between multiple constraints, and do not exploit
that the orientation of cross fields is invariant w.r.t. rotations by
multiples of 90 degrees and that there might be rotations leading
to a smoother cross field.

In the case of highly detailed geometry a smooth cross field nat-
urally requires lots of singularities which can be prevented by the
smoothing algorithm of Ray et al. [Ray et al. 2008a]. In contrast to
their approach, we interpret the cross field as an infinitely fine quad-
rangulation and compute all necessary singularities. The merging
of singularities is later controlled by the parametrization which can
perform singularity cancellations w.r.t. the given target edge length.

Structure aware Parametrization techniques can be divided
into two classes, namely high-level methods where the quad orien-
tation is controlled by a rough patch layout and low-level methods
where a desired orientation is given per triangle. Dong et al. used
the Morse-Smale complex of Laplacian eigenfunctions [Dong et al.
2006] to derive high-level patch layouts. Their method was ex-
tended in [Huang et al. 2008] to enable the control over singularity
positions, size, orientation and feature alignment. However, com-
puting coarse high-quality results is still involved and requires an
experienced user. Tong et al. used high-level user-designed singu-
larity graphs to enrich the space of harmonic one-forms and com-
pute globally smooth parametrizations [Tong et al. 2006]. Once
a suitable singularity graph is provided by the user, these har-
monic parametrizations produce nice quadrangulations. By allow-
ing affine transition functions and optimizing the charts, [Bommes
et al. 2009] improved the distortion of the parametrization.

Ray et. al proposed a fully automatic non-linear parametrization
technique which is guided by a low-level vector field and assumes
a single chart for each triangle [Ray et al. 2006]. Kälberer et al.
developed a linear algorithm by mapping a cross field to a single
vector field on a branched covering [Kälberer et al. 2007]. As in
our parametrization, a triangle based energy is optimized and the
singularity positions are completely defined by the input cross field.
Their intermediate parametrization, i.e. the integral of the hodge de-
composed vector field which is incompatible at the cuts, is exactly
the continuous solution of our mixed-integer formulation. How-
ever, ensuring compatibility at the cuts is done in a different way.
Instead of rounding the coefficients of the transition functions at
once, we apply our proposed greedy strategy which improves the
resulting quality. A more detailed comparison will be given later in
Section 6.

Automatic cone singularities In the setting of conformal
parametrizations, cone singularities as introduced by Kharevych et
al. [Kharevych et al. 2006] can be placed in a greedy manner at
the local extrema of discrete conformal scaling factors [Ben-Chen
et al. 2008]. These positions can be further improved by a non-

linear Gauss-Seidel solver [Springborn et al. 2008]. Both methods
are designed to compute conformal parametrizations with a small
number of cone singularities and lower distortion. Unfortunately,
even when restricting to cross field cone singularities, the resulting
positions are often not sufficient for structure aligned parametriza-
tions where singularities are additionally induced by the desired ori-
entations, e.g. the leftmost red singularity lying on the flat part of
the fandisk in Figure 1. Furthermore, supporting orientational con-
straints isn’t straight forward in this formulation.

1.2 Contributions

We propose an adaptive greedy solver for mixed integer problems
which increases the computation time compared to a continuous
linear system solver only moderately. This is achieved by iterative
rounding combined with local Gauss-Seidel updates in order to re-
duce the local residui.

We formulate the quadrangulation problem as a two-step process,
cross field generation and global parametrization, which both re-
duce to a mixed-integer problem.

Our cross field generator is able to take sparsely scattered as well
as densely distributed orientation constraints into account. By
smoothly interpolating between the constraints the system can auto-
matically place singularities at geometrically meaningful locations.

Our new globally smooth parametrization technique allows us to
generate seamless quad meshes while satisfying various constraints
like orientation, alignment, and integer singularity locations. An
optional anisotropic stretch metric allows us to trade squareness of
the quads for improved feature alignment.

2 A Greedy Mixed-Integer Solver

The minimization of a quadratic energy E(x1, . . . , xn) is called
an integer problem if x ∈ Zn. In this paper we encounter more
general problems where some of the unknown variables x1 . . . xk
are integers and the others xk+1 . . . xn are real numbers. Integer
and mixed-integer problems are usually very hard to solve exactly,
see [Floudas 1995; Gorry et al. 1970] for more details. Hence, a
common way to find an approximate solution is to first compute the
continuous minimizer, which simply requires the solution of the lin-
ear system {∂E/∂xi = 0 | i = 1 . . . n}. Then the first k variables
of the solution vector are rounded to the nearest integer and a new
minimizer is computed by assuming these rounded values x1 . . . xk
to be constant.

While this direct rounding is a common practice, we observed that,
depending on the number of integer variables and on their mutual
dependencies, the obtained solution can deviate significantly from
the true solution. Hence, we propose an alternative approach which
we call greedy rounding. The idea is to round the integer variables
one at a time, followed by an immediate update of the continuous
part of the solution.

