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Abstract. The paper is concerned with the analysis of a new variational model to restore point-like

and curve-like singularities in biological images. To this aim we investigate the variational properties

of a suitable energy which governs these pathologies. Finally in order to realize numerical experiments

we minimize, in the discrete setting, a regularized version of this functional by fast descent gradient

scheme.
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1. Introduction

In biological image processing one might be interested in restoring an image, possibly corrupted by

noise, characterized by an high intensity value on sets of low dimension, such as points (for example

spot due to molecule) or curves in 2-D (for example �laments) and 3-D images and which decreases

toward 0 in a neighborhood of the singularities. Then across these sets there is no jump of the gradient

of the image. This phenomenon requires a new approach, which is di�erent from the classical denoising

1The research of Daniele Graziani was supported until January 2010 by ANR under the research project
"Detect�ne" (Laboratory I3S, Université de Nice Sophia antipolis).
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model based on the gradient operator. From a general point of view in order to restore the given data

u0, one would like to minimize an energy with an L2-�delity term and a proper regularization criterion

F (assuming Gaussian noise or Gaussian approximation). To this end one has to solve the following

minimum problem:

(1.1) min
u∈X

F (u) +
λ

2
‖u− u0‖22.

λ > 0 is a positive weight, the functional space X and the criterion F must be chosen according to the

singularities to be restored. In our case it means that F must be given in term of a proper di�erential

operator which is singular in a suitable sense on points and curves.

In this paper we are interested in function u, that locally behaves like the solution of the Dirichlet

problem:

(1.2)

{
−∆u = µ x ∈ B
u = 0 x ∈ ∂B

where µ is a Radon measure concentrated on points or open curves with boundary inside Ω (where

Ω ⊂ RN is an open set) and �nally B is a neighborhood of the support of the measure µ.

In fact our approach is inspired from the electrostatic and potential theory. For example we modelize

a spot as a charged electrical particle. The resulting potential satis�es locally a PDE as (1.2) where µ

is a Dirac mass concentrated on the spot. In the language of image processing the potential is called

image intensity. Similar ideas can be developed for electrically charged lines or �laments.

We will show with two examples that the Lp-norm is not relevant for managing such singularities,

while the variation of the Laplacian measure is on the contrary quite relevant (see Subsection 2.3 for

examples). Despite the gradient is not sensitive to the singularities we want to preserve, we still need

a regularization term depending on the gradient in order to be sure to remove as much as possible

the noise. Indeed the Laplacian by itself does not guarantee strong regularization property because of

cancellation e�ect due to its divergence form.

Hence, from a variational point of view, we have to �nd a functional space whose elements are

able to produce Radon measures, whose support contains the singularities we would like to preserve.

Then, in line with recent works for detecting point-like target problem (see [5, 14, 15]), we consider the

divergence as an operator able of producing Radon measures concentrated on points and curves. We

deal with the space ∆Mp
loc(Ω) ofW 1,p

loc -functions whose gradient is an L
p-vector �eld with distributional

divergence given by a Radon measure, where 1 < p < N
N−1 , Ω ⊂ RN is the image domain and N is the

space dimension (see Section 2 below). The restriction on p is due to the fact that when p ≥ N
N−1 the

distributional divergence Div∇u of ∇u cannot be a measure concentrated on points (see [5, 15]). Then

to restore point-like and curve-like singularities in 2D or 3D, we consider general criterion of type

(1.3) F (u,Ω′) :=

{∫
Ω′
f(∆u)dx+

∫
Ω′
g(∇u)dx on C2(Ω),

+∞ on ∆Mp
loc(Ω) \ C2(Ω),

where Ω′ ⊂⊂ Ω is an open set; f , g are convex functions with linear and p-growth from above respec-

tively.
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Then, since in general functional (1.3) is not lower semicontinuous with respect to theW 1,p
loc -weak con-

vergence, we deal with its lower semicontinuous envelope (or relaxed functional) on the space ∆Mp
loc(Ω).

So the �rst goal of the paper is to provide an integral representation result for the relaxed functional

of functional (1.3), which guarantees that the regularization criterion we have chosen, matches with

the singularities we aim to preserve. When 1 < p < N
N−1 we provide such a representation by using the

notion of p-capacity which is a useful tool to distinguish sets of 0-Lebesgue measure. In fact it turns

out that, to extend functional (1.3) to the whole space ∆Mp
loc(Ω), one has to measure the absolutely

continuous part of the distributional divergence of ∇u and, at the same time, control its singular

parts, encoded in two mutually singular measures µa concentrated on sets of positive p-capacity such

as 2D curves or 3D surfaces, and µ0 concentrated on sets with 0 p-capacity, such as points in 2D or

curves in 3D (see for instance [13, 17, 23] for general properties of p-capacity). Indeed by applying

the p-capacitary decomposition, proven in [10], to the singular part, given by the Radon-Nykodim

decompostion, of the measure Div∇u, we have

Div∇u = ∆udx+ Divs∇u = ∆udx+ µa + µ0,

(see subsection 2.2 below). Then we prove that according to previous decomposition, the lower semi-

continuous envelope of F is given by:

