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Dual Loops Meshing: Quality Quad Layouts on Manifolds
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Figure 1: Overview of our Dual Loops Meshing approach that constructs coarse all-quadrilateral patch layouts with high geometric fidelity.
Guided by a field of principal curvature directions (a), a collection of transversally crossing loops on the surface is generated in a geometry-
aware manner (b, c). These loops partition the surface into polygonal regions whose valences are intimately related to their total curvature. By
dualizing the graph formed by these loops, we obtain a coarse all-quadrilateral layout (d) whose irregular nodes are located in geometrically
plausible regions. This layout can, for instance, be exploited for the generation of quad meshes with a high-level patch structure (e).
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Abstract

We present a theoretical framework and practical method for the
automatic construction of simple, all-quadrilateral patch layouts
on manifold surfaces. The resulting layouts are coarse, surface-
embedded cell complexes well adapted to the geometric structure,
hence they are ideally suited as domains and base complexes for
surface parameterization, spline fitting, or subdivision surfaces and
can be used to generate quad meshes with a high-level patch struc-
ture that are advantageous in many application scenarios. Our ap-
proach is based on the careful construction of the layout graph’s
combinatorial dual. In contrast to the primal this dual perspective
provides direct control over the globally interdependent structural
constraints inherent to quad layouts. The dual layout is built from
curvature-guided, crossing loops on the surface. A novel method to
construct these efficiently in a geometry- and structure-aware man-
ner constitutes the core of our approach.
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1 Introduction

In recent years a wealth of automatic quad-meshing techniques has
been presented [Ray et al. 2006; Dong et al. 2006; Kälberer et al.
2007; Huang et al. 2008; Bommes et al. 2009; Zhang et al. 2010].
These enable the construction of high-quality meshes – with con-
trolled element alignment, orientation, sizing, aspect ratio, etc. In
conjunction with the inherent ability of orienting elements accord-
ing to principal curvature directions the (local) regularity and (low-
level) structuredness of quad meshes provide benefits over tradi-
tional triangle meshes in numerous application areas. So far, how-
ever, significantly less attention has been paid to the high-level,
global structure of the resulting meshes. On this level, each quad
mesh implicitly defines a unique coarsest underlying patch layout
with quadrilateral patches, also termed base complex or singular-
ity graph (cf. Figures 2 and 1e). Its patch borders are defined by
those sequences of edges which, within the quad grid, form straight
connections between irregular vertices [Bommes et al. 2011].

In practice, the quality of this patch layout of a quad mesh is of
interest for numerous reasons. It is desired to be coarse and sim-
ple (while still appropriately respecting the underlying geometry)
in order to enable the application of efficient adaptive and multi-
level solver schemes in the context of quad-based Finite Element
simulation and to expose the high level of structuredness expected
by applications like mesh compression and Fourier or wavelet based
processing. In the field of character animation designers are inter-
ested in quad meshes with good so-called edge-flow (a loose con-
cept closely related to geometry-aware, simple base complexes) as
these tend to reduce deformation artifacts and distortions. In this
context a simple layout can furthermore directly be exploited as
convenient domain for purposes of texture and detail mapping. This
leads us to further applications, not directly involving quad meshes,
that benefit from simple quad layouts in their own right: for in-
stance, such layouts provide appropriate domains for rectangular
surface parameterization, reverse engineering, higher-order patch
(e.g. NURBS) fitting, subdivision surfaces, and other scenarios.

Many state-of-the-art quad-meshing techniques contain no aspect
aimed at considering the global structure, hence often meshes with
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Figure 2: Typical quad meshes created by a field-guided param-
eterization approach [Bommes et al. 2009] and their base com-
plexes. On the left the patch borders are highlighted. On the right
patches are visualized by individual colors – Figure 1e shows a
very similar quad mesh of this object (same resolution, same num-
ber and type of irregular vertices) created by our method which has
a much simpler base complex.

very complex patch layouts (cf. Figure 2) are produced, unless
sharp surface features or additional structural constraints [Myles
et al. 2010] fortuitously enforce a simple one. It may be tempt-
ing to try “forcing” these methods into creating coarse layouts by
prescribing large quad sizes such that the resulting mesh itself can
serve as layout ab initio. However, this is hardly possible since
(in contrast to usual quad-meshing assumptions) quads of widely
differing sizes and aspect ratios are required to achieve a simple,
coarse layout while simultaneously respecting a geometry-aware
irregularity constellation (cf. Figure 12). As these patch parame-
ters (size, aspect ratio, orientation) interdepend in a complex global
manner, approaches relying on their local a priori determination
[Zhang et al. 2010; Kovacs et al. 2011] are not suitable either.

In this paper we analyze the fundamental structural constraints and
geometric requirements which constitute the general class of quad
layouts and, based on that, present a novel method that directly con-
structs geometry-aware layouts on manifolds. In this context, struc-
tural simplicity and geometric fidelity of the layout tend to be op-
posing objectives and need to be balanced appropriately. In essence,
our method is based on the careful construction of the combinato-
rial dual of the quad layout in a way that is sensitive to the input’s
geometry and ensures structural consistency. Figure 1 provides a
quick overview over the stages of the procedure.

Our key contributions are:

• A novel framework to describe, identify, and manipulate struc-
turally valid and geometrically faithful duals of quad layouts.

• Efficient methods for the geometry-aware construction of em-
bedded loops that are the key components of the dual layouts.

• A practical greedy algorithm based on the framework to auto-
matically and efficiently perform the layout construction.

2 Related Work

Quad Meshing State-of-the-art quadrangular remeshing meth-
ods, which are based on, e.g., periodic parameterizations [Ray et al.
2006], Morse-Smale theory [Dong et al. 2006; Huang et al. 2008],
or mixed-integer optimization [Kälberer et al. 2007; Bommes et al.
2009], are usually targeted at creating meshes with uniformly
sized elements. Extensions and modifications have been presented
[Zhang et al. 2010; Kovacs et al. 2011] which allow for the incorpo-
ration of sizing and aspect ratio fields to adjust the element proper-
ties to local properties of the input geometry. Control over the base
complex and its simplicity is not available or limited in these meth-
ods; those based on spectral surface analysis [Dong et al. 2006] do
create meshes with a two-level hierarchy, but the uniformity of the
coarser level largely restricts its overall simplicity.

Coarse Quad Layouts Eck and Hoppe [1996] proposed a base
complex construction for the purpose of spline patch fitting based
on pairing of the faces of a triangular base complex. A similar ap-
proach is chosen by Boier-Martin et al. [2004]. Control over the
geometric fidelity is quite limited due to the nature of these ap-
proaches. Daniels et al. [2009] propose to convert a triangle mesh
to a quad mesh by one step of Catmull-Clark subdivision and then
simplify the result using quad mesh decimation techniques. Driving
this decimation in a way that the resulting coarse mesh is geomet-
rically faithful and irregular vertices end up in plausible locations
similarly remains a problem. In this context Panozzo et al. [2011]
use special kinds of pre-computed sizing fields (called fitmaps) to
control a decimation process.

