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Abstract—1 We investigate a convex variational framework to
compute high resolution images from a low resolution video. We
analyze the image formation process to provide a well designed
model for shifting, blurring, downsampling and restoration.
The microscanning super-resolution is modeled as a convex
minimization problem, which is solved with a decomposition
domain technique, which allows for parallel computing and real
time algorithms.

I. INTRODUCTION

The paper is concerned with the classical image processing
problem of reconstructing highly resolved images from several
multiple smaller images. Improvements in the resolution and
fidelity of digital imaging systems have substantial value for
remote sensing, military surveillance and other applications.
Microscanning is a systematic approach to acquiring images
with slightly different samplescene phases; between successive
images the system is shifted slightly in a pre-determined
controlled pattern. This makes an important difference with
respect to general supersolution framework, where the system
is shifted in a random pattern. First of all we describe the
image formation model, by providing defintions of each stan-
dard acquisition operator: shifting, blurring, downsampling.
Then in line with recent works (see, for instance [1], [3]),
we introduce a convex energy used to restore highly resolved
image out from low resolution frames. Such energy is made
up by TV -regularization term and L2-discrepancy term, which
takes into account the acquisition process. Then we focus on
the main issue of this paper, that is to address real or at least
accetable computation time. For instance in aerosurveillance
the imaging system is embedded on board, making crucial to
restore acquired images in real time. To do this we adapt to
our setting the overalapping domain decomposition algorithm
for total varation minimzation proposed in [4]. So that we
are able to reduce the minimazion of the energy to a finite
sequence of sub-problems of a smaller size, so allowing, at
least in principle, for parallel computation. Finally we show
applications and results on real and synthetic data.

1The research of Daniele Graziani is supported by CNRS under the research
project FUI ”Gyrovision”.

II. PRELIMINARIES

We define the discrete rectangular domain Ω of step size
δx = 1 and dimension d1d2. Ω = {1, ..., d1} × {1, ..., d2} ⊂
Z2. In order to simplify the notations we set X = Rd1×d2 .
u ∈ X denotes a matrix of size d1 × d2. For u ∈ X , ui,j
denotes its (i, j)-th component, with (i, j) ∈ {1, ..., d1} ×
{1, ..., d2}. For g ∈ Y , gi,j denotes the (i, j)-th component of
with gi,j = (g1

i,j , g
2
i,j) and (i, j) ∈ {1, ..., d1}×{1, ..., d2} We

endowed the space X and Y with standard scalar product and
standard norm. For u, v ∈ X:

〈u, v〉X =
d1∑
i=1

d2∑
j=1

ui,jvi,j .

For u ∈ X and p ∈ [1,+∞) we set:

|u|p := (
d1∑
i=1

d2∑
j=1

|ui,j |p)
1
p .

If G,F are two vector spaces and H : G → F is a linear
operator the norm of H is defined by

‖H‖ := max
‖|u‖G≤1

(‖Hu‖F ).

If u ∈ X the gradient ∇u ∈ Y is given by:

(∇u)i,j = ((∇u)1
i,j , (∇u)2

i,j)

where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < d1

0 if i = d1,

and

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < d2

0 if j = d2.

III. THE MODEL

In what follows HR and LR stand for high and low
resolution respectively.



A. The acquisition process

As in [1] we assume the following acquisition process:

u(x, y) Real world scene

↓

Fku(x, y) shifted image.

↓

HkFku(x, y) blurred shifted image

↓

DkHkFku(x, y) downsampled blurred shifted image

↓

u0(m,n) = DkFkHku(x, y) + b noisy blurred
down-sampled image.

The microscanning super-resolution reconstruction problem is
the following: Given a set {u0

k}K1 of K = r2 LR images (where
r2 is the resolution enhancement factor between the LR and
the HR image) , find u. For any k we have the

u0
k = DkHkFku+ b

where:
• u0

k is the LR frame: a vector of size [N2 × 1]
• Dk is the down-sampling operator: a matrix of size [N2×
r2N2]

• Hk is the PSF: a matrix of size [r2N2 × r2N2]
• Fk are the shifting operators: each Fk is a matrix of size

[r2N2 × r2N2]
• u is HR image: a vector of size: [r2N2 × 1].

Considering that the frames are acquired with a unique camera
we assume the following facts: Hk = H and Dk = D for each
frame.

B. Assumption on the acquisition operators

We define the blur operator H by means of its Fourier
transform ĥ (see Figure 1 (a)). If f denotes a frequence in the
Fourier space and fc is the cutting frequency of the acquisiton
system.