(1.4) F(u,Ω′) :=

∫
Ω′
f(∆u)dx+

∫
Ω′
g(∇u)dx+

∫
Ω′
f∞(

dµa

d|µa|
)d|µa|+

∫
Ω′
f∞(

dµ0

d|µ0|
)d|µ0|,

where u ∈ ∆Mp
loc(Ω), Ω′ ⊂⊂ Ω and f∞ is the recession function given by lim

s→+∞

f(st)

s
, with t ∈ R.

dµa

d|µa| ,
dµ0

d|µ0| are the Radon-Nikodym derivatives of the measures µa and µ0 with respect to their total

variation (see Theorem 3.1) and Ω′ ⊂⊂ Ω open set.

In the second part of this work we focus on concrete applications in biological image processing in

dimension 2. In practice we consider the following functional

J (u,Ω′) :=

∫
Ω′
|∆u|dx+

1

p

∫
Ω′
|∇u|pdx+ |µa|(Ω′) + |µ0|(Ω′) +

λ

2

∫
Ω′
|u− u0|2dx,

which corresponds to the particular case f = | · | and g = | · |pp.
As a consequence of the relaxation result, we derive the existence of a unique minimizer of J on the

space ∆Mp
loc(Ω) and that J is the lower semicontinuous envelope of

J(u,Ω′) :=

{∫
Ω′
|∆u|dx+

∫
Ω′
|∇u|pdx+ λ

2

∫
Ω′
|u− u0|2dx, on C2(Ω),

+∞ on ∆Mp
loc(Ω) \ C2(Ω),

Then, by adapting some ideas of [18, 21, 22] to our setting, we minimize the discrete version (see

Subsection 4.1 for notation and de�nition in the discrete setting) of J by a fast descent gradient

algorithm.

Finally we test the proposed model to both synthetic and biological real images provided for us by

"Institut Pasteur de Paris".

Let us conclude this introduction by pointing out that, of course, the idea of using second order

di�erential operator is not new in image processing. One could mention, among the others, the recent
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work on second order generalized total variation of [4] or older based on Blake-Zisserman model (see

for instance [6]). Nevertheless these models appear di�erent from the one we propose here, since they

focus on better preservation of jump discontinuities such as contour or corner, while we are interested

in the restoration of di�erent kind of singularities here.

The paper is organized as follows. Section 2 is devoted to notations, preliminary de�nitions, examples

and results. In Section 3 we address the relaxation result and its consequences. In Section 4 we illustrate

our model by showing experimental results on both synthetic and biological images.

2. Definition and main properties

2.1. Distributional divergence and classical spaces. In the next subsection we recall the de�nition

of the distributional space Lp,q(Div; Ω) and DMp(Ω), 1 ≤ p, q ≤ +∞, (see [1, 8]). In all the paper

Ω ⊂ RN is an open bounded set with Lipschitz boundary. N ≥ 2 is the space dimension. We denote

by A(Ω), the family of all open bounded subsets A ⊂ Ω. Hd stands for the d-dimensional Haussdorf

measure. Notation for Sobolev's and Lebesgue's spaces are standard.

De�nition 2.1. For U ∈ Lp(Ω;RN ), 1 ≤ p ≤ +∞, set

|DivU |(Ω) := sup{
∫

Ω

〈U,∇ϕ〉dx : ϕ ∈ C∞0 (Ω), |ϕ| ≤ 1}.

We say that U is an Lp-divergence measure �eld, i.e. U ∈ DMp(Ω), if

‖U‖DMp(Ω) := ‖U‖Lp(Ω;RN ) + |DivU |(Ω) < +∞.

We recall that U ∈ Lp(Ω;RN ) belongs to DMp(Ω) if and only if there exists a Radon measure

denoted by DivU such that ∫
Ω

〈U,∇ϕ〉 = −
∫

Ω

DivUϕ ∀ϕ ∈ C∞0 (Ω),

and the total variation of the measure DivU is given by |DivU |(Ω).

We say that U ∈ DMp
loc(Ω), if U ∈ DMp(Ω′) for every Ω′ ⊂⊂ Ω.

Let us recall the following result (see [9] Proposition 3.1).

Theorem 2.1. Let {Uh}h ⊂ DMp(Ω) be such that

(2.1) Uh ⇀ U in Lp(Ω;RN ), as h→ +∞ for 1 ≤ p < +∞.