Let x0 be the continuous solution to the linear system and let xi,
i ≤ k be the variable which causes the smallest absolute error if we
round it to the nearest integer. Then we can set xi to this integer
value and update the linear system by assuming xi as constant. We
solve again for the remaining variables x1 and continue to eliminate
in each step that variable which causes the least round-off error until
all variables x1 . . . xk have an integer value.

The motivation for this approach is based on the assumption that
small round-off errors will only have little impact on the final solu-
tion and that by recomputing the free variables after every rounding
step we will compensate these errors.

The obvious drawback of greedy rounding is that we have to
solve k (= number of integer variables) + 1 linear systems, which
increases the computation time prohibitively. However, as we said
above, small round-off errors only have a small impact on the solu-
tion which can be exploited to design an efficient adaptive solver.

2.1 Adaptive Mixed-Integer Solver

The first idea is to use an iterative solver like the Conjugate Gradient
or BiCG (for non-symmetric matrices) which after each rounding
reuses the previous solution as the initial value. But we can do even
better. We observed that for sparse matrices, typically arising in the
case of triangle meshes, it is often sufficient to update a small local
set of variables. In this context local means that we have a short
path in the dependency graph of all variables. Therefore, we start
with a local Gauss-Seidel iteration. That means after variable xi is
rounded we push all variables whose Gauss-Seidel update depends
on xi into a queue. These are exactly the nonzero elements of the
row Ai. Now in each iteration step we fetch the first element from
the queue, say xk, and recompute the local residuum

rk = bk −
nX
j=1

Akjxj

If |rk| is larger than a prescribed tolerance, e.g. 10−6, we update
the variable xk → xk − rk/Akk and push all variables which de-
pend on xk onto the queue. The iteration terminates if the queue is
empty, i.e. all local residui are within the prescribed tolerance, or a
maximum number of iterations is reached.

Algorithm 1 Local Gauss-Seidel
1: xi = round(xi)
2: push nonzero(Ai) into queue
3: iter = 0
4: while ((not queue empty) and (iter < maxiter)) do
5: iter = iter + 1
6: xk = pop(queue)
7: rk = bk −

Pn
j=1Akjxj

8: if (|rk| > tolerance) then
9: xk = xk − rk/Akk

10: push nonzero(Ak) into queue
11: end if
12: end while

If the local Gauss-Seidel solver does not converge (iter ≥
maxiter), we first switch to a more global Conjugate Gradient
solver and finally, if it is necessary, to a sparse Cholesky solver
[Chen et al. 2006]. Such time consuming Sparse-Cholesky com-
putations are only necessary when a variable with large impact is
rounded. Our experiments showed that this adaptive solver is more
efficient than restricting to pure iterative solvers. More detailed
statistics about the solver are given in Section 6.

In the future we plan to publish our implementation of the presented
solver which can be applied to arbitrary quadratic mixed-integer
problems. For maximum flexibility, we added the handling of lin-
ear constraints, by internally eliminating a variable for each inde-
pendent constraint.

3 Salient Curvature Directions

In the vicinity of flat or umbilic points, the principal curvature di-
rections are ill defined. Consequently, using the principal curvature
directions as a dense guiding field for quadrangulation leads to sub-
optimal results. Typical artifacts are noisy directions with badly

d1


e

d 2

d3 d 4

(a) (b)

Figure 2: (a) The four cross field directions in a triangle are
parametrized by the angle θ w.r.t. a local reference edge e. (b)
Depicts a smooth cross field in the vicinity of a cube corner, where
the red arrows reflect the corresponding period jumps.

placed singularities or even clusters of unnecessary singularities.
Generally, these artifacts cannot be removed by cross field smooth-
ing algorithms, since the configurations often form local minima.
Therefore, in contrast to other methods, we aim at finding the
smoothest cross field, interpolating only sparse directional con-
straints that can be found in a reliable manner.

The directions we want to identify are in the spirit of feature lines,
as computed in [Hildebrandt et al. 2005]. However in our case a
simple heuristic which robustly identifies parabolic regions is suf-
ficient. Since parabolic regions are equipped with a well-defined
orientation they are the best candidates to guide a quadrangula-
tion. Parabolic regions can be identified by measuring the relative
anisotropy of the principal curvatures

τ =
||κmax| − |κmin||

|κmax|
∈ [0, 1]

which is defined to be zero, if κmax is zero.

