
Existence and intermediate variational approximation results for atoms-like

target energies with blur operator

DANIELE GRAZIANI

MORPHEME/ CNRS/I3S/UNS

2000, route des lucioles Les Algorithmes -121 06903 Sophia Antipolis - Cedex France

e.mail:daniele.graziani@inria.fr

email:daniele.graziani@gmail.com

Abstract The goal of the present work is to analyze, from a theoretical point of view, a new

variational formulation for the detection of points in 2-d images in presence of blur operator.

We de�ne a new energy whose minimizers give the target set of points. We prove an existence

result for this functional and we also provide a variational approximation with functionals

de�ned on smooth sets.

AMS subject Classi�cation: 49J45 49Q20

Keywords: Atomic measures, direct methods, curvature depending functionals, Γ-convergence,

Dirichlet problem with measure data, convolution, spots detection, image processing.

1. Introduction

1.1. The variational model. Suppose to observe in the real word a natural image µ, which

contains several geometric structures: isolated points, open curves, edges, textures, homoge-

neous zones (that is set with positive Lebesgue measure). From a very general point of view µ

can be a modeled as a positive Radon measure with atomic part (points), and a non atomic

part which contains all the other geometric structures.

The image µ is acquired by a camera system by applying a blur operator T , whose features

depends on the system. It means the measure µ is smoothed by convolution with a regularizing

kernel. Finally a Gaussian noise b, due to the data transmission, is added. The �nal observed

image is now a function u0 given by

u0 = T (µ) + b.

One of the important tasks in image processing, for instance in biological images, is to retrieve

nothing else but the isolated points, that were contained inside the image domain, lost in the

acquisition process.
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This is a di�cult task. The reason is twofold. First of all, due to the compactness of T , one

has to solve an ill posed inverse problem to retrieve µ. Then the atomic part of µ has to be,

somehow, extrapolate from whole the support of µ.

Let us note that in the particular case µ = v with v BV -function, one obtains the classical

Rudin-Osher-Fatemi model (see [23]). Without claiming of being exhaustive we refer the reader

to [2, 4, 8] for a, still incomplete, survey on classical variational problems in image processing;

such as, for instance, restoration by total variation minimization, edge detection, segmentation,

inpainting, free discontinuity problems. We point out that the problem we deal with, is deeply

di�erent, whereas we are interested in restoring/detecting atoms-like singularities.

To this purpose we de�ne and study a new variational model to detect isolated points in

blurred and noisy image. We con�ne ourselves to a pure theoretical analysis.

We consider as image domain Ω ⊂ R2 an open bounded set with Lipschitz boundary. The

blur operator T is an integral operator with kernel ρσ, where ρσ is a standard Friedrichs

molli�er. The natural image µ is a Radon measure on Ω. Then for x ∈ Ωσ = {x ∈
Ω such that dist(x, ∂Ω) > σ} the convolution of ρσ with a Radon measure is well de�ned

(see subsection 2.2). By following the standard approach to solve ill-posed inverse problems

(see [17] and reference therein on this subject), we intend to minimize functionals of type:

F (µ) = ‖ρσ ∗ µ− u0‖2L2(Ωσ) + R(µ)︸ ︷︷ ︸
prior term

where R(µ) has to be chosen according to the singularities, we want to extrapolate from the

support of µ. Moreover in all the paper we assume u0 ∈ L∞(Ω). Then in order to force

the minimizers of F to be atomic measures, we consider R(µ) = H0(suppµ), where H0 is the

counting Haussdorf measure.

1.2. Related works. Let us mention some related works based on variational techniques. For

detecting point-like target a new approach has been proposed in [6]. In that papers the natural

image is still considered as a Radon measure. Then one of the key point is to transform the

natural image µ in the divergence measure of a suitable Lp-vector �eld, in order to de�ne a

convenient variational framework. This is done by solving the classical Dirichlet problem with

measure data:

(1.1)

{
−∆u = µ on Ω
u = 0 on ∂Ω.

This point of view makes possible the construction of functional of type:
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F(U) =
∫

Ω
|divU |2dx+ λ

∫
Ω
|U − U0|pdx+H0(PU );

the initial vector �eld U0 is given by U0 = −∇v where v is solution of problem (1.1) with

µ = I0. I0 is the observed data. U is an Lp vector �eld (with p < 2), whose distributional

divergence divU is a Radon measure. The unkown target set is identi�ed with PU , which is

the support of the singular part, with the respect to the p-capacity, of the measure divU .

Later on, they follow some suggestions from [10, 11], where the counting measure term

is approximated in the sense of the De Giorgi's Γ-convergence (see [15, 16]), by means of

curvature depending functionals. They so obtain, under the constraint that U is a gradient of

a Sobolev function in W 1,p
0 (Ω) with p < 2, a variational approximation of functional F with

more convenient energies from a numerical point of view (see [20]).

Another interesting strategy has been developed in [5]. In that paper, in connection with the

theory of Ginzburg-Landau systems (see [1] and reference therein on this topic) the isolated

points in 2-D images are considered as the topological singularities of a map U : R2 → S1,

where S1 is the unit sphere of R2. Then, after a delicate construction of an initial map �eld

U0 : R2 → S1, they minimize a family of Ginzburg-Landau's type energy, in order to detect

isolated atoms.

