
Practical Mixed-Integer Optimization for
Geometry Processing

David Bommes, Henrik Zimmer, and Leif Kobbelt

RWTH Aachen University,
Ahornstr. 55, 52074 Aachen, Germany
http://graphics.rwth-aachen.de

Abstract. Solving mixed-integer problems, i.e., optimization problems
where some of the unknowns are continuous while others are discrete,
is NP-hard. Unfortunately, real-world problems like e.g., quadrangular
remeshing usually have a large number of unknowns such that exact
methods become unfeasible. In this article we present a greedy strat-
egy to rapidly approximate the solution of large quadratic mixed-integer
problems within a practically sufficient accuracy. The algorithm, which
is freely available as an open source library implemented in C++, deter-
mines the values of the discrete variables by successively solving relaxed
problems. Additionally the specification of arbitrary linear equality con-
straints which typically arise as side conditions of the optimization prob-
lem is possible. The performance of the base algorithm is strongly im-
proved by two novel extensions which are (1) simultaneously estimating
sets of discrete variables which do not interfere and (2) a fill-in reduc-
ing reordering of the constraints. Exemplarily the solver is applied to
the problem of quadrilateral surface remeshing, enabling a great flexi-
bility by supporting different types of user guidance within a real-time
modeling framework for input surfaces of moderate complexity.

Keywords: Mixed-Integer Optimization, Constrained Optimization

1 Introduction

The problem of optimizing objective functions E(x) where one part of the un-
knowns is real valued xi∈R ∈ R and the other unknowns are required to be
integers xj∈I ∈ Z is referred to as Mixed-Integer Problem (MIP). Typically such
problems arise whenever a continuous optimization depends on some discrete
decisions. One example from structural engineering is the optimization of a sup-
porting structure, where two points of this structure can either be connected by
a beam or not while in contrast to this discrete decision the geometric positions
of the connected points can be varied continuously.

Mixed-Integer Problems are generally NP-hard to solve [1, 2], which make
common approaches (e.g., Branch and Bound [3, 4, 2] or Cutting-Plane approaches
[5, 2]) unfeasible for many real-world problem instances.

2 Practical Mixed-Integer Optimization for Geometry Processing

In this article we present an algorithm for efficiently and accurately approx-
imating quadratic MIPs represented by quadratic energy functions

E(x) =
1

2
xtAx− xtb→ min, x ∈ Rn (1)

with A symmetric and positive definite, subject to nI integer constraints

xi∈I ∈ Z, I ⊆ {1, . . . , n}. (2)

Additionally the feasibility of the solution x is restricted by nC linear equality
constraints of the form

Ci · x = di with Ci ∈ Rn, di ∈ R (3)

which can be assembled into a single matrix Cx = d with dimension C ∈ RnC×n.
Here n, nI and nC denote the number of variables, integer constraints and lin-
ear constraints respectively. Note also that the above formulation differs slightly
from the most general setting of mixed-integer problems where additionally in-
equality constraints are given. In the presence of in-equality constraints even
finding any random feasible solution can get very hard, see e.g., [2].

Our algorithm successively determines the values of the discrete variables
xi∈I ∈ Z in a greedy fashion. Fixing the value of a discrete variable is equivalent
to adding one explicit linear constraint xi = k with k ∈ Z to our optimization
problem. Therefore our algorithm successively transforms integer constraints into
explicit linear constraints until all of them are fulfilled. More precisely we start
by neglecting the nI integer constraints and compute the minimizer of this so
called relaxed problem by setting the partial derivatives ∂E

∂xi
= 0 and solving the

resulting linear system
Ax0 = b. (4)

Here we assumed nC = 0 for clarity reasons. The values of the solution
vector x0 can be seen as continuous estimates of the desired discrete integer
variables. However, we found that estimating all integer constraints at once, i.e.,
requiring ∀i ∈ I : x1i = round(x0i) , leads to poor results since the individual
estimates cannot influence each other. Motivated by this observation we instead
successively determine single integer constraints xk+1

j = round(xkj) which are
henceforth used to solve subsequent relaxed problems until a feasible solution of
our initial optimization problem is found, meaning that all xi∈I are integers.

By greedily choosing the continuous estimate which has the smallest devi-
ation |round(xkj) − xkj | from an integer in each step these subsequent relaxed
problems can be solved very efficiently by a carefully designed three-level solver
as presented in Section 3.2. The performance can further be improved by iden-
tifying sets of relaxed variables which do not interfere too much and hence can
be estimated simultaneously.