ĥ(f) =


∣∣∣ 2
πx
(

arcsin( ffc
− x

γ

√
1− ( ffc

)2
)∣∣∣ if f ≤ fc

0 if f ≥ fc
(1)

In particular we have that ‖ĥ‖2 ≤ 1, which ensures that
‖H‖ ≤ 1. Given a continuous image u, we define the
pixel value ui,j of the corresponding discrete image at the
position (i, j) by computing the mean in the pixel region
∆i,j = (i, j) + [− 1

2 ,
1
2 )2. Then we define the downsampling

operator as:

ui,j 7→ Dui,j =

= uk,l =
1

r2A(∆r
k,l)

∑
0≤i,j≤MN

A(∆i,j ∪∆r
k,l)ui,j),

(2)

(a) PSF profile ĥ, fc = 2.27

Figure 1.

where r is the scale factor, 1 ≤ k, l ≤ M
r ,

M
r and A stands for

Lebesgue measure. It is not difficult to check that ‖D‖ ≤ 1
r2 .

Then the following bound holds:

r2∑
k=1

‖Tk‖ ≤ 1,

where Tk = DHFk. Moreover, up to rescaling, we can always
assume

r2∑
k=1

‖Tk‖ < 1. (3)

C. Trace operator

We define the trace operator as the restriction to a boundary
Γi of some subdomains.

TrbΓi : Vi 7→ RΓi , i = 1, 2,

with TrbΓi
vi = vibΓi

, the restriction of vi on Γi. RΓi denotes
the set of maps from Γi into R.

D. Convex minimization problem

To retrieve the super resolution image u we wish to mini-
mize the following energy:

F(u) =
r2∑
K=1

‖Tku− u0
k‖+ 2λ‖∇u‖1 (4)

where Tk = DHFk is a linear operator belonging to
L(RMN ,R

MN
r2 ). In order to obtain a fast minimization we

follow the decompostion overlapping domain method used in
[4]. So that instead of minimizing (4) on the whole image
domain, we split Ω in two or more overlapping subdomains
Ω1 and Ω2 such that Ω1 = Ω1∩Ω2 6= ∅ (see figure 2). For sim-
plicity and without loss of generality we limit the presentation
to two subdomains. We denote by Γ1 the interface between Ω1

and Ω2 \Ω1 and byΓ2 the interface between Ω2 and Ω1 \Ω2.
Due to the decomposition RMN is decomposed in two closed
subspaces Vj = {u ∈ RMN : supp(u) ⊂ Ωj}. Then we
wish to minimize energy (4) by using the following alternating
algorithm: pick an initial data u0 = ũ0

1 + ũ0
2 ∈ V1 + V2 and

iterate the following procedure:
un+1

1 = arg minv1∈V1
F(v1 + un2 )

un+1
2 = arg minv2∈V2

F(un+1
1 + v2)

un+1 := un+1
1 + un+1

2

(5)



Figure 2. The overlapping decomposition.

IV. THE ALGORITHM

A. Subspace minimization

Let us consider the minimization on Ω1. The minimum
problem is the following:

arg min
v1∈V1

TrbΓ1v1=0

F(v1 + u2)

= arg min
v1∈V1

TrbΓ1v1=0

r2∑
k=1

‖Tkv1 − (uk0 − Tku2)‖22

+ 2λ‖∇(v1 + u2bΩ1‖1. (6)

As in [4] we introduce the surrogate functional to separate the
variable u1 from the action of the operators Tk. For a, u1 ∈ V1,
u2 ∈ V2 we define

Fs1 (u1+u2, a) := F(u1+u2)+r2‖u1−a‖22−
r2∑
k=1

‖Tk(u1−a)‖22.

By same computation of [4] we obtain that

Fs1 (u1 + u2, a)

=
r2∑
k=1

‖u1 − (a+ (T ∗k (uk0 − Tku2 − Tka))bΩ1‖22

+ 2λ‖∇(u1 + u2)‖+ Φ(a, u0
k, u2), (7)

where Φ does not depend on u1. Then we can compute an
approximate solution of problem (6) by using the following
algorithm:u

l+1
1 = arg min u1∈V1

TrbΓ1u1=0
Fs1 (u1 + u2, u

l
1), l ≥ 0

u0
1 = ũ0

1 ∈ V1 .
(8)

As in [4], to control the solutions on the overlapping parts we
fix a bounded uniform partition of unity, that is {χ1, χ2} such
that

1) TrbΓiχi = 0 for i = 1, 2.
2) χ1 + χ2 = 1
3) suppχi ⊂ Ωi for i = 1, 2
4) max{‖χ1‖∞, χ2‖∞} = c < +∞.