Due to the apparent complexity of the problem, several researchers
proposed a manual [Bommes et al. 2008; Krishnamurthy and Levoy
1996] or semi-automatic, assisted [Tong et al. 2006; Tierny et al.
2011; Ji et al. 2010] creation of quad layouts. This approach to
the problem can be advantageous as layout design decisions might
depend on the intended use of the layout and cannot always be de-
rived from geometry alone. However, manually designing a good
all-quadrilateral layout turns out to be an intricate and cumbersome
task even for experienced users due to the involved complex global
interdependencies and structural constraints that are to be consid-
ered, underlining the utility and benefit of an automatic approach.

Automatic methods have been presented for related, simpler vari-
ants of the problem, like quad-dominant layouts [Marinov and
Kobbelt 2004], polygonal layouts [Cohen-Steiner et al. 2004], or
partitions with T-junctions [Eppstein et al. 2008; Myles et al. 2010].

Base Complex Simplification Recently, the problem has been
approached “reversely”: instead of creating a layout from scratch,
one starts from a fine quad mesh base complex and attempts to suc-
cessively simplify it by iteratively adjusting its structure. Bommes
et al. [2011] and Tarini et al. [2011] achieved respectable results
with this strategy. In Section 7 we discuss the respective advan-
tages and disadvantages in comparison to our technique.

Distantly related are general quad mesh decimation methods,
e.g. [Daniels et al. 2008], that are, however, not specifically targeted
at considering the base complex.

3 Problem Definition

We first introduce some basic definitions and terminology and then
state our objective in more detail. A polygonal patch layout Q is a
2-dimensional cell complex embedded on an orientable 2-manifold
M. Its 0-cells are called nodes, its 1-cells arcs, and its 2-cells
patches. The term valence signifies the number of arcs incident to
a node or patch. If all patches have valence 4, the layout is a quad
layout. In this context, nodes of valence 4 are called regular, all
others irregular. At regular nodes, two pairs of opposite arcs can
be defined in the intuitive way. A maximal chain of successively
opposite arcs is called separatrix if it starts and ends at (not neces-
sarily distinct) irregular nodes. Figure 3 illustrates these definitions.

The quality of a quad layout is a measure that, to some extent, de-
pends on its purpose. Still, we can clearly identify a set of prop-
erties that well describe the general suitability of a layout from the
application point of view:

• Geometric fidelity: patches should map to planar rectangles
with low parametric distortion

• Structural simplicity: the number of patches should be small

The first point implies that it is advantageous if patches are close
to developable, their corner angles close to right, and their arcs
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Figure 3: Illustration of a layout’s primal and dual components.

close to geodesic. These are important criteria as strongly deviating
patches tend to lead to distortions or degradations in one form or the
other in most applications. The second point expresses the general
objective of domain simplicity. In many cases these two objectives
are opposing – our objective is to find layouts with a good balance in
this regard. We can already conclude that aligning patch arcs with
principal curvature directions and positioning nodes with suitable
valences in regions of certain total curvatures helps in achieving
high quality layouts. Numerous of the mentioned quad remeshing
and layout construction methods are based on this insight.

3.1 Motivation

Before we go into detail on our method, we provide some insight
into our motivation for ultimately working in the dual setting.

Probably the most obvious attempt to construct a quad layout given
a set of nodes with prescribed valences consists in connecting
these by incrementally constructing the separatrices (i.e. arcs or arc
chains) from node to node. It turns out, however, that the structural
consistency requirements (“only valence-4 patches”) are hard to
control when proceeding in this local, incremental manner: when-
ever a cycle in the graph of nodes and separatrices is closed during
the process, strict conditions relating the valence of its patches to
the number and valence of inlying nodes have to be met – oth-
erwise new irregular nodes would have to be introduced in order
to still be able to obtain a quad-only layout. Besides the fact that
these additional nodes might be geometrically implausible (caus-
ing distortion), they further imply additional separatrices that are
to be inserted. Hence, it can become difficult to generate a com-
plete layout without introducing an excessive number of irregular
nodes. This primal, separatrix-based layout construction approach
is furthermore highly order-dependent: early greedy decisions can
render a layout unacceptable long before this is realized.

3.2 Our Approach

The key observation that allows us to avoid the problems of
separatrix-based approaches is the fact that the layout consistency
is much easier ensured when not working in the primal but in the
dual setting. In more detail, this means we do not directly construct
the primal layout graph of separatrices connecting irregular nodes
but its combinatorial dual, which we eventually dualize to obtain
the primal. We construct this dual graph from the arrangement of
a set of crossing loops (closed curves) on the surface (cf. Figure 1
b,c for an example). Murdoch et al. [1997] already emphasized that
the dual view of a quad mesh as intertwined loops is advantageous
because it directly exhibits the global connectivity constraints in-
volved. The central question now is how such a dual layout can be
generated from the infinitely dimensional space of loops. In Sec-
tion 4 we explain, in a continuous setting, the theory behind our
construction of arrangements of loops on manifolds that allows us
to achieve layouts with geometric fidelity as well as structural con-
sistency and simplicity. Afterwards, in Section 5, we describe the
implementation in a discretized setting on triangulated manifolds.

4 Dual Loops

The combinatorial dual D of a quad layout Q is a 4-regular cell
complex, i.e. every dual vertex has four incident dual edges. Hence,
at every vertex there are two pairs of opposite edges, and the set of
all edges uniquely decomposes into a disjoint collection of cycles
of successively opposite edges. Note that these dual edge cycles
correspond to (possibly non-simple, i.e. self-crossing) cyclic quad
strips in Q. It is this dual view of a quad layout as a collection
of dual cycles that builds the fundament of our approach: we con-
struct an arrangement of loops on the surface which then constitute
the dual cycles forming a dual graph D. The loop intersections de-
fine this graph’s vertices and the loop segments between any two
intersections define its edges. The regions of the induced partition
ofM consequently define its faces (cf. Figure 3).

Principally, the concept of dualization has no inherent geometric
component. But note that, while dualization of graphs is a purely
combinatorial concept, dualization of surface embedded cell com-
plexes additionally has a topological component, involving, e.g., the
homotopy classes of the embedded edges, which affect the topology
of the dual. For our setting this means that the detailed geometry
of the dual loops we construct does not play a major role for the
final primal layout Q that is obtained by dualization of D, but we
still have to construct these dual loops in a geometry-aware man-
ner as their embedding directly implies the topology of D. Hence,
we can furthermore very naturally exploit the geometry of the dual
created in this manner to derive an initial embedding for the primal.
This implies a loose geometric relation between primal and dual,
e.g. a primal arc is often roughly orthogonal to its dual edge, a dual
edge strip runs through a primal quad strip roughly parallel to its
boundary arcs, etc., which we can exploit in the following.