In order to facilitate an efficient handling of arbitrary linear constraints Ci

we propose to eliminate one variable for each constraint (Section 2) and support

Practical Mixed-Integer Optimization for Geometry Processing 3

this approach by a fill-in reducing constraint reordering (Section 2.2) which in
practice significantly reduces the runtime.

In Section 4 the capabilities of the presented solver are illustrated exemplary
by applying it to the surface quadrangulation problem. A large variety of possible
user guidance like e.g., prescribing some singularities or preserving feature curves
of the input geometry in the generated quadrangulation is achieved by simply
adding additional linear constraints. Therefore the presented algorithm enables
a powerful quadrangulation algorithm which is very flexible and allows for a wide
range of different application scenarios ranging from a fully automatic setting up
to a complete manual meshing. Finally we illustrate the immense performance
benefit due to the novel extensions of the original algorithm used in [6], i.e., the
rounding of sets of variables and the fill-in reducing reordering of constraints.

1.1 Previous work

To the best of our knowledge the idea of approximating MIPs by a series of
real-valued problems started with [13], set in the field of Structural Engineering.
Ringertz’ idea of rounding variables iteratively and re-solving the problem has
been cited several times and depending on the problem setting small variations
appear in the proposed solutions. While some researchers argue for the use of
post-processing methods as, depending on the problem and the type of variables,
always rounding up (or down) might not be meaningful [16], others suggest
rounding both up and down and keeping the solution with lower cost [17].

Regardless of the rounding strategy, what these approaches all have in com-
mon is that the full-sized system of linear equations needs to be re-solved in
each iteration, making the iterative strategy unfeasible for many practical ap-
plications.

In the field of Geometry Processing the idea of approximating quadratic
MIPs by rounding variables of a real-valued linear system has been successfully
adapted by several authors (see e.g.,[9][11]). Here direct-rounding strategies were
used, where the system had to be solved only twice, once initially and once after
all integer constraints have been estimated (all at once). This approach is usually
only applicable for MIPs with a small number of integer variables that do not
interfere too much and otherwise leads to a poor approximation of the optimal
solution.

The article is structured as follows: Section 2 describes the proper handling
of linear constraints within the optimization of a quadratic energy, which is
central also for the integer constraints discussed in Section 3. In Section 3.2
we describe an efficient update strategy which enables the iterative addition of
integer constraints. Finally in Section 4 we discuss some experiments performed
within the context of quadrilateral surface remeshing.

4 Practical Mixed-Integer Optimization for Geometry Processing

2 Linear Constraints

The ability to properly handle constraints is vital for the wide applicability of
an optimization method. For a problem to be solvable usually some boundary
constraints are needed to limit the solution space, or often additional user-defined
design constraints might be incorporated to shape the resulting solution. In our
setting we also have to deal with integer constraints which translate into simple
linear conditions as soon as the specific integer is known. A common way to
handle linear constraints are Lagrangian Multipliers as discussed next.

2.1 Lagrangian Multipliers

The method of Lagrangian Multipliers turns a constrained problem into a un-
constrained one by adding one additional term per constraint to the energy.
Updating energy (1) with the constraints (3) we end up with the following en-
ergy formulation:

EL(x) = E(x) +

nC∑
i=1

λi(Ci · x− di) (5)

where the solution is given by the following system of linear equations

∂EL

∂x
= 0

[
A CT

C 0

] [
x
λ

]
=

[
b
d

]
(6)

describing the stationary point of the adapted energy. Note that the approach
of Lagrangian Multipliers is not restricted to quadratic energies nor linear con-
straints but can be applied to non-linear problems as well, for more details
see e.g., [10]. Unfortunately the approach of Lagrangian Multipliers comes with
certain disadvantages making them impractical for our purpose. Instead of de-
creasing the number of degrees of freedom as more constraints are added the
opposite is the case since for each constraint a Lagrangian Multiplier λi is in-
troduced. Furthermore the symmetric positive definiteness (s.p.d.), inherent in
linear systems arising from convex quadratic energies is destroyed by the diago-
nal block of zeros 0 effectively disabling the use of highly efficient solvers such
as CHOLMOD (see [7]) and necessitating the use of slower more general solvers
such as SuperLU (see [8]). As will be seen in Section 3 the s.p.d. property is
crucial for the efficient local updates of the adaptive three-level solver in Section
3.2. Therefore next we describe a proper handling of linear constraints which
maintains the s.p.d. property.