By the way none of the previous works takes into account the blur operator. Furthermore

both approaches require a preliminary and delicate construction of a proper initial map U0,

related to the initial observed image.

1.3. Main contributions. By dealing with the blur operator we de�ne a more realistic model.

Moreover the presence of the smoothing kernel ρσ allows for a direct and natural variational

formulation. We de�ne indeed the energy directly on the space of Radon measures. More

precisely we introduce �rst a functional F : AM(Ω)→ [0,+∞] de�ned by

F (µ) = H0(suppµ) + ‖ρσ ∗ µ− u0‖2L2(Ωσ)

where AM(Ω) denotes the set of purely atomic Radon measures (see subsection 2.2 for de�ni-

tions and standard properties of Radon measures).

Then, by keeping in mind the association of every Radon measure with the solution of

Dirichlet problem (1.1), we introduce a functional G : HS∆Mp(Ω)→ [0,+∞] de�ned by

G(u) = H0(P∇u) + ‖ρσ ∗ δP∇u − u0‖2L2(Ωσ);

where HS∆Mp(Ω) is the space of W 1,p
0 (Ω)-functions whose -Laplacian measure has no non

atomic part, while P∇u denotes the support of its atomic part. So that δP∇u =
∑

xi∈P∇u aiδxi
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with ai ∈ [0, 1] (we refer the reader to subsection 2.3 for precise de�nitions of all these quanti-

ties).

Concerning the two minimum problems associated to functional F and G, it can be seen

that they are equivalent. So in most of the paper we focus on functional G.

So that in the �rst part the main result is to provide, via direct methods, an existence result

for functional G (see Theorem 4.1). Roughly speaking, lower semicontinuity a compactness

of a minimizing sequence {un} of G follows by carefully combining two tools. The �rst one

is the well known (see [24]) a priori estimation for the W 1,p
0 (Ω)-norm of the weak solution of

problem (1.1). The second one is a uniform bound on the counting measure term, which gives

the convergence for sets of points in the sense of De�nition 2.1 (see section 2).

In the second part, as in [6], inspired by the techniques used in a di�erent context by the

authors of [11] (see also [10]), we investigate the variational approximation for functional G

via depending curvature functionals de�ned on smooth sets.

The �rst step is to replace, as in [6, 11], the counting measure by curvature depending

energies de�ned on regular sets, whose minimizers are given by small disk Bε(xi) with xi ∈ P∇u.
That is formally

(1.2) H0(P∇u) ∼=
1

4π

∫
∂D

(1
ε

+ εκ2
)
dH1,

where k is the curvature of D. Then we turn our attention on the last term of functional G.

We look at the associate density measures θεdH1bD =
(

1
ε + εκ2

)
dH1bD. We observe that

(1.2), if we assumed all the coe�cients ai ∈ [0, 1] of the atomic measure δP∇u equal to 1, would

read in term of total variation of Radon measures as

(1.3)
∣∣δP∇u∣∣(Ω) ∼=

1
4π

∣∣θεdH1bD
∣∣(Ω).

The key point of our approach is then to replace, formally, the whole functional G with:

(1.4) Gε(D) =
1

4π

∫
∂D

(1
ε

+ εκ2
)
dH1 +

1
ε
L2(D) +

∫
Ωσ

|ρσ ∗ θεdH1bD − u0|2dx,

where D is a regular set (see subsection 2.1 for notation and de�nition of regular sets) with

small Lebesgue measure (see subsection 5.1 for the de�nition of the family of energies Gε).

The goal of the second part is to prove that such a replacement can be actually performed

in the sense of Γ-convergence. In line with [6, 11] we de�ne the Γ-convergence with respect

to an ad hoc convergence for smooth sets. Such a notion involves the Haussdorf convergence

of boundaries of regular sets to �nite sets of points (we refer to section 5 for de�nition and

rigorous statements). It is known that a uniform bound, with respect to ε, on the �rst term of

functionals Gε guarantees compactness properties with respect to this notion of convergence
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(in section 5.3 we state a very simpli�ed version of the compactness result proven in [11]).

Nevertheless such a nice property does not allow to take the limit directly in the last term of

functionals (1.4). It makes the proof the Γ-convergence more than a simple adaption of the

argument used in [11]. Indeed, to prove the so-called Γ− lim inf inequality, we have to deduce,

up to subsequences, the weak star convergence of the density measure to δP∇u . Such a results

will follow from the association of every Radon measure with the solution of Dirichlet problem

(1.1), combined with properties of Haussdorf convergence.

Concerning the so-called Γ− lim sup inequality, the optimal sequence {Dε}, as in [6, 11], will

be given by disk of small radius. For such a sequence, it can be seen that the whole sequence of

density measures θεdH1 converges, with respect to the weak star convergence, to the measure

δP∇u .

1.4. Final remarks. Let us point out that with respec tot [6, 11] we do not go further in

the variational approximation, by replacing the sequence Gε with more convenient functionals

de�ned on suitable smooth functions w. In particular in [11] (see also [7]) the measure dH1

is replaced by Modica-Mortola's density energies (see [21, 22]). Then by combining Sard's

Theorem and coarea formula one can formally replace the integral on ∂D by an integral

computed over the level sets of w, whose curvature κ becomes div ∇w|∇w| .