Computing meaningful curvatures on discrete triangle meshes is
involved. A common technique is evaluating the shape operator
[Cohen-Steiner and Morvan 2003] of a geodesic disk near a point
p. But depending on the radius r we will get different estimates.
To achieve a more stable result we compute for each point a set of
shape operators Sr with different geodesic radii r ∈ [r0, r1] and
select the most promising one with a simple heuristic. A shape
operator Sr is said to be valid if all shape operators in the interval
[r − w, r + w] have a relative anisotropy larger than a prescribed
threshold τmin and a mean curvature larger than K to exclude
almost flat regions. For all points which provide a valid shape
operator, we add a directional constraint. If there are multiple
valid candidates for a single point we choose the one with the
most stable direction, i.e. the one with the minimal angle deviation
within its interval.

Fortunately all necessary coefficients of this heuristic have an in-
tuitive meaning. Appropriate directions should be stable within a
range depending on the target edge length h. Following this obser-
vation we choose w = h/4. Furthermore in our experiments we
chose r0 to be the average length of all triangle edges, r1 = h,
τmin = 0.8 and K = 0.1/bs, where bs is the radius of a bounding
sphere. In general the quadrangulation result is not very sensitive
w.r.t. these parameters, since similar cross fields can be generated
with a large range of different sparse constraints, generated with
slightly different parameters.

4 Smooth cross fields

In this section we will use the elegant formalism for N-Symmetry
direction fields [Ray et al. 2008b] where a cross field (N = 4)
on a triangle mesh M = (V,E, F) is defined by an angle-field
θ : F 7→ R assigning a real number to each face and a period-jump
field p : E 7→ Z assigning an integer to each edge. The main idea
is to use the angles θ to determine a single unit length vector-field
which then extends to a symmetric cross field by applying three ro-
tations of π

2
as shown in Figure 2 (a). Because a cross consists of

four vectors between neighboring triangles it is necessary to iden-
tify which vector of the first cross is associated with which vector
of the second cross. All these topological issues are handled by the
period-jumps, as illustrated in Figure 2 (b) for a smooth cross field
near the corner of a cube. In this section we will summarize only
the discrete results about cross fields that we need in this paper. For
more details see [Ray et al. 2008b].

4.1 Measuring cross field smoothness

After fixing the topology, measuring the smoothness of a cross field
reduces to measuring the smoothness of one of the four rotation
symmetric vector-fields.

The smoothness of a unit vector-field can be measured as the inte-
grated squared curvature of the direction field. Following [Ray et al.
2008b], on a discrete triangle mesh it turns out to be simply the sum
of all squared angle differences between neighboring triangles:

Esmooth =
X
eij∈E

(θi − θj)2

where θi is the angle of triangle i and neighboring angles are rep-
resented in a common coordinate frame, which is always possible
by flattening both triangles along their common edge. However,
for a surface with non-zero Gaussian curvature it is not possible to
find a global coordinate frame. Therefore, a local coordinate frame
is used for each triangle, where the x axis is identical to the first
edge e of the triangle (Figure 2(a)). Thus, by incorporating the
coordinate transformations between neighbors we can express the
smoothness energy of a cross field:

Esmooth =
X
eij∈E

(θi + κij +
π

2
pij| {z }

θi w.r.t. frame j

−θj)2 (1)

where κij ∈ (−π, π] is the angle between both local frames and
pij is the integer valued period jump across edge eij . The cross
field index of a vertex can be computed as

I(vi) = I0(vi) +
X

eij∈N(vi)

pij
4

with the constant integer valued base index

I0(vi) =
1

2π

0@Ad(vi) +
X

eij∈N(vi)

κij

1A
and Ad(vi) is the angle defect of vertex vi. Only singularities of
the cross field have a nonzero index which is always a multiple
of 1

4
[Ray et al. 2008b], e.g. 1

4
and − 1

4
for quadrangulation

configurations corresponding to valence 3 and 5 respectively.



uT
vT

[u0v0]

[u1v1] [u2v2]

(a) (b)

Figure 3: (a) The three constrained faces (red) are the roots of
dual spanning trees (green) covering the respective Voronoi cells.
Each cell contains only one constraint and along all branches of
the tree zero period jumps can be propagated without changing the
total smoothness energy. (b) With the angle θ w.r.t. the local ref-
erence direction (green) the cross field directions uT , vT can be
extracted and used for the parametrization. In the computation two
linear scalar functions (u, v) are sought whose gradients are ori-
ented consistently with the cross field directions.

4.2 Finding a smooth, interpolating cross field

Equipped with these basic definitions we are ready to formulate
the optimization problem. Given a mesh M and a subset of faces
Fc ⊂ F with constrained directions θi = θ̂i, we search for the
smoothest interpolating cross field, i.e. we want to minimize (1).
Accordingly we have to find an integer pij per edge and a real
valued angle θi per face.