2.2 Elimination approach

Assume we want to minimize a quadratic energy E(x) with x ∈ Rn subject to a
single linear constraint DTx − d = 0. Geometrically this means restricting the
solution space to a n − 1 dimensional hyperplane. Consequently it is possible
to convert the above problem into a new unconstrained one with n− 1 degrees

Practical Mixed-Integer Optimization for Geometry Processing 5

of freedom. Assume w.l.o.g. that Dn 6= 0 such that we can solve the linear
constraint for xn expressing it as a function of (x1, . . . , xn−1)

xn(x1, . . . , xn−1︸ ︷︷ ︸
x̃

) = (d/Dn)−
n−1∑
j=1

(Dj/Dn)xj =: f − FTx (7)

and transforming the above constrained problem into the desired unconstrained
form

Ẽ(x̃) := E

(
x̃

xn(x̃)

)
︸ ︷︷ ︸

y

(8)

with equivalent minima where xn can be computed from x̃ by equation (7).

To compute the minimizer x̃ we now have to solve a (n − 1) dimensional
system of linear equations Ãx̃ = b̃ which can be derived by partitioning the
matrix A of equation (1) into four blocks (with A ∈ R(n−1)×(n−1), v ∈ Rn−1

and w ∈ R) and re-factorizing the result:

Ẽ(x̃) =
1

2
yTAy − yTb =

1

2
yT

(
A v
vT w

)
y − yT

(
b
bn

)
(9)

=
1

2
x̃T
(
A− vFT − FvT + wFFT

)︸ ︷︷ ︸
Ã ∈ R(n−1)×(n−1)

x̃− x̃T
(
b + F(fw − bn)− vf

)︸ ︷︷ ︸
b̃ ∈ Rn−1

+const

Note that since A is s.p.d. Ã is also s.p.d. enabling highly efficient solution
methods used in our three-level solver described in Section 3.2. Of course instead
of eliminating the last variable each other variable can be chosen by re-indexing.

Multiple Constraints: In general we want to handle an arbitrary number of
linear constraints which can be achieved by iteratively eliminating one variable
for each constraint from {C1, . . . , CnC

}. One very important aspect of multiple
constraints is that in each step it is necessary to eliminate the chosen variable
from all subsequent constraints since obviously once a variable is constrained
and eliminated from the optimization problem it should not be reintroduced by
a following constraint. More precisely, after constraining a variable xk through a
constraint Cj we have to do Gaussian elimination in the constraint matrix C in
order to bring all Ci,k with i > j to zero. Clearly the constraints in the updated
matrix are equivalent to the original problem.

Choosing elimination variables: For each linear constraint we have to pick a
variable which is subsequently constrained by the induced linear function and
eliminated from the problem. All non-zero coefficients of the linear constraint
induce a valid possibility. To increase numerical stability we select the variable

6 Practical Mixed-Integer Optimization for Geometry Processing

whose coefficient has the largest absolute value. However, there is one impor-
tant aspect to consider whenever a variable xk with k ∈ I, i.e., which has to
satisfy an integer constraint, is selected for elimination. In general it can get
very problematic to guarantee that the values of the induced linear function are
chosen in such a way that xk becomes an integer. Consequently for the elimina-
tion we always prefer non-integer variables with k /∈ I. For constraints where all
non-zero coefficients belong to integer variables we currently support only those
cases where all coefficients are integer and their greatest common divisor (gdc)
is one of these coefficients. In such a case we can safely divide all coefficients by
their gdc and eliminate a variable with coefficient ±1 since a linear combination
of integers multiplied by integers is always an integer and consequently the in-
teger constraint is fulfilled by construction. For many practical problems (like
quadrilateral surface remeshing) the above assumptions are always fulfilled and
therefore we leave the more complicated general case for future work. Whenever
the above assumption is violated it may happen that in the result some of the
integer constraints are not fulfilled.

Linear dependent or conflicting constraints: Since we iteratively process the indi-
vidual constraints it is easy to identify linear dependent or conflicting constraints.
This is a big advantage compared to the method of Lagrangian Multipliers which
would construct an underdetermined system of linear equations not suitable for
efficient standard solvers. In our implementation linear dependent or conflicting
constraints are simply neglected. This behavior is very convenient since the user
does not have to spend additional effort identifying the subset of linear inde-
pendent constraints e.g., in the case of user provided side conditions. Due to
numerical inaccuracies of floating point numbers linear dependency is checked
against a tolerance which has a default value of 10−6.