Very roughly speaking, these considerations lead to variational approximation for the count-

ing measure term of this type:

H0(P∇u) ∼=
1

8πC

∫
Ω\{|∇w|=0}

( 1
βε

+ βε
(
div(

∇w
|∇w|

)
)2)(ε|∇w|2 +

1
ε
W (w))dx,

W is a double well potential, C =
∫ 1

0

√
W (t)dt. The parameters ε, βε are such that

lim
ε→0+

ε| log(ε)|
βε

= 0.

So that in our case the density measures playing the role of θεdH1bD should be given by

µε(x)dx =
1

8πC

( 1
βε

+ βε
(

div(
∇w
|∇w|

)
)2

︸ ︷︷ ︸
∼=k2

)
(ε|∇w|2 +

1
ε
W (w))dx︸ ︷︷ ︸

∼=dH1

.

Therefore we would like to replace functional G with much more convenient energies de�ned

on smooth functions, of type:

Fε(w) =
1

8πC

∫
Ω\{|∇w|=0}

( 1
βε

+βε
(
div(

∇w
|∇w|

)
)2)(ε|∇w|2+

1
ε
W (w))dx+‖ρσ∗µεdx−u0‖2L2(Ωσ).

However this type of variational approximation is still subject of our current investigation.

1.5. Organization of the paper. The paper is organized as follows. Section 2 is devoted to

notation, preliminary de�nitions and results. In section 3 we introduce the functionals and we
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show some related properties. In section 4 we address the existence result for functional G. In

section 5 we provide the variational approximation of functional G.

2. Definition and main properties

2.1. Notation. In all the paper Ω ⊂ R2 is an open bounded set with Lipschitz boundary.

The Euclidean norm will be denoted by | · |, while the symbol ‖ · ‖ indicates the norm of some

function spaces. The brackets 〈, 〉 denotes the duality product in some distributional spaces. L2

or dx is the 2-dimensional Lebesgue measure and Hk is the k-dimensional Hausdor� measure.

Bρ(x0) is the ball centered at x0 with radius ρ. We say that a set D ⊂ Ω is a regular set if

it can be written as {F < 0} with F ∈ C∞0 (Ω). In the following we will denote by R(Ω) the

family of all regular sets in Ω. B(Ω) is the family of all Borel set in Ω. We denote byM(Ω)

the standard space of Radon measures. If µ ∈ M(Ω) and B ⊆ Ω is a generic Borel set |µ|(B)

denotes its total variation.

If D ∈ R(Ω) is a regular set, the symbol dH1bD denotes the Radon measure de�ned for

every Borel set B ∈ B(Ω) by H1b∂D(B) = H1(∂D ∩B). In particular if is φ ∈ C0(Ω) we have

〈dH1bD,φ〉 =
∫
∂D∩Ω φdH

1.

Finally Hausdor� distance between two closed sets C and K is de�ned as dH(C,K) =

infr>0{C ⊂ (K)r K ⊂ (C)r} with (A)r = {x ∈ R2 dist(A, r) < r2} for a generic set

A ⊂ R2. Notation for Sobolev spaces, Lebesgue spaces and the space of distributions is

standard.

2.2. Radon measures. In this subsection we collect some well known fact about Radon

measures. For more details we refer the reader to [2, 18].

Let σ be a positive parameter and ρσ a standard mollifying sequence, with Ωσ = {x ∈
Ω such that dist(x, ∂Ω) > σ}. For x ∈ Ωσ we have that the support of ρσ(x− ·) is contained
in Ω, that is ρσ(x− ·) ∈ C0(Ω). Then for every x ∈ Ωσ is well de�ned the convolution between

a Radon measure µ ∈M(Ω) and ρσ given by

(2.1) µ ∈M(Ω) 7→
(
ρσ ∗ µ

)
(x) =

∫
Ω
ρσ(x− y)dµ ∈ C∞(Ωσ).

We de�ne linear operator T :M(Ω) 7→ L2(Ω) given by:

µ ∈M(Ω)→ T (µ) =
∫

Ω
ρσ(x− y)dµ(y) ∈ C∞(Ωσ) ⊂ L2(Ω),

where ρσ ∗ µ is identi�ed with an L2-function by setting (ρσ ∗ µ)(x) = 0 outside Ωσ. It can be

seen that T is a compact operator. In particular T no admits a bounded inverse operator.

If P ⊂ Ω is a set of points, that is P = {xi}+∞i=1 , δP denotes the atomic measures
∑∞

i=1 aiδxi ,

where δxi is the Dirac measure concentrated at xi and ai ∈ [0, 1].
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We recall that every positive Radon measure µ ∈M(Ω) can be decomposed in the following

way:

(2.2) µ = µ̃+
∞∑
i=1

aiδxi

where µ̃ is non atomic, ai ∈ [0, 1], xi ∈ Ω, xi 6= xj for i 6= j.

For latter use we introduce the following auxiliary space of purely atomic positive Radon

measures:

(2.3) AM(Ω) := {µ ∈M(Ω); µ̃ = 0}

where A stands for atomic.