Reducing the Search Space: Up to here there is a whole space of
equivalent minimizers to the energy (1). To understand this, assume
we have already computed a minimizer which for one triangle pro-
vides the angle θ0 and the three period jumps p01, p02 and p03. If
we now rotate the vector by a multiple of π

2
, i.e. set θ̃0 = θ0 +k · π

2
and compensate this change by updating the affected period jumps
to p̃0i = p0i − k, the smoothness energy is unchanged. We can
repeat this procedure for all free triangles f ∈ F \ Fc. Conse-
quently the solution can be made unique by fixing one period jump
per free triangle to an arbitrary value, e.g. zero, without changing
the energy of the minimizer. Care should be taken not to fix edges
whose dual path connects two constrained faces, as done in [Ray
et al. 2008b], or closes loops because in these cases the cross field
curvature along this path would be fixed to an arbitrary value and is
not the intended result of the minimizer.

A valid set of edges, whose period jumps are allowed to be set to
zero, can be found by constructing a forest of Dijkstra trees of the
dual mesh as shown in Figure 3. Each constrained face in Fc is the
root of a separate tree such that no tree connects constrained faces.
The number of fixed edges is exactly |F \ Fc| since starting from
the constrained faces each other face of the mesh is conquered by
adding a single edge. Notice that no dual loop can be closed by a
tree structure, such that we end up with a valid set of edges which
can be fixed to zero period jumps without changing the energy of
the minimizer.

Obviously there are many other valid sets of edges which could be
fixed. The reason why we use trees living in the discrete Voronoi
cells of the corresponding constrained faces is that this choice min-
imizes the length of a path to its corresponding constraint and so
improves the accuracy of the greedy mixed-integer solver.

Additionally to the period jumps on tree edges each period jump
between two adjacent constrained faces fi and fj can be fixed to

Figure 4: Greedy rounding yields a smaller smoothness energy and
fewer singularities (bottom), whereas the direct rounding produces
unnecessary singularities and a higher energy (top). Note that these
are the singularities and the field as they emerge from the solver, no
singularity optimization has been carried out.

pij = round(2/π(θ̂j− θ̂i−κij)), since pij is only part of a single
quadratic term in (1), which is independent from other variables.

In summary we end up with a mixed-integer problem consisting of
|F \Fc| ≈ 2|V | real valued variables θi and |E| − |F \Fc| ≈ |V |
integer valued variables pij .

Mixed-Integer Formulation: To apply the greedy mixed-integer
solver from Section 2 it is sufficient to assemble the system of linear
equations by setting the gradient of the energy (1) to zero:

∂Esmooth
∂θk

=
X

ekj∈N(fi)

2(θk + κkj +
π

2
pkj − θj)

!
= 0 (2)

∂Esmooth
∂pij

= π(θi + κij +
π

2
pij − θj)

!
= 0 (3)

Notice that the values on edges are antisymmetric, i.e. pij = −pji
and κij = −κji, which can lead to sign changes in equations (2)
and (3). For all variables which are not fixed, we set up a row and
assemble all of them into a single matrix. After applying our greedy
mixed-integer solver, the result is a smooth cross field where the in-
teger valued period jumps define type and position of all singulari-
ties. Figure 4 compares the result of our greedy solver with that of a
direct rounding, where red and blue spheres represent singularities
with negative and positive index respectively.

In practice we observed that some singularity positions, especially
those in flat regions, can sometimes be improved by a local search
algorithm, as described in the next section.

Local Search Singularity Optimization: In a postprocess we op-
tionally check for each singularity, if the energy can be decreased
by moving it to a neighboring vertex. Moving a singularity along
an edge eij means changing the corresponding period jump pij .
Notice, that by this operation only the right-hand-side of the linear
system is changed. Consequently we can precalculate the sparse
Cholesky factorization of this matrix once and then compute solu-
tions for different right-hand-sides efficiently [Botsch et al. 2005].

p

(a) (b)

Figure 5: (a) By placing a cut to a cone singularity p (here of index
1
4

) a distortion free unfolding of the patch is possible. (b) The upper
image shows two directions of the cross field. In the lower image
the mesh is cut into disk topology along the green edges, such that
these directions can be consistently oriented on each side of the cut.

5 Global Parametrization

We now compute a global parametrization, i.e., a map from the
given mesh M to some disk-shaped parameter domain Ω ∈ R2.
Since the parametrization should be piecewise linear, it is sufficient
to assign a (u, v) parameter value to each vertex — more precisely
to each triangle corner — in the mesh.

The parametrization should be locally oriented according to the op-
timized cross field from Section 4 which implies that the gradients
of the piecewise linear scalar fields u and v defined on the meshM
should minimize the local orientation energy

ET = ‖h∇u− uT ‖2 + ‖h∇v − vT ‖2

for each triangle T . Here h is a global scaling parameter which
controls the edge length of the resulting quad mesh. The vectors uT
and vT are two orthogonal vectors in T corresponding to the cross
field directions θ and θ + π/2. Since the cross field is defined only
up to rotations by π/2 we will have to specify which of the four
possibilities we are picking in each triangle such that the proper
compatibility conditions are satisfied across each edge in the mesh.