Fill-in reducing constraint reordering: Although mathematically equivalent the
linear system belonging to the unconstrained optimization problem after process-
ing all constraints can take many different patterns, strongly depending on the
processing sequence of the constraints. In spirit of sparse Cholesky methods like
[7] we are interested in finding an ordering of the constraints which minimizes
the fill-in (nonzero elements) and hence increases performance. Unfortunately
there is no known algorithm to achieve the best ordering apart from the naive
one which explicitly checks all orderings. Obviously such an approach is far too
slow such that a good compromise in form of a cheap heuristic is more desirable.
Our experiments show that processing the constraints sorted by their number of
non-zero coefficients leads to much higher performance than just using a random
ordering (see Section 4 for timings). Please note that this ordering is dynamic
since while processing the constraints the number of non-zero coefficients is al-
tered by the Gaussian elimination steps.

After eliminating one variable per linear constraint we obtain a new equiva-
lent optimization problem, i.e., a quadratic energy minimization subject to a set

Practical Mixed-Integer Optimization for Geometry Processing 7

Fig. 1. (left) a continuous optimization problem where each point in the plane R× R
is a feasible solution, i.e., a point which fulfills all constraints of the problem. (right)
a mixed-integer problem where the set of feasible solutions is R × Z. For minimizing
such problems typically all discrete possibilities have to be tested explicitly.

of integer constraints. We describe next how a good approximate solution can
be found efficiently.

3 Integer Constraints

The integer constraints of our initial problem dictate that for each feasible solu-
tion a subset of the variables have to be integers, i.e., xi∈I ∈ Z. Finding a feasible
solution is simple in this formulation, since there are no dependencies between
the individual variables. Therefore just setting up a set of additional linear con-
straints which fix the xi∈I variables to arbitrary integers like e.g., xi∈I = 0 and
enforcing them with the method from the previous section would indeed result
in a feasible solution. However the problem of finding the best one of all these
possible assignments, i.e., the one which minimizes the energy, is very hard. In
contrast to continuous convex optimization it is not sufficient to simply walk into
the direction of the negative gradient (see Figure 1). In general to find the opti-
mum it would be necessary to derive lower and upper bounds for each discrete
variable and then explicitly test all discrete combinations. Please notice that for
problems with a large number of discrete variables even for narrow bounds like
e.g., a binary problem where xi∈I ∈ {0, 1} such an approach is very expensive
and would already require the solution of 2|I| full-sized problems.

8 Practical Mixed-Integer Optimization for Geometry Processing

3.1 Direct Rounding

Instead of achieving optimality for practical problems we aim at finding an ap-
proximate solution which is close enough to the optimum but can be computed in
a fraction of time. The most efficient way to determine adequate assignments for
the integer variables is to estimate them from a relaxed solution, i.e., computing
the minimizer xc where all variables are allowed to be continuous leading to the
estimates xi∈I = round(xci). Following (9) the elimination approach results in a
very simple update for such explicit constraints:

Ã = A and b̃ = b− v · round(xci) (10)

Estimating all integer assignments at once which is called direct rounding is very
efficient since it requires the solution of only two linear systems. However the
drawback is that the interrelation between the discrete variables is completely
ignored which often leads to poor results (see e.g., the comparison in [6]). This
suggests to successively add one integer constraint at a time and immediately
compute the altered relaxed problem to update the estimates of the yet uncon-
strained discrete variables. This strategy is denoted iterative rounding and is
discussed in more detail next.

3.2 Iterative Greedy Rounding

The key to an efficient implementation of the iterative rounding is the obser-
vation that, for problems with sparse variable dependencies (few non-zeros per
row), changing the value of one variable usually has little influence on “far-away”
variables. This is a property inherent in many Geometry Processing problems
formulated over, e.g., simplicial complexes or spline bases with local support.

The problem inherent to iterative rounding is that it requires the solution of
|I|+1 many linear systems which can get very slow when implemented in a näıve
way. Fortunately in many steps of this iterative process the solution changes only
slightly which can be exploited by carefully designed iterative solvers.