2.3. Convergence for sets of points. We recall the notion of convergence for �nite sets of

points (see [11, 19, 20]).

De�nition 2.1. We say that a sequence of a �nite set of points {Ph}h ⊂ Ω converges as a

sequence of sets of points to a set P ⊂ Ω, if each of the sets Ph contains a number N of

points {x1
h, . . . , x

N
h }, with N independent of h, such that xih → xi for any i = 1, . . . , n and⋃N

i=1{xi} = P.

Sometimes we will simply write Ph → P or say Ph converges to P , if no confusion is possible.

The following results (see, for instance, [20]) will be useful.

Lemma 2.1. Let {Ph}h be a sequence of a �nite set of points such that H0(Ph) ≤ N0 for every

h with N0 ∈ N. Then there exists a subsequence {Phk}k ⊂ {Ph}h and a set of points P ⊂ Ω

such that Phk → P .

Lemma 2.2. Let {Ph} ⊂ Ω be a sequence of a �nite set of points converging to a �nite set of

points P . Then

(2.4) H0(P ) ≤ lim inf
h→+∞

H0(Ph).

2.4. Distributional divergence and distributional spaces. In this subsection we recall

the de�nition of the distributional space DMp(Ω), 1 ≤ p, q ≤ +∞, (see [3, 12, 13]). We also

introduce some other auxilary spaces.

De�nition 2.2. For U ∈ Lp(Ω; RN ), 1 ≤ p ≤ +∞, set

|divU |(Ω) := sup{〈U,∇ϕ〉 : ϕ ∈ C∞0 (Ω), |ϕ| ≤ 1}.

We say that U is an Lp-divergence measure �eld, i.e. U ∈ DMp(Ω), if

‖U‖DMp(Ω) := ‖U‖Lp(Ω;RN ) + |divU |(Ω) < +∞.
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We recall that U ∈ Lp(Ω; RN ) belongs to DMp(Ω) if and only if there exists a Radon

measure denoted by divU such that

〈U,∇ϕ〉 = −
∫

Ω
divUϕ ∀ϕ ∈ C∞0 (Ω),

and the total variation of the measure divU is given by |divU |(Ω).

We de�ne the following space

(2.5) ∆Mp(Ω) := {u ∈W 1,p
0 (Ω), ∇u ∈ DMp(Ω)}.

Then for u ∈ ∆Mp(Ω) we will write −∆u to denote the measure −div∇u.
For latter use, we also de�ne the auxiliary subspace of W 1,p

0 (Ω) whose -Laplacian measure

−∆u does not have non atomic part.

(2.6) HS∆Mp(Ω) := {u ∈ ∆Mp(Ω), −∆u ∈ AM(Ω)}

where H stands for harmonic and S for special. For u ∈ HS∆Mp(Ω), the support supp−∆u

of the Radon measure −∆u is denoted by P∇u.

Finally we state the following result, which, up to minor changes, can be proven as Propo-

sition 3.1 of [6].

Proposition 2.1. Let P ⊂ Ω be a set of �nite number of points. Let u ∈ W 1,p
0 (Ω), with

−∆u = 0 in D′(Ω \ P ). Then u ∈ ∆Mp(Ω). Moreover, if the measure −∆u is positive, we

have u ∈ HS∆Mp(Ω), with P∇u = P .

3. Functionals and related properties

In this section we study two possible functionals well adapted for the detection of spots.

We show that the associate minimum problems are equivalent and that the in�mum value is

trictly positive.

We consider �rst the functional F : AM(Ω)→ [0,+∞] given by

(3.1) F (µ) = H0(suppµ) + ‖ρσ ∗ µ− u0‖2L2(Ωσ).

Let us verify in the next proposition that the in�mum value of F is strictly positive.

Proposition 3.1. If u0 6= 0 a.e., then m1 = inf
AM(Ω)

F > 0.

Proof. Suppose without loss of generality that m1 < +∞. Then if m1 = 0, it should

be possible to exhibit a sequence {µn} ⊂ AM(Ω) such that F (µn) → 0. In particular

H0(suppµn) → 0. By Lemmas 2.2 and 2.1 we infer that there exists a subsequence of set
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of points {Pnk} ⊆ {suppµn} converging, as a sequence of sets of points, to a �nite set of points
P ⊂ Ω with

H0(P ) ≤ lim
k→+∞

H0(Pnk) = lim
n→+∞

H0(suppµn) = 0.

Then P = ∅. We consider the associated sequence of Radon measure νk = δPnk with suppνk =

Pnk and we observe the following facts:

(i) H0(suppνk) = H0(Pnk)→ 0

(ii) since suppνk → ∅ (as a sequence of set of points), for k large enough suppνk = ∅.

Then we deduce

0 = lim
k→+∞

F (νk) = lim
k→+∞

H0(Pnk) + ‖ ρσ ∗ νk︸ ︷︷ ︸
=0

−u0‖2L2(Ωσ) = ‖u0‖22,

but then u0 = 0 a.e., which is a contradiction. So the proof is achieved �

To deal with space of functions, we associate to every µ ∈ M(Ω) a function u ∈ ∆Mp(Ω)

in the following way. We consider the Dirichlet problem

(3.2)

{
−∆u = µ on Ω
u = 0 on ∂Ω.