4.1 Loop Arrangements

Let us consider which properties an arrangement of loops needs to
fulfill in order to induce a valid dual graph in the described way:

(1) loop intersections are transversal (i.e. non-tangential),
(2) no three loops intersect in one point,
(3) each region is bounded by at least 2 loop segments,
(4) each region has disc topology.

The first two properties guarantee that each intersection induces a
unique valence 4 vertex, the third ensures that no dual face has a va-
lence < 2, which would result in primal layout nodes with valence
1 that are most often considered unacceptable; if necessary, we can
also raise this lower bound to disallow valence 2 nodes. The fourth
point ensures a valid embedding with topologically simple faces.

If these properties are fulfilled, at least a valid dual graph is in-
duced. Additionally we are interested in quality. Considering the
abovementioned geometric relation between dual and primal ele-
ments the quality criteria listed in Section 3 can roughly be trans-
lated from the primal to the dual setting as follows:

(5) loop intersections should be close to orthogonal,
(6) loops should follow principal curvature directions,
(7) each region’s valence should reflect its total curvature,
(8) loops should be short and few in number.

Item (5) encourages rectangular patches, (6) and (7) encourage
principal curvature alignment and send irregular primal nodes to
surface regions of suitable curvature, allowing for low patch-
rectangle mapping distortions. Item (8) directly translates into
structural simplicity as the total length of primal arcs and dual edges
is closely related in practice. Note that these items are soft require-
ments promoting quality while (1)-(4) are mandatory conditions.
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The loop construction process has to be driven very carefully to
yield arrangements which fulfill (1)-(4) and support (5)-(8). As an
example of the delicacy, consider that once any irregular region has
been created by a set of loops, this irregularity can never be elimi-
nated again by the addition of further loops; they can only split the
region, but irregular sub-regions inevitably remain.

4.2 Principal Curvature Fields

Constructing loops in a way that they are aligned with directions of
minimal and maximal curvature directly serves fulfilling properties
(1), (5), and (6) (and indirectly also (7)). These directions can con-
veniently be represented as a cross field (i.e. 4-symmetry direction
field) [Ray et al. 2008; Ray et al. 2009; Palacios and Zhang 2007]
onM. In order to base our construction on globally consistent di-
rections that are also well-defined in umbilic regions, in practice
we make use of the interpolation approach proposed by Bommes et
al. [2009] to create consistent smooth cross fields. Figure 1a shows
a visualization of such a field. We will see that this representa-
tion also serves in fulfilling the other requirements as the singular
points of the cross field additionally encode integral curvature in-
formation in their indices, hence indicate favorable positions and
valences for irregular nodes. In detail, due to the curvature-driven
construction (and due to the Poincaré-Hopf theorem for cross fields
[Ray et al. 2008]), the singularities can intuitively be understood
as local representatives of an imagined clustering of the surface’s
total curvature: a singularity with index i represents 2πi of total
curvature. In essence, it is this relation that will ultimately serve
to fulfill (7). A singularity index i is an integer multiple of 1

4
intu-

itively signifying the “angular defect” (as fraction of 2π) of the field
when turning around the singularity once. In the quad mesh context
a corresponding node’s valence k is thus naturally related to it by
i = 1 − 1

4
k [Kälberer et al. 2007; Bommes et al. 2009]. Hence,

indices 1
4

and − 1
4

are by far the most common in our context.

4.3 Branched Coverings

Locally and away from singularities, a smooth cross field FC on
M can be decomposed into four direction fields. This does not
hold globally. However, as shown by Kälberer et al. [2007] for
the case of frame fields, we can construct a four-sheeted branched
covering surfaceM4 ofM with branch points induced by the sin-
gularities, and canonically lift the cross field FC onM to a single
smooth direction field FD onM4. Analogously, we can construct
a two-sheeted branched covering surface M2 of M and lift the
cross field to a single smooth line field FL on it. Figure 4 illustrates
this schematically. Note that M4 is also a two-sheeted branched
covering surface ofM2. In the following we will deal with curves
and loops onM4; note that they project uniquely ontoM2 andM
by means of the respective covering maps – for brevity we will not
always mention this projection explicitly but simply refer to them
and their projection images by the same name. These covering con-
structs significantly simplify our further elaborations by allowing
us to work with cross, line, or direction fields as needed.

M
M2

M4

Figure 4: Illustration of a small region of M with its branched
coveringsM2 andM4 and the cross, line, and direction field.

4.4 Loops on Branched Coverings

Now consider what happens when we attempt to create a princi-
pal direction aligned loop through a point p onM by tracing. We
choose one of the four directions from the local cross field by lifting
p onto one of the four sheets ofM4, trace a curve through the di-
rection field FD onM4 until we get back to the starting point, and
project the curve fromM4 toM. The obvious problems are that
the curve might never return, and if it does, it will probably be very
long and far too complex to provide a use-
ful loop for our purpose – we have to trade
some deviation from the field for short-
ness. This is illustrated here on a cylindri-
cal structure: the blue curve exactly fol-
lows the field and spirals over the surface,
whereas the green curve slightly deviates
from the field so as to be able to form a short loop.

Let l : [0, b] → M4 denote a regular curve in arc-length parame-
terization which does not run exactly through a branch point (where
the direction field is not defined). We define a combined measure
cα that rates such curves based on their direction fidelity and short-
ness, balanced by the parameter α ∈ [1,∞):

cα(l) =

∫ b

0

√
cos2 θ(s) + α2 sin2 θ(s) ds

where θ(s) is the angle between the curves’ tangent and the de-
sired direction FD(l(s)) at l(s). A similar measure has also been
employed by Tarini et al. [2011] in the primal setting to rate separa-
trices. We are interested in non-trivial loops (closed curves) which
minimize this measure for a prescribed α (called minimal loops)
subject to certain constraints that we introduce in the following. As
extreme cases, α =∞ leads to the abovementioned complex mini-
mal loops, whereas α = 1 leads to field oblivious geodesics. Values
around 30 proved to provide a good balance for our purpose.

In order to obtain loops which are not only short and field-
aligned, but furthermore can be combined to structurally valid
loop arrangements we impose the following constraint: we re-
strict the set of non-trivial regular loops on M4 to the set L
of admissible loops that fulfill θ(s) ∈ [−π

4
, π
4
), i.e. we limit

tangent deviations from the principal curvature directions. This
effectively partitions the tangent space at each
point into four “sectors”, each describing the ad-
missible loop tangents on one of the four sheets
ofM4. For α � 1 minimal loops are very un-
likely to violate this anyway, but imposing it as
hard constraint allows us to guarantee important
properties in the following. Furthermore, we define an arrangement
of loops onM4 that have no intersections onM2 to beM2-simple.
Note thatM2-simple arrangements of loops meeting θ ∈ [−π

4
, π
4
)

contain no tangential intersections, thus fulfill (1). This is illustrated
in Figure 5 and elaborated in the proof of Theorem 4.1.