Suppose that we have computed the solution of the relaxed problem Ax = b
and that we want to add a single integer constraint. Following (10) the residual
e = Ãx̃ − b̃ after adding the new constraint has the same nonzero pattern as
v. And consequently for a sparse v the relaxed solution from the previous step
x̃ violates only a few equations of the linear system. Due to this observation
we first try to iteratively update the solution only where it is necessary, i.e.,
for all variables x̃i with |ei| > ε. This so called Local Gauss-Seidel method
executes single Gauss-Seidel updates for variables with a local residual above the
allowed tolerance. All these candidates are stored in a queue and convergence
is reached when the queue gets empty meaning that all residuals are below the
prescribed tolerance. Notice that due to the elimination approach the system
matrix remains s.p.d. guaranteeing convergence of the Gauss-Seidel method.
The complete algorithm is depicted below:

Practical Mixed-Integer Optimization for Geometry Processing 9

Algorithm: Local Gauss-Seidel
Input: Linear system Ax = b (which is not fulfilled)

Index set of variables with non-zero residual N ,
End conditions ε and maxitersGS

Output: Updated x with residuals |ek| < ε or NOT converged.
01: push N onto queue
02: iter = 0
03: while queue not empty and iter < maxitersGS

04: iter = iter +1
05: xk = pop(queue)
06: ek = bk −

∑n
j=1Akjxj

07: if |ek| > ε then
08: xk ← xk + ek/Akk

09: push nonzero(Ak∗) onto queue
07: end if
10: end while

The parameters ε and maxitersGS can be chosen by the user. In cases where
the above method does not converge within the prescribed number of iterations,
a more global conjugate gradient method is used and in rare cases where this is
still not sufficient after a few iterations a sparse Cholesky method is executed.
This adaptive solution strategy is very fast if the previous solution is close to
the new one and only spends more time if a novel integer constraint has global
impact. In our implementation the conjugate gradient solver is taken from the
GMM++ library [12] and the Sparse Cholesky solver is the CHOLMOD solver
[7].

In this iterative rounding strategy we can choose |I|! many different orders
in which the integers are estimated. A natural greedy choice is the yet un-
constrained integer variable whose estimate has the smallest deviation |xi −
round(xi)| from an integer since it is most likely to be correct. A nice side ef-
fect of this strategy is that it increases the efficiency of the above hierarchical
solution strategy. The reason is that for small deviations from an integer also
the non-zero residuals usually get small. The complete iterative greedy rounding
algorithm is shown below:

Algorithm: Iterative Greedy Rounding
Input: Linear system of relaxed problem Axc = b with xc, b ∈ Rn and A ∈ Rn×n

index set of integer variables I ⊂ {1, . . . , n}
Output: Approximation of mixed-integer solution x ∈ Rn satisfying xi∈I ∈ Z
01: x = xc

02: while I 6= ∅
03: // greedy selection
04: j = arg min

i∈I
(|xi − round(xi)|)

10 Practical Mixed-Integer Optimization for Geometry Processing

05: I ← I \ j
06: // add new constraint and get nonzero residuals N
07: N = eliminateConstraint(xj = round(xj) , A , x , b)
08: // update solution
09: converged = localGaussSeidel(A, x, b, N) // level 1
10: if not converged then
11: converged = conjugateGradient(A, x, b) // level 2
14: if not converged then
15: sparseCholesky(A, x, b) // level 3
16: end if
17: end if
18: end while

To avoid the necessary re-indexing of the variables in the above algorithm the
update rule (10) was slightly modified by keeping an identity row and column
for each eliminated variable xk, i.e., Ãkj = Ãjk = δkj ∀j.

In our implementation the user is able to control the behavior of the adaptive
three level solver with several parameters. First of all the tolerance ε for checking
convergence of the iterative methods (level 1 and 2) and a maximum number
of iterations maxitersGS and maxitersCG can be adjusted. Furthermore it is
possible to disable complete levels. The reason is that for mixed-integer problems
where it is known that the rounding of a discrete variable always has global
impact it is e.g., not reasonable to execute the Local Gauss-Seidel step since
it would almost never converge. Therefore it is very important to experiment a
little bit with these parameters in order to optimize the performance for a specific
class of problems. In Section 4 we will provide two different useful settings for
the quadrangulation problem.