Classical results (see [24]) ensures the existence of a weak solution u ∈ W 1,p
0 (Ω) with p < 2.

Then it easy to see that the distributional divergence of −∇u is given by µ and we have

u ∈ ∆Mp(Ω). It leads to consider, instead of F , the functional G : HS∆Mp(Ω)→ [0,∞]

G(u) = H0(P∇u) + ‖ρσ ∗ δP∇u − u0‖2L2(Ωσ).

We consider the minimum problems

(3.3) inf{F (µ); µ ∈ AM(Ω)}

and

(3.4) inf{G(u) u ∈ HS∆Mp(Ω)}.

We have the equivalence in the sense of the following proposition.

Proposition 3.2. For the minimum problems (3.3) and (3.4) the following equality holds:

(3.5) m1 = inf
AM(Ω)

F = inf
HS∆Mp(Ω)

G = m2.

Proof. We �rst prove m1 ≥ m2.

We may assume without loss of generality that m1 < +∞. Then for every µ ∈ AM(Ω) we

have that suppµ is given by a �nite set of points. We write µ = δsuppµ.
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Moreover there exists u ∈W 1,p
0 (Ω) with p < 2 such that{

−∆u = δsuppµ on Ω
u = 0 on ∂Ω.

Hence u ∈ HS∆Mp(Ω), with P∇u = suppµ. Therefore we have:

m1 ≥ F (µ) = G(u) ≥ m2.

Now we show that m2 ≥ m1.

If u ∈ HS∆Mp(Ω) we have

m2 ≥ G(u) = F (δP∇u) ≥ m1.

Thus the equality (3.5) holds. �

4. Existence

We focus our attention on the minimum problem (3.4). We show the existence, via direct

methods, of a minimizer in the class HS∆Mp(Ω) for the functional G. We start by proving

the compactness property.

Theorem 4.1. Let {un}n ⊂ HS∆Mp(Ω) be a sequence such that

(4.1) H0(P∇un) ≤M < +∞.

Then there exist {unk}k ⊂ HS∆Mp(Ω) and u ∈ HS∆Mp(Ω) such that

(4.2)

{
unk → u strongly in L2(Ω)
lim inf
k→+∞

H0(P∇unk ) ≥ H0(P∇u).

Proof.

Let {un}n ⊂ HS∆Mp(Ω) be a sequence such that bound (4.1) holds.

For every n ∈ N un is the solution of the dirichlet problem with measure data{
−∆u = δP∇un on Ω
u = 0 on ∂Ω.

Moreover we can always assume P∇un = {x1
n, ..., x

J(n)
n } and δP∇un =

∑J(n)
i aiδxi with ai ∈

[0, 1]. Then by Theorem 9.1 of [24] and (4.1) we have the estimate

(4.3) ‖un‖W 1,p
0
≤ C|δP∇un |(Ω) = C

J(n)∑
i=1

|ai| ≤ CH0(P∇un) ≤ CM := C1

where the constant C1 does not depend on n and 1 < p < 2.
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Sobolev's embedding together star weak compactness of measures, give immediately the

existence of a subsequence {unl}l and a positive measure µ such:
unl → u in L2(Ω) and a.e.

∇unl ⇀ ∇u in Lp(Ω; R2)
−∆unldx ⇀ 0 in L2(Ω)
−∆unl

∗
⇀ µ inM(Ω).

Moreover from (4.1) and Lemma 2.1 we infer the existence of a subsequence {Pnl}l ⊂
{P∇un}n and a �nite set of points P ⊂ Ω such that Pnl → P , in the sense of De�nition 2.1.

By diagonal argument we have the existence of a subsequence {(unl(k) , Pnl(k))}k such that :



unl(k) → u in L2(Ω) and a.e.

∇unl(k) ⇀ ∇u in Lp(Ω; R2)
−∆unl(k)dx ⇀ 0 in L2(Ω)
−∆unl(k)

∗
⇀ µ inM(Ω)

Pnl(k) → P.

We claim that −∆u = 0 in D′(Ω \ P ). Indeed let φ be a test function with support in Ω \ P .
Since Pnl(k) → P we have that for k large enough suppφ is contained in Ω \ Pnl(k) .

Thus we have ∫
suppφ

∇unl(k)∇φdx = −
∫

suppφ
∆unl(k)︸ ︷︷ ︸
→0

φdx.

By taking as k → +∞, we get ∫
suppφ

∇u∇φdx = 0

and being the test function arbitrary, the claim follows.

Set now P̃ = P \ ∂Ω. Then we have u ∈ W 1,p
0 (Ω) with −∆u = 0 in D′(Ω \ P̃ ), since

D′(Ω \ P̃ ) ⊂ D′(Ω \ P ).

So, by the Proposition 2.1, we conclude that u ∈ ∆Mp(Ω). It remains to prove that the

measure −∆u is positive.

We show that it coincides with the weak limit µ of the sequence of positive measures

{−∆unl(k)}. Indeed, if φ is a test function with support in Ω, we have∫
Ω
∇unl(k)∇φdx =

∫
Ω
φd∆unl(k) =

∫
Ω
φdδP∇unl(k)

,

and taking the limit we have the equality −∆u = µ in D′(Ω) and inM(Ω).