The global orientation energy is then defined as the integral of ET
over the entire meshM

Eorient =

Z
M

ET dA =
X
T∈M

ET area(T). (4)

The minimizer of this quadratic functional is obtained by solving
the sparse linear system which sets all the partial derivatives of
Eorient to zero.

Cutting the mesh: In order to be able to compute a proper
parametrization minimizing Eorient we have to cut open the mesh
M, such that we obtain a patch that is topologically equivalent to a
disk. An additional requirement is that all singular vertices must lie
on the cut, i.e. at the boundary of the parameter domain. The rea-
son is that the angle defect of a singularity cannot be represented by
an inner vertex of the parametrization as depicted in Figure 5. We
compute an appropriate cut graph in two steps.

First we start from a random triangle and grow a topological disk
by constructing a dual spanning tree. Thus the primal of all non
spanning tree edges is already a cut graph which transforms M
into disk topology. The size of this cut graph can be significantly
reduced by iteratively removing all open paths.

In the second step paths connecting each singularity to the cut graph
are added. This can be done by successively applying Dijkstra’s
shortest path algorithm.

At the end of the two cutting steps we have a triangle mesh patch
where all the singularities are located at the boundary. If a sin-
gularity is not a leaf node of the cut graph then it appears several
times along the boundary. In order to compute a parametrization we
have to find a planar embedding of this boundary polygon as well
as all the interior vertices. The location of the mesh vertices in the
parameter domain is computed by minimizing Eorient, however,
there are a number of consistency constraints that have to be taken
into account.

Integer location of singularities: By allowing a singularity to be
in general position, it would cause an n-sided face instead of a
valence-n vertex. Therefore to guarantee a pure quadrangulation,
we have to snap all singularities to integer locations in the param-
eter domain. This means that the overall parametrization task is
now a mixed-integer problem which we solve by our mixed-integer
greedy solver from Section 2.

Cross boundary compatibility: In order to avoid visible seams
across the cut paths on the surface we have to make sure that the
quad structure on both sides of a cut edge is compatible. This is
guaranteed by allowing only a grid automorphism as a transition
function. This requires that the (u, v) parameter values on both
sides of a cut edge are related by

(u′, v′) = Roti90 (u, v) + (j, k)

with integer coefficients (i, j, k).

The rotation coefficient in the transition functions can easily be
computed by propagating a globally consistent orientation in the
cross field, as illustrated in Figure 5 . Since after the cutting, all
interior vertices of the mesh are regular, we can start at a random
face and propagate its orientation in a breadth first manner to all
the neighboring faces. This will establish a zero-rotation across all
inner edges. The rotations Roti90 across the cut edges can be found
by simply comparing the orientations in neighboring faces.

After fixing the rotations, the cross boundary compatibility condi-
tions can be incorporated into the optimization scheme as linear
constraints. Therefore for each cut edge e = pq we introduce two
integer variables je, ke to formulate the four compatibility condi-
tions:

(u′p, v
′
p) = Rotie90 (up, vp) + (je, ke)

(u′q, v
′
q) = Rotie90 (uq, vq) + (je, ke)

Hence, in total we add two integer variables and eliminate four con-
tinuous variables per cut edge.

Applying our mixed-integer greedy solver to this parametrization
task can be understood in an intuitive way. After computing an
all-continuous solution, which corresponds to the unconstrained
parametrization, we iteratively snap the singularities to integer lo-
cations.

5.1 Anisotropic Norm

In practice exact orientation is often more important than exact edge
length. The reason is that changing the orientation along a highly
curved feature line, the quadrangulation quality will drop off dra-
matically due to normal noise. The orientation can be improved
by less penalizing stretch which is in the direction of the desired
iso-lines. This can be achieved by an anisotropic norm

‖(u, v)‖2(α,β) = αu2 + βv2

which penalizes the deviation along the major directions with dif-
ferent weights. Notice, such a diagonal metric is sufficient since we

(a) (b) (c)

Figure 6: The parametrization in (a) is not aligned to the sharp
edges of the object. Using the anisotropic norm the quads are al-
lowed to stretch in order to better align with a given input field
as shown in (b). In (c) alignment constraints have been imposed,
leading to perfectly preserved features.

use (uT ,vT) as the local coordinate frame in each triangle.

ET = ‖h∇u− uT ‖2(γ,1) + ‖h∇v − vT ‖2(1,γ)

with γ ≤ 1. Figure 6 (b) shows an example, where the orientation
of the parametrization is improved by using the anisotropic norm.