The following two theorems state the further beneficial proper-
ties of the θ(s) ∈ [−π

4
, π
4
) constraint in conjunction with M2-

simplicity. Proofs can be found in the appendix. Let I(R) denote
the sum of singularity indices lying in a region R:

Theorem 4.1 If a regionR ⊂M (bounded by loop segments) with
disc topology in an M2-simple arrangement of admissible loops
has k loop intersections on its boundary, then I(R) = 1− 1

4
k.

This relation between singularity indices and region valences im-
plies an indirect relation between a region’s total curvature and its
valence since the cross field singularities loosely represent local
curvature integrals by their indices. This relation “region valence
k↔ index 1− 1

4
k” is exactly the desired one mentioned in Section
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M

M2

M4

Figure 5: Left: two loop segments (red, blue) have tangential con-
tact onM; this is possible asM2-simplicity is violated. Middle:
the loops areM2-simple, but the θ∈ [−π

4
,π
4
) constraint is violated

allowing for a tangential intersection. Right: M2-simplicity and
the θ-constraint together only allow for transversal intersections.

4.2. Ultimately, this is beneficial for the quality of our final primal
patches as the valences of irregular primal nodes will “fit” the ge-
ometry. It further shows that no unnecessary irregular nodes will
arise as regions with index sum 0 are always regular (i.e. bounded
by four loop segments).

Now, the idea underlying the dual layout construction is to choose
loops from the set L of admissible loops such that singularities get
separated from each other, aiming at having each singularity lie in
a separate irregular region – all regions free from singularities shall
be regular. We can achieve this separation in the following sense:

Theorem 4.2 In an M2-simple arrangement of loops any region
R with I(R) > 1

4
containing multiple singularities of index 1

4
or

1
2

, and any region R with I(R) < − 1
4

containing multiple singu-
larities of index − 1

4
can be split into regions with smaller |I(R)|

by adding further admissible loops without introducing irregular
regions outside R and without violatingM2-simplicity.

This means we can guarantee that singularities can suitably be sep-
arated by admissible loops for most practically relevant cases. This
is a beneficial result as it shows that we are usually not bound to
accept irregular nodes of very high or low valence in the primal
layout that are not explicitly required by corresponding surface fea-
tures. The theorem further extends to several cases which include
multiple higher-order singularities (which generally are quite rare
in practice). Note that even an exceptional case where singular-
ities cannot be separated completely does not cause any structural
problems: any region, even if it contains multiple singularities, sim-
ply turns into a single primal node during primalization (cf. Sec-
tion 4.6).

Let us briefly summarize which insights we gained regarding ful-
fillment of the eight required/desired properties: (1) and (2) are
ensured by M2-simplicity in conjunction with the θ ∈ [−π

4
, π
4
)

constraint, (5) and (6) are respected by minimizing cα for α � 1,
(3) can be achieved due to Theorem 4.2 if there are no singularities
of index ≥ 3

4
(which normally is the case in practice, and can even

be ensured by dividing such singularities), (7) is fulfilled accord-
ing to Theorem 4.1. The shortness part of (8) is governed by using
cα-minimal loops. For (4) “each region has disc topology” there is
no theoretical guarantee that this can always be achieved on objects
of non-zero genus; in fact, one can artificially create pathological
cross fields such that loops with arbitrarily large |θ| are necessary
to cut the surface to discs (cf. the cross field depicted in Figure 4
left in [Kälberer et al. 2007] for a basic example). These are, how-
ever, “unnecessarily unsmooth” and, in practice, do not arise from
the employed principal directions guided field construction accord-
ing to all our experiments. Rigorous guarantees could potentially
be achieved by including suitable holonomy constraints [Lai et al.
2010] in the construction process in a future work.

In conclusion, we know that it should be possible to construct de-

sired dual layouts from admissible loops, and the remaining ques-
tion is how this can effectively be done, i.e. how to choose few ad-
missible loops from the set L that fulfill M2-simplicity and suit-
ably separate singularities. For this we propose a greedy strategy as
described in the following section.

4.5 Greedy Loop Selection Strategy

The primary objective for loop selection is the separation of cross
field singularities. In favor of layout simplicity this should be
achieved with few loops. We construct the arrangement of loops
in an incremental manner by iteratively adding further loops that do
contribute to the goal of singularity separation. In this process, to
ensureM2-simplicity, a new loop may not intersect the previously
constructed ones onM2. Let L(A) denote the subset of loops from
L which, onM2, do not intersect the loops of an arrangement A.

For the purpose of deciding whether a loop contributes to singu-
larity separation, imagine the set of all paths on M connecting a
pair (a, b) of singularities without crossing any loop of an arrange-
ment A (cf. Figure 6). As separation is a topological concept, we
are not interested in these paths’ geometry but solely in their ho-
motopy classes. Let H(A, a, b) denote the set of these classes, and
H(A) = ∪a6=b∈SH(A, a, b), where S is the set of all singularities.
A loop l ∈ L(A) is said to be (A, h)-cutting if h ∈ H(A) but
h /∈ H(A ∪ {l}). Intuitively, l actively increases the “level of sep-
aration” by cutting all connections of class h when adding it to A.
Figure 6 illustrates this abstractly on a simple torus; Figure 9 shows
a less abstract yet simple example (in the discretized setting).

Note that H(A) can be infinite (and a single loop can be (A, h)-
cutting for an infinite number of classes h). In Section 5.2, which
deals with an implementation of the following algorithm, we de-
scribe how this is handled in practice.

p1

p2

p3a b
p2

p3a b

s

a
b

s

t

h1/2/3∈H(∅, a, b) h2/3∈H({s}, a, b) H({s, t}, a, b) = ∅

Figure 6: Left: three paths p1/2/3 of three exemplary homotopy
classes hi = [pi] connecting singularities a and b are depicted. The
loop arrangement A is still empty. We have h1/2/3 ∈ H(∅, a, b).
Middle: All paths of h1 cross the loop s, thus h1 /∈ H({s}, a, b).
Hence, s is (∅, h1)-cutting. Right: All paths of h2 and all paths of
h3 cross loop t, thus h2/3 /∈ H({s, t}, a, b). Hence t is ({s}, h2)-
and ({s}, h3)-cutting. Furthermore, now H({s, t}, a, b) is empty,
no more paths between a and b not crossing A = {s, t} exist.

Surely, we are not interested in arbitrary cutting loops but minimal
ones: let lmin(A, h) denote the cα-minimal (A, h)-cutting loop.
Then, for some arrangement A, Lmin(A) = ∪h∈H(A) lmin(A, h)
is the set of all minimal loops whose addition toAwould contribute
to further singularity separation.