Hence, by the Proposition 2.1, we conclude that u ∈ HS∆Mp(Ω) with P∇u = P̃ .
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Finally by taking into account the lim inf is the same for all the subsequences extracted

from the sequence {P∇un}, we also have from Lemma 2.2:

(4.4) H0(P∇u) ≤ H0(P ) ≤ lim inf
k→+∞

H0(Pnl(k)) ≤ lim inf
k→+∞

H0(P∇unl(k) ).

So that (4.2) holds and the proof is complete. �

We pass now to prove of the lower semicontinuity property. The proof, up to an integration

by parts, will follow in practice from the compactness-continuity of the operator T de�ned in

section 2.2.

Theorem 4.2. Let {un}n, u ⊂ HS∆Mp(Ω) such that

(4.5)

{
un → u in L2(Ω)
lim inf
n→+∞

H0(P∇un) ≥ H0(P∇u).

Then

(4.6) lim inf
n→+∞

G(un) ≥ G(u).

Proof. Without loss of generality we assume

(4.7) lim
n→+∞

G(un) ≤M < +∞,

where M is a positive constant.

Let us �rst consider the term∫
Ωσ

|ρσ ∗ δP∇un − u0|2dx =
∫

Ωσ

|
∫

Ω
ρσ(x− y)dδP∇un − u0|2dx.

Let us set

gn(x) =
∫

Ω
ρσ(x− y)dδP∇un ; g(x) =

∫
Ω
ρσ(x− y)dδP∇u .

For x ∈ Ωσ the support of the function ρσ(x − ·) is contained in Ω. Then, by considering

ρσ(x− ·) as a test function, we have by performing an integration by parts:

gn(x) =
∫

Ω
∇yρσ(x− y)∇un(y)dy =

∫
Ω

∆(−ρσ(x− y))un(y)dy.

Thus, since un → u in L2(Ω) with u ∈ HS∆Mp(Ω), we have, by performing another

integration by parts,

gn(x)→
∫

Ω
∆(−ρh(x− y))u(y)dy = g(x) almost everywhere in Ωσ.

Then we also have

(4.8) |gn(x)− u0|2 → |g(x)− u0|2 almost everywhere in Ωσ.
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By using standard properties of convolution together with bound (4.7) we get:

|gn(x)− u0|2 ≤ |gn(x)|2 + |u0|2 ≤ ‖ρσ‖2∞
(
|δP∇un |(Ω)

)2 + |u0|2

≤
(
H0(P∇un)

)2 + |u0|2 ≤M2 + ‖u0‖2∞ := K(4.9)

with K independent of n. Then by (4.8) and (4.9), we can apply the dominated convergence

theorem. So that

|gn(x)− u0|2 → |g(x)− u0|2 strongly in L1(Ωσ)

⇓

(4.10) lim
n→+∞

∫
Ωσ

|ρσ ∗ δP∇un − u0|2dx =
∫

Ωσ

|ρσ ∗ δP∇u − u0|2dx.

By taking into account the superlinearity property of the lim inf operator, from assumption

(4.5) it follows (4.6). So the proof is complete. �.

As a consequence of Theorems 4.1 and 4.2, we obtain the following existence result.

Theorem 4.3. There exists a solution u ∈ HS∆Mp(Ω) of problem (3.4).

Remark 4.1. As a consequence of the previous theorem and Proposition 3.2, we obtain that

µ = δP∇u with u solution of problem (3.4), is a solution of problem (3.3).

5. Variational approximation with smooth sets

Inspired by [6, 11] we investigate the variational approximation for functional G via depend-

ing curvature functionals de�ned on smooth sets.

5.1. De�nition of the approximating sequence. As described in the introduction the �rst

step is the following formal substitution:

(5.1) H0(P∇u) ∼=
1

4π

∫
∂D

(1
ε

+ εκ2
)
dH1,

where D ∈ R(Ω) and k denotes its curvature. Next we consider the associate density measures

θεdH1bD =
(

1
ε + εκ2

)
dH1bD. Consequently (5.1) gives in term of total variation of Radon

measures

(5.2)
∣∣δP∇u∣∣(Ω) ∼=

1
4π

∣∣θεdH1bD
∣∣(Ω)

Therefore we want to approximate the whole functional G with:

(5.3) Gε(D) =
1

4π

∫
∂D

(1
ε

+ εκ2
)
dH1 +

1
ε
L2(D) +

∫
Ωσ

|ρσ ∗ θεdH1bD − u0|2dx on R(Ω),

where the second term forces D to have small Lebesgue measure.
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5.2. Ad hoc convergence and Γ-convergence. As in [6, 11] we adopt an analogous speci�c

notion of convergence to deal with regular sets and and functions belonging to a distributional

space. Let us set Xp(Ω) = {u ∈ HS∆Mp(Ω); H0(P∇u) < +∞). For the convenience of the

reader we recall that functional G : Xp(Ω)→ [0,+∞) is de�ned by

(5.4) G(u) = H0(P∇u) + ‖ρσ ∗ δP∇u − u0‖2L2(Ωσ).