Simultaneous Rounding: The motivation for the iterative rounding strategy was
mainly the observation that the estimates of individual integer variables should
influence each other to achieve satisfactory accuracy. It would be possible to
achieve the same accuracy in fewer computation steps if some prior knowledge
about the rate of influence between variables is available. Clearly variables which
do not influence each other could be rounded simultaneously in one step without
introducing an error. Unfortunately computing the influence between variables
corresponds to the solution of a full-sized linear system which would be too
expensive. What we need instead is a cheap apriori estimate which never un-
derestimates the interdependency. A very simple apriori estimate which holds
for many problems is the following one: If one variable is changed by a value
of ∆x due to a constraint all other variables are changed by a value smaller
or equal than ∆x. Consequently in each step several variables can be rounded
as long as their estimated maximal deviation

∑
i∆xi does not influence any

of the rounding decisions. Obviously this apriori estimate does not hold for all
problems. However we included the possibility to use it into our implementation

Practical Mixed-Integer Optimization for Geometry Processing 11

Fig. 2. (left) the smoothed cube model with low geometric complexity. (right) the
pinion model with many sharp features.

since it is useful for many practical applications and can speed up the compu-
tation significantly. Finding a cheap way for estimating sharper bounds for the
interdependency between discrete variables is an interesting question for future
work.

3.3 Open Source CoMISo Library

On the web page http://www.graphics.rwth-aachen.de/comiso the source-
code of the solver explained above as well as example programs can be found.
Note that even though this solver was created for sparse problems as they usually
occur e.g., in areas of Finite Elements or Geometry Processing, it can also be
applied to dense problems without any modifications. However, in some cases
it might be advantageous to replace sparse-specific parts such as the sparse
Cholesky solver by dense-optimized counterparts.

4 Experiments

We evaluate our algorithm by applying it to the surface quadrangulation prob-
lem as formulated in [6]. In this method two mixed-integer problems have to be
solved where the first one is the computation of a smooth orientation field while
the second one is a seamless parametrization mapping singularities and feature
edges to integer grid points and lines respectively. For more details about the
quadrangulation method we refer the reader to [6]. With the help of several ex-
periments we derived two different parameters for the two diverse problems. For
the computation of the orientation field we used ε = 10−3, maxitersGS = 100000
and maxitersCG = 50 while for the parametrization we chose maxitersGS = 0,
maxitersCG = 20 and the use of sparse cholesky was disabled completely. The
reason for those different parameter settings is that both problems have very

12 Practical Mixed-Integer Optimization for Geometry Processing

model 10k 50k 200k 800k

armadillo 0.3 1.2 6.3 33.9

cube 0.11 0.5 2.8 18.5
Table 1. Orientation Field Timings in s

model 10k 50k 200k 800k

armadillo 1.3 5.3 21.4 100.3

cube 0.15 0.9 6.7 55.1
Table 2. Parametrization Timings in s

diverse characteristics. While the orientation field exhibits a large number of
integers with local influence, the parametrization problem requires only few in-
tegers but with rather global influence. With the above settings we were able
to compute visually equivalent results compared to the original algorithm of [6]
within a fraction of time. The performance benefit is a result of the tuned param-
eters as well as the novel extension which are the fill-in reducing reordering, the
simultaneously rounding and some changes within the internal data structures.
All examples were computed on a single CPU of an intel i7 quadcore 2.80GHz
with 8GB of RAM.

Performance: To give one representative example the orientation field com-
putation on the lever model of [6] took 3.3s compared to 0.22s while the
parametrization timing decreases from 19.9s to 2.8s. However, further experi-
ments showed that the runtime strongly depends on the geometric complexity of
the object. In Table 1 we compare the timing of the orientation field computation
of the armadillo model (Figure 3) and a simple smoothed cube (Figure 2).
For the same number of triangles the geometric more complex armadillo (121
singularities) model needs more computation time than the smoothed cube (4
singularities). In the case of constant geometric complexity the runtime depends
almost linearly on the number of triangles, enabling very large inputs. A simi-
lar behavior can be observed for the parametrization problem in Table 2. The
algorithm behaves sensible to the geometric input complexity and nicely adapts
to situations of different difficulty which is due to the simultaneous rounding
approach.

To underline the importance of the fill-in reducing reordering we did a sep-
arate experiment where the pinion model (Figure 2) with many sharp features
was parametrized, leading to a huge set of dependent integer constraints. By ap-
plying the reordering the computation took 1.3s and the system matrix had 418k
nonzero entries compared to a much slower runtime of 7.4s and 581k nonzero
entries without the reordering.