5.2 Feature Line Alignment

Sharp feature lines of the input mesh should be preserved in the
quadrangulation. Given a subset S ⊂ E of triangle mesh edges, the
necessary alignment conditions can be incorporated in a straight-
forward way. First of all, alignment requires correct orientation.
Therefore, while computing the cross field, all edges in S are used
as orientational constraints in both adjacent triangles. Additionally
to the correct orientation for alignment, a constant integer coordi-
nate along the edge is necessary, which guarantees that this edge is
preserved in the quadrangulation. Each alignment condition for an
edge pq can be formulated independently. If the cross field direc-
tion uT is already oriented along the alignment edge, we end up
with a simple condition for the v parameter values

vp = vq ∈ Z

which ensures that pq is mapped to an integer valued iso-line. The
u = const case is handled analogously. Consequently, for each
alignment edge a single variable can be eliminated and the remain-
ing integer variables can be handled by the greedy mixed-integer
solver. Figure 6 (c) shows an example, where all feature edges are
aligned.

Notice that for meshes with boundaries we can exploit the presented
alignment functionality to guarantee that the boundaries are pre-
served in the quadrangulation and thus prevent jagged boundary
lines (see Figure 9).

5.3 Singularity Relocation

By computing a parameterization with the given target edge length
h , new requirements have to be taken into account which cannot
be anticipated by the cross field computation, since it is indepen-
dent from h. Examples are singularities which are too close to each
other, a boundary or a given alignment edge. Other aspects are sym-
metries which are irrelevant for a smooth cross field, but important
for a quadrangulation. Therefore, to achieve maximal quality it can
be necessary to relocate the singularties w.r.t. the requirements of
the parameterization. This can be done with a local search algo-
rithm similar to Section 4.2. Depending on how much time is avail-
able we can restrict the search to the best local candidate, i.e. the
closest neighbor in the parametrization, or evaluate the quality of
all neighbors. In each step it is necessary to recompute the smooth
cross field w.r.t. the relocated singularity as well as the parametriza-
tion. In the cross field computation the cross field indices are now

(a) (b) (c)

Figure 7: In (a) the minimized orientation energy produces flipped
triangles, which can be removed by local stiffening (b). The chosen
weighting is shown in (c) and decreases from orange to blue.

prescribed by linear constraints. Movements are performed if the
overall quality improves, i.e. the energy (4) decreases.

The obvious drawback of this singularity relocation is its heavy
computational cost. Fortunately in all of our examples the initial
singularity positions were already sufficient. However, coarsely
quadrangulating meshes with fine details will require singularity
relocation.

5.4 Local Stiffening

The parametrization is the result of a quadratic energy minimiza-
tion. Thus despite the global optimum, for a few triangles it might
happen that the metric distortion gets very high or even worse, that
the orientation of a mapped triangle flips. Figure 7 shows an ex-
ample where such a problem occurs in the vicinity of a singularity.
The idea of local stiffening is to add an adapted triangle weighting
w(T) into the energy formulation to penalize high local distortions,
yielding:

Eorient =
X
T∈M

w(T)ET area(T)

This weighting, which is initialized to one, can be updated it-
eratively, as described in the following, until the quality of the
parametrization is sufficient.

The metric distortion is characterized by the singular values σ1 and
σ2 of the Jacobi matrix as described in [Hormann et al. 2007]. Fur-
thermore to penalize flips we evaluate the orientation of a triangle

τ = sign(det

»
u1 − u0, u2 − u0

v1 − v0, v2 − v0

–
)

where (ui, vi) are the vertex parameter coordinates in counter-
clockwise ordering. We measure the local distortion of each tri-
angle by

λ = |τ σ1

h
− 1|+ |τ σ2

h
− 1|

which respects the edge length h. Finally, we update the weight
of a triangle by evaluating a uniform Laplacian defined on the dual
mesh

w(T) ← w(T) +min{c · |4λ(T)|, d}

with the proportionality constant c and a maximal allowed update of
d, which we chose as c = 1 and d = 5 in all our examples. Notice
that directly using the distortion instead of the Laplacian wouldn’t
be a good idea. The reason is that the weighting would reflect the
global stretch distribution, which is necessary for a globally consis-
tent quadrangulation, instead of the desired local distortions. Sub-
sequently, we increase the smoothness of the weighting field w(T)
by a few uniform smoothing steps, which in general leads to nicer
quadrangulations.

(a) (b) (c)

Figure 8: The presented algorithm is robust w.r.t. bad triangles (a)
and can produce meaningful singularities in the presence of noise
(b) and on smooth offset geometries (c).

Figure 9: Quadrangulation of the BEETLE model having 11
boundaries. On the right the parametrization is shown. Naturally,
due to the occurrence of − 1

4
singularities, parts of the flattening

are overlapping.

6 Comparisons and Results

The backbone of our approach is the mixed-integer solver intro-
duced in Section 2, which is used for the computation of both the
smooth cross field and the parametrization. Although it is often
necessary to round tens of thousands of variables for the cross field
computation, the timings in Table 1 show that this can be done effi-
ciently using the proposed solver.