De�nition 5.1. We say that a sequence {Dh}h ⊂ R(Ω) H-converges to u ∈ Xp(Ω) if the

following three conditions hold

(i) L2(Dh)→ 0;

(ii) {∂Dh}h → P ⊂ Ω in the Hausdor� metric, where P is a �nite set of points;

(iii) P∇u = P \ ∂Ω.

Then Γ-convergence is then de�ned according to the ad hoc convergence.

De�nition 5.2. We say that Gε Γ-converges to G if for every sequence of positive numbers

{εh}h → 0 and for every u ∈ Xp(Ω) we have:

(i) for every sequence {Dh}h ⊂ R(Ω) H-converging to u

lim inf
h→+∞

Gεh(Dh) ≥ G(u);

(ii) there exists a sequence {Dh}h ⊂ R(Ω) H-converging to u such that

lim sup
h→+∞

Gεh(Dh) ≤ G(u).

5.3. Compactness and Γ-convergence. The compactness and Γ-convergence theorems,

proven in [11], will play an important role for our variational approximation result.

In order to make the paper self-contained, we state, in a very simpli�ed form, the result

proven in [11]. (see Theorem 4.1 of [11] for a complete statement and proof). We just recall

the part concerning the counting measure, which we will use in the sequel.

Theorem 5.1. Let {εh}h → 0+. Then the following properties holds.

(i) Let {Dh}h ⊂ R(Ω) be such that

1
4π

∫
∂Dh

( 1
εh

+ εhκ
2
)
dH1 +

1
εh
L2(Dh) ≤M < +∞.

Then there exists {Dhk}k ⊂ R(Ω) and P ⊂ Ω such that ∂Dhk → P , with respect to

Haussdorf distance.

(ii) for every sequence {Dh}h ⊂ R(Ω) and a set of points P ⊂ Ω such that ∂Dh → P , with

respect to the Haussdorf distance, we have:
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lim inf
h→+∞

1
4π

∫
∂Dh

( 1
εh

+ εhκ
2
)
dH1 ≥ H0(P )

(iii) for every set P ⊂ Ω there exists a sequence {Dh}h ⊂ R(Ω) converging to P , with

respect to the Haussdorf distance, such that

lim sup
h→+∞

1
4π

∫
∂Dh

( 1
εh

+ εhκ
2
)
dH1 = H0(P ).

In the next compactness theorem we adapt property (i) of the previous theorem to our

framework. Moreover we prove the weak star convergence of the measures dH1bDhk to the

measure δP∇u .

Theorem 5.2. Let {εh}h → 0+ be such that

(5.5) Gεh(Dh) ≤M,

then

(i) there exists a subsequence {Dhk}k ⊂ R(Ω) and a function u ∈ Xp(Ω) such that {Dhk}k
H-converges to u.

(ii) the sequence of Radon measures {θεhkdH
1bDhk}k , possibly passing to a subsequence,

converges, with respect to the weak star convergence, to the measure δP∇u .

Proof.

(i). From bound (5.5) and Theorem 5.1 we have that there exists a subsequence {Dhk}k,
which converges, with respect tho the Haussdorf distance, to a �nite set of points P ⊂ Ω with

L2(Dhk)→ 0. We thus consider the Dirichlet problem{
−∆u = δP\∂Ω on Ω
u = 0 on ∂Ω.

There exists a weak solution u ∈ W 1,p
0 with p < 2. Moreover −∆u = 0 in D′(Ω \ (P \ ∂Ω)).

Then by Proposition 2.1 we have u ∈ HS∆Mp(Ω), with P∇u = P \ ∂Ω. Then u ∈ Xp(Ω),

since H0(P∇u) ≤ H0(P ) < +∞. So that {Dhk}k H-converges to u and the proof of (i) is

complete.

We now prove (ii).

First of all we note that from bound (5.5) we have:

(5.6) |θεhkdH
1bDhk |(Ω) ≤M.

Then up to subsequences it follows that:

(5.7) θεhdH
1bDh

∗
⇀ µ
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for some positive measure µ ∈ M(Ω). The idea is then to show that µ = δP∇u inM(Ω). The

argument is similar to the one used to prove compactness in Theorem 4.1. We consider the

Dirichlet problem with measure data

(5.8)

{
−∆wk = θεhdH1bDh on Ω
wk = 0 on ∂Ω.

By Theorem 9.1 of [24] and (5.6) we have the estimate

‖wk‖W 1,p
0
≤ C

where the constant C does not depend on k.

Sobolev's embedding implies that, possibly passing to a subsequence, {wk}k is such that:

(5.9)

{
wk → w in L2(Ω) and a.e.

∇wk ⇀ ∇w in Lp(Ω; R2).

We claim that for k large enough we have −∆w = 0 in D′(Ω \ P ). Let φ ∈ C∞0 (Ω \ P ) be a

test function. Then since wk is a weak solution of problem (5.8) and φ is also a test function

in C∞0 (Ω), we have

(5.10)

∫
suppφ

∇wk∇φ =
∫

suppφ
φθεhkdH

1bDhk .

Now we know that ∂Dhk converges in the Haussdorf metric to P . Therefore for k large enough

we have suppφ ∩ ∂Dk = ∅, whereas the support of φ is contained in Ω \ P .
By taking the limit as k → +∞ in (5.10), we obtain −∆w = 0 in D′(Ω \ P ). In particular

−∆w = 0 in D′(Ω\P∇u), being P∇u = P \∂Ω. So, by Proposition 2.1, we have w ∈ ∆Mp(Ω).