Besides the performance our algorithm offers a nice flexibility due to the con-
venient and robust handling of linear constraints as underlined by the following
experiment.

Flexibility: Often designers are not satisfied with the result of fully automatic
quadrangulation algorithms because they want additional symmetries or struc-
tures alleviating animation. Therefore we extended the method of [6] by an

Practical Mixed-Integer Optimization for Geometry Processing 13

Fig. 3. (left) a quadrangulation of the armadillo designed in an interactive session.
(right) close up of the right hand where valence two singularities at the finger tips were
created manually.

interactive manipulation mode where additional (linear) constraints can be iter-
atively provided by the user. After the fully automatic computation the user is
able to (1) change (move, add, remove) singularities, (2) connect singularities by
a parametric line to improve the high-level structure of the quadrangulation like
used in [15] or (3) add element orientation or alignment constraints. It turned
out that such an interaction could be provided easily due to the available robust
handling of linear constraints. In the extreme case of specifying all singularities
within the orientation field our method is equivalent to [11] and [14]. However
in contrast to them our approach is flexible enough to compute solutions for an
arbitrary number of known singularities perfectly supporting an interactive de-
sign approach. Figure 3 shows the result of an interactive session where the user
provided a few orientations. Furthermore some singularities (of the automatic
solution) at the hand of the armadillo were merged into valence 2 singularities
to capture the spiky shape of the fingers without requiring a very small edge
length.

5 Conclusion

In this article we presented the technical details of our mixed-integer approxi-
mation algorithm for linearly constrained quadratic mixed-integer problems. By
identifying suitable algorithm settings for a given class of optimization problems
high efficiency combined with sufficient accuracy is achieved as illustrated by the
quadrangulation example. In the future we would like to apply our algorithm

14 Practical Mixed-Integer Optimization for Geometry Processing

to more mixed-integer problems from Geometry Processing and explore further
strategies which extend and generalize the idea of simultaneous rounding.

Acknowledgments

This work has been supported by the UMIC Research Centre, RWTH Aachen
University.

References

1. Floudas, C.A.: Nonlinear and Mixed Integer Optimization: Fundamentals and Ap-
plications, Oxford University Press, New York (1995)

2. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear
Programming, Birkhäuser, Basel (2005)

3. Gupta, O.K., Ravindran, A.: Branch and Bound Experiments in Convex Nonlinear
Integer Programming, Manage Sci., 31 (12), 1533-1546, (1985)

4. Quesada, I., Grossmann, I.E.:An LP/NLP Based Branch and Bound Algorithm for
Convex MINLP Optimization Problems, Computer Chem. Eng., 16, 937-947, (1992)

5. Westerlund, T., Petersson, F.: A Cutting Plane Method for Solving Convex MINLP
Problems, Computers Chem. Eng., 19, 131-136, (1995)

6. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans.
Graph. 28(3), 1-10 (2009)

7. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 8xx: Cholmod,
supernodal sparse cholesky factorization and update/downdate. Technical Report
TR-2006-005, University of Florida (2006)

8. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications
20(3), 720-755 (1999)

9. Kaelberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using
branched coverings. Computer Graphics Forum 26(3), 375-384 (Sep 2007)

10. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (August 1999)
11. Ray, N., Vallet, B., Li, W.C., Lévy, B.: N-symmetry direction field design. ACM

Transactions on Graphics (2008), presented at SIGGRAPH
12. Renard, Y.: gmm++, Generic Matrix Methods. http://home.gna.org/

getfem/gmm_intro.html (2003)
13. Ringertz, U.T.: On methods for discrete structural optimization. Engineering Op-

timization 13(1), 47-64 (1988)
14. Crane C., Desbrun M., Schröder P.: Trivial Connections on Discrete Surfaces. Com-

puter Graphics Forum (SGP) 29(5), 1525-1533 (2010)
15. Myles A., Pietroni N., Kovacs D., Zorin D.: Feature-aligned T-meshes. ACM Trans.

Graph. 29(4), 1-11 (2010)
16. Yu X., Zhang S., Johnson E.: A discrete post-processing method for structural

optimization. Engineering with Computers 19(2), 213-220 (2003)
17. Groenwold A. A., Stander N., Snyman J. A.: A pseudo-discrete rounding method

for structural optimization. Structural and Multidisciplinary Optimization 11(3),
218-227 (1996)