The example in Figure 4 shows that the greedy rounding leads to a
significantly smoother cross field with less singularities compared
to the direct rounding approach. All our experiments confirmed this
behavior.

A comparison between our approach and QuadCover [Kälberer
et al. 2007] is carried out in Figure 10. In both examples the same
input cross field and target edge length have been used. The FAN-
DISK comparison clearly shows the benefit of alignment on mod-
els with sharp feature edges, while the limitations of direct round-
ing are especially noticeable on the BOTIJO. On complex objects
having many singularities or when remeshing with very coarse tar-
get edge length the direct rounding generates many ”twists” and
non-injectivities in the parametrization, such that the extraction of
a hole-free quad mesh is not always possible. However, the combi-
nation of greedy rounding and local stiffening allow us to automat-
ically generate consistent, hole-free quadrangulations at almost any
resolution and with significantly less ”twists”.

The spectral approach [Huang et al. 2008] also produces oriented
and aligned parametrizations with few singularities, however the
Morse-Smale Complex sometimes fails to capture the detailed
structure of the surface. This can lead to an unfavorable stretch

Figure 10: A comparison between the technique described in
this paper (left) and the QuadCover approach by [Kälberer et al.
2007] (right) for a sharp object (FANDISK) and a smooth object
(BOTIJO). In both comparisons the same target edge length and the
same cross field generated by our mixed-integer formulation were
used.

Figure 11: ROCKERARM comparison between the technique de-
scribed in this paper (top) and the spectral quadrangulation ap-
proach by [Huang et al. 2008] (bottom). The upper mesh has 9413
faces and 36 singularities, the lower one has 9400 faces and 26
singularities.

FERTILITY

ROCKER ARM

LEVER

BOTIJO

Figure 12: Results of our Mixed-Integer Quadrangulation ap-
proach

Table 1: Statistics of the Greedy Mixed-Integer Solver used for
computing the cross field (Section 4) and the parametrization (Sec-
tion 5). Dim refers to the initial dimension of the linear system, #Int
is the number of integer variables, #IS and #DS is the number of
calls to iterative and direct solvers respectively. Time is the total
time for the solution. Due to the global nature of the parametriza-
tion, the local and iterative search seldom lead to a gain of effi-
ciency and therefore Time refers solely to the direct solver.

of the quads affecting the angle as well as the edge length distribu-
tion. A comparison between [Huang et al. 2008] and our approach
can be found in Figure 11.

Quadrangulations computed by our technique typically have an-
gle distributions with a sharp peak around 90◦ and an edge length
distribution centered around the target edge length. However, for
aligned meshes, like the FANSIDK in Figure 10, further peaks,
which reflect the unavoidable stretch may occur in the edge length
histogram.

The geometrically complex examples shown in Figure 12 underline
the ability of our method to compute coarse, oriented quadrangula-
tions with naturally placed singularities.

All examples were computed on a 3.0GHz standard PC, the statis-
tics are shown Table 1. Interestingly the cross field computation is
less demanding to compute than the parametrization, even though
it requires practically two orders of magnitude more roundings.
This effect is due to the locality of the cross field energy (Equation
(1)). Rounding a period jump mainly affects a local neighborhood
on the mesh and the solution can be efficiently updated by local
Gauss-Seidel iterations. Whereas, rounding a corner point in the
parametrization domain usually has global impact. Motivated by
this observation and the typically low number of integer variables
for the parametrization, we restricted the greedy solver to sparse
Cholesky updates.

Finally Figure 8 demonstrates the robustness of the mixed-integer
quadrangulation approach w.r.t. different (degenerate) representa-
tions of a given object. The mesh in Figure 8 (a) contains almost
1000 triangles with vanishing area (the close-up shows a part of
the mesh where about 8 triangles are nearly colinear), the model in
Figure 8 (b) has been subjected to normal noise with a magnitude
of 0.3% of the bounding box diagonal and the right most model
(Figure 8 (c)) was offset, yielding a mesh without sharp corners.
These fandisks and most of the other triangle meshes used in this
work (along with the extracted quad meshes) can be found in the
supplementary material of this paper.

7 Conclusion and Future Work

We have presented a complete quadrangulation method which starts
with a pre-process that finds reliable orientation constraints. Based
on these, possibly sparsely distributed, constraints we compute a
smooth cross field on the surface. The global optimization produces
a set of singularities that are automatically placed at geometrically
meaningful locations. The cross field is used as input for a global

parametrization technique which cuts the surface open into a disk-
like patch and then computes a planar embedding which takes ori-
entation, alignment, as well as boundary compatibility constraints
into account.

In the future we would like to integrate both parts of the algo-
rithm into a single optimization scheme. Instead of making the
parametrization smooth by least squares approximation of a smooth
cross field it would be more natural to smooth the parametrization
directly. However this would most probably lead to a non-linear
optimization.