Algorithm: We iteratively add such minimal cutting loops to in-
crease the level of separation based on a greedy approach:

A0 = ∅
Ai+1 = Ai ∪ { argmax

l∈Lmin(A
i)
cα(l)}

The iteration is repeated until H(Ai) is empty or lmin(A
i, h) is

undefined for each h ∈ H(Ai) because there are no further cutting
loops (in cases where not all singularities are separable).
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The greedy choice of the maximum instead of a minimum might
seem unnatural, but it typically leads to better results. First no-
tice that even the maximum (with respect to cα) out of the loops
of Lmin(A

i) is still a minimal cutting loop – for each path homo-
topy class the set Lmin(A

i) contains only the cα-minimal of the
loops that cut it. Hence the choice of the maximum does not lead
to unnecessarily long and field-misaligned loops as it might appear
at first sight – it still selects from the best loops that are available
to achieve separation of certain singularities. See Figure 7 to get an
idea of how such loops look like.

Consider the class hmax = argmaxh∈H(A0) cα(lmin(A
0, h)), i.e.

the class that, among all homotopy classes, requires the cα-largest
loop to get cut. This loop is lmin(A

0, hmax) and hmax cannot be
cut by any cα-smaller loop; in fact, if we first add some loops cut-
ting other classes, then lmin(A

j , hmax) for j > 0, i.e. the best loop
available to cut hmax after j iterations, can easily be cα-larger due
to L(Ai+1) ⊂ L(Ai) by definition. Following the maximum-first
strategy, the long loops necessary for separation of some singulari-
ties are secured early, in contrast to a minimum-first strategy where
other loops already restrict the space ofM2-simple loops available
to cut hmax in the end. Hence, as confirmed in our experiments,
this maximum-first strategy typically leads to arrangements with a
smaller total sum as well as lower variance of the loops’ cα-values.

The objective of achieving regions with disc topology seamlessly
integrates into this algorithm: for each singularity a the set of ho-
motopy classes of non-contractible paths connecting a with itself,

a
b

i.e. H(A, a, a) without the trivial class of
contractible loops, is simply included in the
set H(A). H(A) will then not become
empty before inA all singularities lie in disc
topology regions. This is illustrated here
based on the example from Figure 6 right:
two still remaining non-contractible paths self-connecting a and b
are depicted.

4.6 Layout Primalization

The constructed dual layout implies the topological structure of the
primal layout. For each irregular region we create a primal node
and, in order to provide an initial embedding, position it onto the
field singularity lying in that region (if there are multiple, one is
chosen arbitrarily). The primal arcs
are then constructed from geodesics con-
strained to the corresponding dual corri-
dors (depicted alongside); regular nodes
are created at their intersections. Opti-
mization of the preliminary embedding is dealt with in Section 5.4.

Figure 7: Visualization of the maximum (green) and minimum (red)
of all minimal cutting loops Lmin(A

0) in the ROCKERARM and
FERTILITY examples from Section 7. Notice that the longer loops
are typically concerned with the global structure, whereas the short
ones capture rather local features. The maximum-first greedy ap-
proach thus, in some sense, pursues a coarse-to-fine strategy.

5 Discretization & Implementation

We now present the techniques necessary for a practical implemen-
tation of the proposed method on triangulated manifolds M. In
this context the terms vertex, edge and face will refer to the trian-
gle meshM rather than to dual layout components. The field FC ,
with its lifted variants FL and FD , is computed and represented dis-
cretely per face as described by Bommes et al. [2009]. To simplify
parts of the implementation by avoiding special cases, we assume
no two singularities are directly adjacent, i.e. incident to a common
mesh edge – this can easily be ensured by either merging such pairs
or splitting the edge. The branched covering triangle meshesM2

andM4 are constructed as described by Kälberer et al. [2007].

5.1 Anisotropic Front Propagation

Loops minimizing cα are anisotropic geodesics and, given a start
point p, can efficiently be computed by anisotropic front propaga-
tion onM4. In this setting α plays the role of a global anisotropy
coefficient that, together with the direction field, forms the tensors
defining an anisotropic local surface metric guiding the propaga-
tion. This process can be understood as a “fuzzy” curve tracing:
the fuzzy curve travels fast in the principal direction and slower the
more it deviates (cf. Figure 8). When the front reaches p again, the
minimal loop is found.

Sethian and Vladimirsky [2003] presented a method for anisotropic
front propagation with nice convergence properties, but on coarse
meshes the relative error is rather high for large anisotropy coeffi-
cients. As a more practical solution for our purpose we compute
directed shortest loops based on a weighted graph distance in a spe-
cial graph, constructed to better approximate the continuous solu-
tion. In detail, we create a directed graph P based onM4: it con-
tains the same set of vertices and two vertices are connected by two
directed edges if their discrete graph distance is ≤k inM4. In this
way the angular resolution of the propagation is increased. We call
an edge that connects two vertices of distance i an i-ring edge. We
found k = 4 (cf. Figure 8 left for an illustration) to be sufficient,
working very well for our purposes (cf. Figure 8 right). For each
edge from vertex v to w in P we define its support to be the set of
M4-edges forming a shortest path from v to w.

To determine appropriate edge weights modeling the desired met-
ric we first interpolate the field FD , defined on faces, to the edges
of P . For each vertex we map its k-disk to the plane using the
discrete exponential map [Schmidt et al. 2006] to ob-
tain a common domain suitable for interpolation of
directions. The interpolation to 1-ring edges can then
simply be made by averaging between the two inci-
dent faces. A plausible extension to an i-ring edge
e (red), i ∈ {2, . . . , k}, is computed in an intuitive
manner as a weighted average of the directions as-
signed to its support edges (black), with weights pro-
portional to the length of these edges’ projections onto e.

For each edge e of P we then compute its metric-induced weight
w(e) by considering it as a curve and evaluating cα for it. We obtain

w(e) := cα(e) =
√

(~e TFD(e))
2 + α2

(
~e T~e− (~e TFD(e))

2)
where ~e is the directed edge vector of e in the plane and FD(e) is
a unit vector representation of the field direction. A standard Dijk-
stra front propagation can then be performed in P , taking the edge
weights into account. A resulting loop lives on P ; we transfer it to
M4 by replacing each edge by its support, obtaining a loop embed-
ded in the 1-skeleton of M4. The support edges are furthermore
used to perform the loop crossing tests (detailed in the following)
onM4 resp.M2 while propagating on P .
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Figure 8: Left: 1-, 2-, 3-, and 4-disk edges of a vertex. Right: Dis-
tance visualization of anisotropic propagation on a rounded cube
mesh. Since we propagate onM4 the front can cross over itself at
the branchings and pursue different courses on the different cover-
ing sheets, according to the respective field directions.

5.1.1 Propagation Constraints

The θ ∈ [−π
4
, π
4
) constraint is easily imposed by discard-

ing those edges from the propagation graph P which violate it.
M2-simplicity of the layout is achieved by forbid-
ding the front to cross existing loops onM2. Ad-
ditionally, M2-simplicity of the new loop itself is
to be ensured. In the continuous case this is guar-
anteed by its minimality, but in the discrete set-
ting constructed loops could have small local self-
intersections onM2. These can easily be resolved
as depicted: at the intersections, the loop is cut,
the parts alternately reversed, and reconnected to
a non-intersecting (just grazing) one.