On the other hand, by (5.7) and (5.9), we can pass to limit in problem (5.8) to get as

k → +∞ ∫
Ω
∇wk∇φ = 〈θεkdH

1bDh, φ〉

↓∫
Ω
∇w∇φ = 〈µ, φ〉.

So −∆w = µ in D′(Ω) and therefore inM(Ω). Being the measure −∆w positive, we obtain

by Proposition 2.1, w ∈ HS∆Mp(Ω). with P∇w = P∇u and therefore −∆w = δP∇u . So that

µ = δP∇u inM(Ω) and (ii) is proven. The proof is now complete. �

Theorem 5.3. Let {εh}h → 0+. Let Gε, G be de�ned by (5.3) and (5.4). Then the sequence

Gε Γ-converge to G.

Proof.

Lower bound. We prove property (i) of De�nition 5.2. Without loss of generality we can
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assume

(5.11) lim inf
h→+∞

Gεh(Dh) = lim
h→+∞

Gεh(Dh) ≤M < +∞.

Then, by (i) of Theorem 5.2, up to subsequences we can assume Dh H-converges to u ∈ Xp(Ω).

So that H0(P∇u) ≤ H0(P ).

By (ii) of Theorem 5.1 we have

(5.12) lim inf
h→+∞

1
4π

∫
∂Dh

( 1
εh

+ εhκ
2
)
dH1 ≥ H0(P ) ≥ H0(P∇u)

We now focus on the third term.

By using to the compactness properties (ii) of Theorem 5.1 we have possibly passing to a

subsequence

θεhdH
1bDh

∗
⇀ δP∇u .

Therefore by the compactness of the operator T (µ) = ρσ ∗ µ de�ned in section 2.2, we obtain

(5.13) lim inf
h→+∞

∫
Ωσ

∣∣ρσ ∗ θεhdH1bDh − u0

∣∣2dx ≥ ∫
Ωσ

|ρσ ∗ δP∇u − u0|2dx.

Hence from (5.12),(5.13) and by superlinearity property of the lim inf operator it follows prop-

erty (i) of De�nition 5.2.

Upper bound. Let u ∈ Xp(Ω).

Up to a slight modi�cation, we take as optimal sequence {Dh}h, the same one considered

to prove (iii) of Theorem 5.1 in [11].

Let n be the number of points xi in P∇u. Therefore we have δP∇u =
∑n

i=1 aiδxi with

ai ∈ [0, 1]. Then we take Dh =
⋃n
i=1Baiεh(xi). So that L2(Dh)→ 0, 1

εh
L2(Dh)→ 0 and ∂Dh

converges with respect to the Hausdor� distance to P∇u. Then the sequence {Dh} H-converges
to u.

Moreover for h large enough we may assume Baiεh(xi) ∩Bajεh(xj) = ∅ for i 6= j.

Thus we obtain

(5.14) lim
h

1
4π

∫
∂Dh

(
1
εh

+ εhk
2)dH1 = lim

h

n∑
i=1

1
4π

∫
∂Baiεh (xi)

2
εh
dH1 =

n∑
i=1

ai ≤ n = H0(P∇u).

We show now that θεhdH1bDh
∗
⇀ δP∇u . Let φ ∈ C0(Ω) a test function. Let (x1

i , x
2
i ) be the

coordinates of the point xi for i = 1, .., n. Then by writing the curvilinear integral

〈θεhdH
1bDh, φ〉 =

n∑
i=1

1
4π

∫ 2π

0
φ(x1

i + aiεh cos θ, x2
i + aiεh sin θ)

2
εh
aiεhdθ →

n∑
i=1

aiφ(xi),

that is θεhdH1bDh
∗
⇀ δP∇u .
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Hence the compactness of the operator T de�ned in section 2.2 implies

(5.15) lim
h→+∞

∫
Ωσ

|ρσ ∗ θεhdH
1bDh − u0|2 = |

∫
Ωσ

ρσ ∗ δP∇u − u0|2.

Finally we know that:

(5.16)
1
εh
L2(Dh)→ 0.

By collecting (5.14), (5.15), (5.16) and recalling that the lim sup is a sublinear operation we

achieve (ii) of De�nition 5.2. The proof is complete. �

We conclude by properly stating the relaxed version of the Fundamental Theorem of Γ-

convergence which is a direct consequence of Theorem 5.2, and Theorem 5.3. The proof can

be achieved by a classical argument (see [9], Section 1.5). See also Theorem 4.4 of [6] for a

selfcontained proof in a similar context.

Theorem 5.4. Let Gε, G be given respectively by (5.3) and (5.4). If {εh}h is a sequence of

positive numbers converging to zero and {Dh}h ⊂ R(Ω) such that

lim
h→+∞

(Gεh(Dh)− inf
R(Ω)

Gεh(D)) = 0,

then there exist a subsequence {Dhk}k ⊂ R(Ω) and a minimizer u of G(u) with u ∈ Xp(Ω),

such that Dhk H-converges to u.
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