One limitation of our method is that for coarse quadrangulations of
highly complex models with many cross field singularities, the local
singularity relocation in the parametrization step is dominating the
overall computation time. Here we would like to develop a more
global search strategy.

Acknowledgements

This work has been supported by the UMIC Research Cen-
tre, RWTH Aachen University. We would like to thank Fe-
lix Kälberer and Matthias Nieser for their helpful support,
Tamal Dey, Muyang Zhang, AIM@SHAPE and Carlos Hernández
(www.tsi.enst.fr/3dmodels) for providing us with datasets, Jan
Möbius for the geometry processing framework OpenFlipper.org
and the reviewers for their competent and helpful comments.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LEVY, B.,
AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3, 485–493.

ALLIEZ, P., UCELLI, G., GOTSMAN, C., AND ATTENE, M. 2005.
Recent advances in remeshing of surfaces. Research report,
AIM@SHAPE Network of Excellence.

BEN-CHEN, MIRELA, GOTSMAN, CRAIG, BUNIN, AND GUY.
2008. Conformal flattening by curvature prescription and metric
scaling. Computer Graphics Forum 27, 2 (April), 449–458.

BOMMES, D., VOSSEMER, T., AND KOBBELT, L. 2009. Quadran-
gular parameterization for reverse engineering. Lecture Notes in
Computer Science, to appear.

BOTSCH, M., BOMMES, D., AND KOBBELT, L. 2005. Efficient
linear system solvers for mesh processing. In IMA Conference on
the Mathematics of Surfaces, Springer, R. R. Martin, H. E. Bez,
and M. A. Sabin, Eds., vol. 3604 of Lecture Notes in Computer
Science, 62–83.

CHEN, Y., DAVIS, T. A., HAGER, W. W., AND RAJAMANICKAM,
S. 2006. Algorithm 8xx: Cholmod, supernodal sparse cholesky
factorization and update/downdate. Technical Report TR-2006-
005, University of Florida.

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Restricted
delaunay triangulations and normal cycle. In SCG ’03: Pro-
ceedings of the nineteenth annual symposium on Computational
geometry, 312–321.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND
HART, J. C. 2006. Spectral surface quadrangulation. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Papers, 1057–1066.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM TOG 26, 3, 56.

FLOUDAS, C. A. 1995. Nonlinear and Mixed-Integer Optimization
Fundamentals and Applications. Hardback.

GORRY, G., SHAPIRO, J., AND WOLSEY, L. 1970. Relax-
ation methods for pure and mixed integer programming prob-
lems. Cambridge, M.I.T., Cambridge.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
517–526.

HILDEBRANDT, K., POLTHIER, K., AND WARDETZKY, M. 2005.
Smooth feature lines on surface meshes. In SGP ’05: Proceed-
ings of the third Eurographics symposium on Geometry pro-
cessing, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 85.

HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh pa-
rameterization: theory and practice. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses, 1.

HUANG, J., ZHANG, M., MA, J., LIU, X., KOBBELT, L., AND
BAO, H. 2008. Spectral quadrangulation with orientation and
alignment control. ACM Trans. Graph. 27, 5, 1–9.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
cover - surface parameterization using branched coverings. Com-
puter Graphics Forum 26, 3 (Sept.), 375–384.

KHAREVYCH, L., SPRINGBORN, B., AND SCHRÖDER, P. 2006.
Discrete conformal mappings via circle patterns. ACM Trans.
Graph. 25, 2, 412–438.

LAI, Y.-K., KOBBELT, L., AND HU, S.-M. 2008. An incremen-
tal approach to feature aligned quad dominant remeshing. In
SPM ’08: Proceedings of the 2008 ACM symposium on Solid
and physical modeling, 137–145.

MARINOV, M., AND KOBBELT, L. 2004. Direct anisotropic quad-
dominant remeshing. In PG ’04: Proceedings of the Computer
Graphics and Applications, 12th Pacific Conference, IEEE Com-
puter Society, Washington, DC, USA, 207–216.

RAY, N., LI, W. C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P.
2006. Periodic global parameterization. ACM Trans. Graph. 25,
4, 1460–1485.

RAY, N., VALLET, B., ALONSO, L., AND LÉVY, B. 2008. Ge-
ometry aware direction field design. Tech. rep., INRIA - ALICE
Project Team. Accepted pending revisions.

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-
symmetry direction field design. ACM Trans. Graph. 27, 2, 1–13.

SPRINGBORN, B., SCHRÖDER, P., AND PINKALL, U. 2008. Con-
formal equivalence of triangle meshes. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, 1–11.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN,
M. 2006. Designing quadrangulations with discrete harmonic
forms. In Proc. SGP, Eurographics Association, 201–210.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field
design on surfaces. ACM Trans. Graph. 25, 4, 1294–1326.