Preventing the front from crossing already existing loops could eas-
ily be accomplished by removing the loops’ underlying vertices
(and incident edges) from the propagation graph. This, however,
directly limits the local maximum density of constructed loops to
the resolution of the triangulation. We avoid potential dead-ends
in the propagation by allowing multiple loops to run over the same
graph edges locally – they just may not cross in the sense ofM2-
simplicity: during front propagation each graph vertex at the front
memorizes for each already existing loop whether the path to this
vertex currently runs along the loop onM2 and whether it moved
onto it from the left or from the right. Propagation may then only
proceed further along the loop or back to the side it came from, ef-
fectively preventing crossing. This can efficiently be implemented
by equipping each constructed loop with so-called whiskers:

a b

c d

e

two sets of half-edges, those incident to the loops’
vertices from the one and the other side, respec-
tively, as illustrated on the right in green and red.
The “memory” per front vertex then consists of
two flags per existing loop, that are set or reset
whenever propagation proceeds over a green or red
whisker, respectively, depending on the half-edge
orientation. As an example consider the case of the
front propagating from vertex a to b. The green flag
is set at b due to moving over a green whisker. This
disallows further propagation over a red whisker to e; propagation
to d carries the green flag over to d, and when propagating to c the
flag is not carried on due to moving over a green whisker reversely.

5.2 Singularity Separation

Being able to construct the loops of L in an M2-simple manner,
we now implement the greedy approach presented in Section 4.5.
Recall that we need to consider an infinite number of connecting
paths in a potentially infinite number of homotopy classes. We em-
ploy two efficient heuristics to make this tractable, and add a sim-
ple post-validation procedure to be able to guarantee correctness
even in case they fail. In practice, they perform so well that post-

validation is required to come into action only very rarely. Even
then, the worst case is that the result is not greedy-optimal in the
described sense, but still structurally correct.

In each step of the greedy construction we need to determine loops
which cut certain homotopy classes. To be able to do this efficiently,
in the beginning we construct so-called separation indicators (SIs)
for each pair (a, b) of singularities – paths representing a homotopy
class each (discretely embedded in the mesh graph). Based on the
intersection constellation of a loop and an SI we are able to esti-
mate whether the loop cuts the whole homotopy class (heuristic I).
Figure 9 shows an example of these SIs. While on genus 0 objects
(with trivial homotopy group) we have a single SI for each pair, on
objects of genus g > 0 the homotopy group is infinite; for practi-
cability we restrict ourselves to 2g+1 SIs constructed as described
by Erickson and Whittlesey [2005] for the case of loop homotopy
bases (cf. Figure 6 left for the simplest example of such 2g + 1 SIs
between two singularities on a genus 1 object).

The rationale behind this is the observation that SIs of further ho-
motopy classes (winding around surface handles multiple times,
etc.) are very likely to be cut by loops that cut their simpler sib-
lings, anyway (heuristic II). The mentioned method [Erickson and
Whittlesey 2005] is adapted from the loop case to our case of paths
by not using the distance field of one loop root point but two dis-
tance fields, one of each path end point, i.e. the two singularities to
be connected, in the maximum spanning tree construction (cf. [Er-
ickson and Whittlesey 2005] for details on this). This yields 2g SIs.
If a 6= b, an additional one, not crossing the cutgraph involved in
the construction at all, is created simply by Dijkstra’s shortest path
algorithm (a step which is not necessary in the case a=b dealt with
by the original method due to the triviality of this one class).

Given an SI s and a loop l, we estimate whether l cuts all connec-
tions from s’s class [s] (heuristic I). If l does not cross s, we can be
sure that it does not; if it crosses s an odd number of times, we can
be sure it does. In the case of an even number of crossings, we can-
not definitely decide locally – whether [s] is cut completely depends
on the global interplay of multiple loops. Instead of performing ex-
pensive global checks in this regard, a heuristic, exploiting that l is
created on M4, proved to be highly reliable: we check
how many of the four pre-images of s onM4 are crossed
by l. If only one is crossed we consider s not cut, if more
are crossed we consider s cut. The rationale is that be-
tween two crossings, l has to travel around multiple sin-
gularities for these two crossings to lie on different sheets
– implying intersections of lwith further loops in between.
If all crossings are on the same sheet, we usually have a
situation as depicted on the right, not signifying a true cut.

Now, for each SI s, we aim at finding the minimal loop lmin cutting
it. As this loop necessarily crosses s, we can start a front propaga-
tion from each graph vertex v on s and compute the minimal loop
through each of them. More precisely, we start from two of the
four pre-images of v onM4 – the two other sheets with opposite
directions only lead to the same loops in reverse. The cα-smallest
of those that cut s then is lmin of s, called the candidate for s.

Figure 9: Visualization of separation indicators (pink) between 8
singularities on a cube: all, and those that remain uncut after the
addition of the first, second, and final third loop, respectively.
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Instead of computing the candidate for each SI, i.e. the whole set
Lmin (cf. Section 4.5), we can heavily increase efficiency in the
spirit of lazy evaluation by exploiting the fact that we are always
interested in the cα-largest candidate in each greedy step. If a can-
didate of s cuts other SIs, their candidate does not (yet) need to be
computed as it can only be equal or smaller. To provide an exam-
ple of the gain in efficiency typically provided by this optimization:
for instance on model FERTILITY only 30 candidates are computed
in the beginning, they already cut all 10,152 SIs; 11 more are later
(re)computed (in repetitions of step 4 of the following algorithm).

Algorithm: With the initial set of candidates C we can then per-
form an iteration of the greedy algorithm, starting with an empty
arrangement A, in the following manner:

1. Add the largest candidate c: A← A ∪ {c}, C ← C \ {c},
2. remove all SIs that are cut by c,
3. discard candidates fromC that are no longerM2-simple with

respect to A,

4. for SIs that are not cut by any curve from C compute new
candidates (again in a lazy manner) and add them to C.

These four steps are repeated until no more candidate is available.

To appropriately handle rare cases where in the end some singu-
larities remain unseparated due to the two heuristics, we perform
a post-validation: we iteratively check whether paths between two
singularities still exist by simple flood-filling within the regions of
A (not crossing any loop ofA), add these paths as new SIs, and per-
form further greedy steps (beginning with step 4 to compute new
candidates) until no more paths or candidates exist.

5.3 Layout Primalization

The initial embedding of the primal separatrices is obtained as
anisotropic field-guided geodesics by performing anisotropic front
propagation as described above. The propagation is started from
each primal node and restricted to the corridors provided by the
dual layout by disallowing crossing of dual loops onM2.