We rewrite the algortithm as follows: Pick as initial data u0 =
ũ0

1 + ũ0
2 ∈ V1 + V2 and iterate:


u

(n+1,0)
1 = ũn1

u
(n+1,l+1)
1 = arg min u1∈V1

TrbΓ1
=0
Fs1 (u1 + ũn2 , u

(n+1),l)
1 )

u
(n+1,0)
2 = ũn2

u
(n+1,l+1)
2 = arg min u2∈V2

TrbΓ2
=0
Fs2 (u(n+1,L)

1 + un2 , u
(n+1),m)
2 )

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũn+1
1 := χ1u

n+1

ũn+1
2 := χ2u

n+1

(9)

B. Pararell version

Pick as initial data u0 = ũ0
1 + ũ0

2 ∈ V1 + V2 and iterate:


u

(n+1,0)
1 = ũn1

u
(n+1,l+1)
1 = arg min u1∈V1

TrbΓ1
=0
Fs1 (u1 + ũn2 , u

(n+1),l)
1 )

u
(n+1,0)
2 = ũn2

u
(n+1,l+1)
2 = arg min u2∈V2

TrbΓ2
=0
Fs2 (u(n+1,L)

1 + un2 , u
(n+1),m)
2 )

u(n+1) := u
(n+1,L)
1 +u

(n+1,M)
2 +un

2

ũn+1
1 := χ1u

n+1

ũn+1
2 := χ2u

n+1

(10)

C. Convergence properties

By using the bound
∑r2

k=1 ‖Tk‖ < 1, we have as in [4] the
following proposition. (see Proposition 5.4 and Theorem 5.7
of [4]). The proof, up to minor changes, is the same.

Proposition 4.1: The algorithms (9) and (10) produces a
sequence (un) with the following properties:

1) F(u(n)) > F(u(n+1)) for all n ∈ N (unless u(n) =
u(n+1)

2) limn→+∞ ‖u(n+1) − u(n)‖2 = 0;
3) the sequence (u(n)) has convergent subsequences.
4) The accumulation points of the sequence (u(n)) are

minimizers of F . If F has a unique minimizer, then
the sequence (u(n)) converges to it.

V. EXPERIMENTS

Figure 3,4 show a controlled simulated experiment. In this
experiment we create a sequence of 4 LR frames by using
one HR image (Fig. 3 (a)). We shifted the image by a pixel
in the horizontal vertical diagonal, direction (we taken as
fourth shifted image the original one). Then to simulate the
effect of camera we applied the blur operator H to the 4
shifted images. Finally the shifted images are downsampled
by a factor r2 = 4 and a gaussian noise with two different
variances is added. To retrieve the HR image we implemented
the sequential algorithm (9) with initial data u0 = 0, by using



(a) Original image (b) Noisy frame σ = 0.01

(c) Restored HR image (d) Convergence time in seconds

Figure 3.

a decomposition with 8 subdomains. The original image is of
size 512×512 and is rescaled in [0, 1]. The global CPU time is
about 3 minutes running on an Intel (R) Xeon(R) CPU 5120 at
1.86GHz. The local CPU time on every subdomains, without
disposing parallel processors, is approximately 22 seconds. We
precise that algorithm is implemented with Matlab software
and the matlab code is not optimized. We also remark that
without decomposition the algorithm takes about 100 seconds.
In figure 5 we execute the same experiments, but with an
original image of size 256 × 256. The global CPU time is
about 1 minutes ans 25 seconds running on an Intel (R)
Xeon(R) CPU 5120 at 1.86GHz. The local CPU time on
every subdomains, without disposing of parallel processors,
is approximately 10 seconds.

VI. CONCLUSION

In this paper we presented a fast algorithm to enhance the
quality of a finite sequence of noisy and blurred frames. At
least in principle our method allows for real time computation,
which is one of the main problems in microscanning super-
resolution framework. One important extension, we are now
investigating, is the generalization of our algorithm to high
resolution color image and demosaicing. In this direction
several analogous model have been proposed (see, among
others, [2], [5]), but no decompositon method domain is
available in the literature for such a problem.

(a) Noisy frame σ = 0.1 (b) Restored HR image

Figure 4.

(a) Original image (b) Noisy frame σ = 0.05

(c) Restored HR image (d) Convergence time in seconds

Figure 5.
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