5.4 Improvement & Parameterization

We have now obtained a topological quad layout Q – some ap-
plications can readily exploit this, others rely on its geometry and
thus require the initial embedding to be improved. Various methods
for the optimization of a layout’s geometry and parameterization
of its patches are available. Some fix all nodes and optimize the
embedding of arcs and patch interiors [Tong et al. 2006; Bommes
et al. 2008], other also alter the node positions [Tarini et al. 2011].
As the initial embedding of our regular nodes is a mere byprod-
uct of the separatrix construction described in the last section, we
employ a variant of the latter approach, based on iterated local pa-
rameterizations, in our implementation. The domain interpolation
technique originally employed requires that no triangle spans across
non-adjacent patches. As this may not be fulfilled in the initial em-
bedding due to some narrow patches, we deviate as follows:

Instead of optimizing the layout by iteratively performing parame-
terizations on the fixed triangle meshM, we construct a quad mesh
Q′ in the beginning by refining Q to aboutM’s density (suitably
creating a regular grid of quads for each patch, cf. Figure 10). The
initial embedding of patch interior vertices is determined using a
simple discrete harmonic parameterization of each patch on M.
Then the iterated parameterizations are performed on Q′ instead of
M. By updating Q′ after each step of the iterative optimization,
quad edges are always aligned with the patch boundaries, guaran-
teeing simple interpolation domains. The update simply consists in

moving the vertices of Q′ to the new, improved positions indicated
by the local parameterization. To prevent Q′ from moving offM,
its vertices are anchored to faces ofM. After each update a vertex
is moved onto the closest point on the triangles directly surrounding
its anchor face and the concerned triangle becomes its new anchor.

Figure 10: A layout Q with initial embedding, the refined mesh Q′

with harmonic patch embedding, and its final optimized version.

6 Extensions

Feature Curves For cases whereM contains feature curves, we
can make a simple extension to the algorithm to allow for better
alignment of arcs to features. Given a set of curves representing
the features (e.g. selected using dihedral angle thresholding for the
simplest case of sharp features) we use them as directional con-
straints in the cross field construction as described by Bommes et
al. [2009] such that the cross field is aligned with the features. We
then lift each curve to the one sheet ofM2 the line field of which
is aligned with the curve tangent, and modify the definition ofM2-
simplicity to include that loops may also not intersect these lifted
feature curves on M2. This prevents loops from crossing feature
curves in a manner that these curves would not lie within a dual
corridor in the final loop arrangement – which would make align-
ing some separatrix to the feature impossible. After performing the
greedy algorithm with this change, separatrices are then not con-
structed as geodesics but constrained to features where applicable.

It is worth noting that such features constrain the space of admissi-
ble loops and in this way already partially prescribe node connectiv-
ity. The complexity of the layout is thus predetermined to a degree
depending on the comprehensiveness of the feature curve network.

Additional Loops The presented algorithm creates layouts A
that are topologically minimal in the sense that no loops are added
that do not contribute to singularity separation. This is a desirable
property, allowing us to obtain simple layouts. But depending on
the geometry ofM, the addition of some further loops can poten-
tially have a much larger impact on the improvement of geometric
fidelity than on the concomitant decrease of simplicity as it can alter
the node connectivity in the primal layout – which might allow for
better curvature and feature alignment. Loops whose addition to A
can cause such changes can be identified in the following way: each
SI lifts to two curves onM2; we say an SI is doubly-cut if both of
these are cut by the loops of A on M2. A further loop causes a
change to node connectivity if its addition to A doubly-cuts an SI
that, so far, was only singly-cut. This is based on the observation
that singly-cut SIs might appear in the primal layout as separatrices
(in the form of curves homotopic to the SI), while doubly-cut SIs
do not. Figure 11 shows a prototypical example of the situation.

Figure 11: Left: Primal quad layout (black) induced by a loop ar-
rangement (yellow). Right: Adding a further loop (green) alters the
irregular node connectivity: the dashed connections vanish, caused
by the cuts (by yellow and green loops) on both sheets ofM2.
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In order to exploit this possibility, after the greedy algorithm has
been performed, we can, where possible, construct candidate loops
doubly-cutting the SIs that, so far, are not. Then the quality im-
provement can be assessed for each of these loops by rating the sep-
aratrices in the corresponding primal layouts based on their cross
field deviation. Starting with the one providing the highest improve-
ment, loops can then iteratively be added until no further loop is
admissible or no further gain possible. The assessment can quickly
be made based on the initial embedding, or, more accurately, based
on the final improved embedding. Notice that it is also possible
to remove a loop from A if, by the addition of others, it becomes
redundant (= all SIs cut by the loop are also cut by other loops).

7 Results

In this section we show some exemplary results obtained by our im-
plementation of the presented method. Figure 12 depicts the result
layouts, the statistical facts are summarized in the following table:

Model Singularities Loops Nodes Patches
TETRATHING 24 18 80 84
FERTILITY 48 24 92 98
BLOCK 48 20 72 76
3HOLES 16 12 16 20
ELK 52 22 86 86
JOINT 24 16 77 79
GUY 40 18 170 168
ROCKERARM 30 15 115 115
BOTIJO 72 36 213 221
LEVER 83 36 269 275

With our current implementation the processing from the initial
construction of the coverings with the fields, over creation of SIs
and execution of the greedy algorithm, to the primalization of the
layout takes from a few seconds to a few minutes on a commodity
PC (model complexities between 20K and 122K faces). The pro-
cessing is clearly dominated by the front propagations performed to
construct candidate loops – which can easily be parallelized.

As feature constraints (cf. Section 6) only the trivially detectable
sharp edges on JOINT and LEVER have been used – advanced de-
tection techniques for smooth feature edges were not employed.

Comparison We applied our method to several datasets also
taken as input by Tarini et al. [2011] and Bommes et al. [2011] for
their simplification methods. While on model ROCKERARM the
patch count of our result is higher by a factor of 1.17 compared to
the result of Tarini et al., on model 3HOLE the same obvious layout
was achieved, and our layouts of models JOINT, BOTIJO, FERTIL-
ITY, and LEVER are simpler by factors of 1.4, 2.1, 2.6, and 2.8,
respectively (the BOTIJO and LEVER results of Tarini et al. can be
found in their supplemental material). In comparison to Bommes
et al. the layout complexities in terms of patch count achieved by
our Dual Loops Meshing approach are even simpler by factors of
1.5, 3.3, 4.7, and 5.4 on models ROCKERARM, LEVER, BOTIJO,
and FERTILITY, respectively. This generally large difference is ex-
plained by the fact that their method is based on removing only
certain helical configurations from the base complex.

Surely, the possibility cannot be ruled out that the greater layout
simplicity might come at the expense of geometric quality to some
extent, but visual inspection and comparison of the results does not
reveal distortions which would generally be considered intolerable
or out of proportion.

The general advantage of the simplification-based methods is their
explicit control of the geometric quality: the deviation from the
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Figure 12: Patch layouts created by our method (top left: visual-
ization of cross field singularities; index 1

4
in orange, − 1

4
in blue).

The inset at example TETRATHING shows the result before an ad-
ditional loop which increased separatrix/field alignment was added
after the greedy algorithm (as described in Section 6). The FER-
TILITY and BOTIJO insets show bottom views of the models.

start configuration can be kept track of and be limited as desired.
Furthermore, any previous state can always be used as a fallback
solution. In this sense such methods can be considered safer than
from-scratch-construction approaches like ours – especially when
geometric fidelity is of higher importance than simplicity.

On the downside, it is not easy to drive such simplification pro-
cesses in a well-targeted manner; roll-back mechanisms can be nec-
essary to undo series of previous steps in order to escape from dead-
ends. The robust automatic generation of the quad meshes taken as
input is a further non-trivial subtask. These input meshes’ edge
directions are then implicitly taken as geometrically optimal ref-
erence, but, assuming the input mesh is generated in a common
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field-guided manner, this reference will often already deviate from
the original field (in the sense that quad mesh edges are not well-
aligned with the field everywhere) as such fields rarely are inte-
grable and can only be aligned to approximately during meshing.
The finite density of the mesh further contributes to this deviation.

The Parameter α While variation of α could be expected to
be useful for controlling the layout complexity to some extent, it
should be mentioned that this relation is not linear (nor fully mono-
tonic) due to the discrete decisions implicitly made by the routing
of the loops. Especially for small α (<10) loops tend to become
too unaligned with the field, this incompatibility sometimes leading
to less plausible, complex loops being necessary towards the end of
the algorithm. On the other hand, increasing α beyond∼70 usually
does not lead to any more changes due to accuracy limitations of the
discrete propagation process. The setting α = 30 proved to work
very well quite generally and all the presented layouts have been
obtained with this fix setting. A prototypical case where a larger α
would be advantageous is depicted
here exemplarily: while on the upper
original THREEHOLES model α =
30 leads to the desired green loop
(dual to the outer quad cycle which
can be seen in Figure 12), it yields the
blue loop after some artificial elon-
gation because at some point the de-
viation from the principal directions
necessary for this shortcut weighs lower than the additional length
needed for the full round. Nevertheless, at the end of the greedy
algorithm we still obtain a valid, though less qualitative, layout.

7.1 Limitations & Future Work

The proposed approach employs a greedy strategy for practicability.
Employing a non-greedy, globally optimizing loop selection would
be very attractive – but is not straightforward due to the interde-
pendencies caused by the necessaryM2-simplicity. Further, while
control over the simplicity of the primal layout is directly given
in the dual setting, control over the geometric fidelity is, to some
extent, indirect due to the loose relation between dual and primal
geometry. Integrating a more direct control could be advantageous.

While our results already show good simplicity, it can be expected
that even simpler layouts could be achieved when determination of
singularities and their connectivity would not be performed in two
separate stages but in an integrated approach. The most important
aspect to be exploited in this regard seems to be that singularities
can be varying in “confidence”: some lie stably at distinct curva-
ture extrema while others are rather arbitrary in their position or
could even be merged with others without problems. To ultimately
be able to automatically generate layouts comparable to those con-
structed manually by professionals another singularity-concerned
aspect will have to be considered: in manually designed layouts one
can often find some irregular nodes that are rather placed by tacti-
cal than by purely geometrical considerations. These nodes might
be suboptimal in terms of the distortion they induce locally, but are
used anyway to keep separatrices local that would otherwise wind
around the whole model, creating numerous additional patches.

Our main focus in this work was on obtaining the layout structure
– for the geometry optimization we currently employ a plain relax-
ation procedure (cf. Section 5.4) oblivious to the field of principal
directions. Additionally exploiting this information should allow us
to achieve improved alignment of layout arcs and nodes also to non-
sharp features (as prominent, e.g., in BLOCK or ROCKERARM).

We, so far, employ our method for the construction of general quad

layouts. An interesting avenue for future work is the investigation
of possibilities to adapt our framework to restricted classes that are
of interest in certain applications, e.g. quad layouts without self-
crossing dual cycles for hexahedral meshing [Müller-Hannemann
1998] or polycube meshes [Tarini et al. 2004], which also still lack
a high-quality automatic and intrinsic construction method.

8 Conclusion

We presented a novel method for the creation of simple all-
quadrilateral patch layouts by means of the construction of loop
arrangements as duals of these layouts. This dual perspective bene-
ficially exhibits the global structural implications involved in quad
layouts more directly. Our method is built on a theoretical frame-
work based on suitably restricted loop spaces on branched cover-
ings of the underlying surface induced by principal curvature cross
fields. It allows us to guarantee valid dual layouts which further-
more show good geometric fidelity. We described an implementa-
tion exploiting these findings that efficiently creates such layouts
based on a greedy approach. There are numerous applications that
can benefit from the results and we see interesting directions for
future work based on the presented ideas.
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Appendix

Proof of Theorem 4.1 M2-simplicity and θ ∈ [−π
4
, π
4
) guaran-

tee transversality of all loop intersections onM: a tangential inter-
section would imply equal tangent lines of the two loops at the inter-
section; as admissible tangent lines are disjunct on the two sheets
of M2 above each point due to θ ∈ [−π

4
, π
4
), this would imply

the intersection happens on one sheet of M2, contradicting M2-
simplicity. Then, considering R is bounded by a cycle formed by
loop segments between k intersections (as de-
picted for the case k = 5), we determine the
turning number [Ray et al. 2008] of the cy-
cle to show the relation to I(R). Starting at
an arbitrary intersection, we travel along the
first segment to the next intersection. At that
point the intermediate turning number t fulfills
− 1

4
< t < 1

4
since, due to the θ ∈ [−π

4
, π
4
) constraint, the segment

cannot make more than < 1
4
th of a full turn w.r.t. the field. Now

turning to the next segment involves a rotation of the “sector” of
allowed tangents by π

2
, leading to − 1

4
− 1

4
< t < 1

4
− 1

4
along this

segment. Repeating this for all k segment switches to get back onto
the start segment, we obtain− 1

4
− 1

4
k < t < 1

4
− 1

4
k for the turning

number of the whole cycle. As the turning number of a cycle nec-
essarily is an integer multiple of 1

4
, we have t = − 1

4
k. It is related

to I(R) by t = I(R)− 1 [Ray et al. 2008], hence I(R) = 1− 1
4
k.

Proof sketch for Theorem 4.2 Note that we can always add
loops that (with infinitesimal distance) run along existing loops
without violatingM2-simplicity and without introducing any new
irregular regions. The proof is based on the construction of one or
more such loops that are then cut and reconnected within R. Fig-
ure 13 illustrates these constructions for the concerned cases. Note
that reconnections inside the regions are possible in the shown ways
because each subregion fulfills I(R) = 1− 1

4
k.

a) b) c) d) e)

Figure 13: Schematic illustration of the cases of Theorem 4.2: re-
gion with I(R) = − 1

2
(a), <− 1

2
(b), 1

2
(c), 3

4
(d), 1 (e). Numbers

indicate the I of the subregions. The green curve is a single loop
that splits the region while running solely along other loops outside
the region (a)-(d). In (e) the loop can be connected on the outside
due to symmetry (the outside region has this same boundary loop).
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