Then

‖U‖Lp(Ω;RN ) ≤ lim inf
h→+∞

‖Uh‖Lp(Ω;RN ), |DivU |(Ω) ≤ lim inf
h→+∞

|DivUh|(Ω).

Finally we de�ne the following space

(2.2) ∆Mp
loc(Ω) := {u ∈W 1,p

loc (Ω), ∇u ∈ DMp
loc(Ω)}.
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2.2. p-capacity. If K ⊂ RN is a compact set and χK denotes its characteristic function, we de�ne:

Capp(K,Ω) = inf{
∫

Ω

|∇f |pdx, f ∈ C∞0 (Ω), f ≥ χK}.

If U ⊂ Ω is an open set, its p-capacity is given by

Capp(U,Ω) = sup
K⊂U

Capp(K,Ω).

Finally if A ⊂ U ⊂ Ω with A Borel set and U open, then

Capp(A,Ω) = inf
A⊂U⊂Ω

Capp(U,Ω).

We recall the following result (see for instance [17], Theorem 2.27) that explains the relationship

between p-capacity and Hausdor� measures. Such a result is crucial to have geometric information on

null p-capacity sets.

Theorem 2.2. Assume 1 < p < N . If HN−p(A) <∞ then Capp(A,Ω) = 0.

For general properties we refer the reader to [13, 17, 23].

It is known (see [10]) that given a Radon measure µ the following decomposition holds

(2.3) µ = νa + µ0,

where the measure νa is absolutely continuous with respect to the p-capacity and µ0 is singular with

respect to the p-capacity, that is concentrated on sets with zero p-capacity. Besides it is also known

(see [10]) that every measure which is absolutely continuous with respect to the p-capacity can be

characterized as an element of L1 +W−1,p′ , leading to the �ner decomposition:

(2.4) µ = fdx−DivG + µ0,

where G ∈ Lp′(Ω;R2) with 1
p + 1

p′ = 1 and f ∈ L1(Ω). In particular if u ∈ ∆Mp(Ω) by applying the

classical Radon-Nikodym decomposition together with (2.4) to the measure Div∇u, denoted in this

case with ∆u, we get:

Div∇u : = ∆u = ∆udx+ ∆su = ∆udx+ νa + µ0 = ∆udx+ f −DivG + µ0

= ∆udx−DivG + µ0 = ∆udx + µa + µ0,(2.5)

where f = 0, since we have applied decomposition (2.4) to the singular part ∆us, with respect to the

Lebesgue measure, of the measure ∆u. To simplify the notation we have adopted the notation ∆udx

for the absolute continuous part of ∆u. Moreover we have denoted by µa the measure −DivG which

is absolutely continuous with respect to the p-capacity and also singular with respect to the Lebesgue

measure.

2.3. Examples. In this subsection we brie�y discuss some examples related to our model, in order to

give an intuitive explanation of why the Laplacian operator is a right operator to restore point-like and

curve-like singularities.
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Example 2.1. We begin with an example of point-like singularity. Let Ω = B1(0) ⊂ R2 be a ball

centered at the origin with radius 1. Let Bε(0) ⊂ R2 be a ball centered at the origin with radius ε

such that Bε(0) ⊂ Ω. Let δ0 be the Dirac's measure concentrated at the origin. Then we consider the

solution of the Dirichlet problem:

(2.6)

{
−∆uε = δ0 x ∈ Bε(0)

uε = 0 x ∈ ∂Bε(0).

Suppose the image Iε ∈W 1,p
0 (Ω) is of the following form:

Iε =

{
uε x ∈ Bε(0)

0 x ∈ Ω \Bε(0)

We compute now ∫
Bε(0)

|∇Iε|pdx =

∫
Bε(0)

|∇uε|pdx.

Let q > p be such that pq′ < 2, that is q > 2
2−p . The by Holder inequality we have:

(2.7)
∫
Bε(0)

|∇uε|pdx ≤
(
L2(Bε(0))

) 1
q
(∫

Bε(0)

|∇uε|pq
′
dx
) 1
q′
.

Since uε is the solution of problem, (2.6), classical a priori estimation (see [20] Theorem 9.1) ensures

that

(2.8) ‖∇uε‖Ls(Bε(0) ≤ C|δ0|(Bε(0)) = C < +∞,

for all s < 2 where the constant C does not depend on ε. Therefore by using (2.8) together with (2.7)

by taking into account that pq′ < 2, we get
∫
Bε(0)

|∇Iε|p → 0.

It means that the Lp-norm of the gradient is not sensitive to point-like singularities.

On the contrary, to the variation of the Laplacian measure in Rε of Iε is equivalent to compute the

variation of the measure δ0. Therefore

|∆Iε|(Bε(0)) = sup
ϕ∈C∞0 (Bε(0)) ‖ϕ‖∞≤1

∫
Bε(0)

|ϕ|dδ0 = 1

It means that, the variation of the Laplacian measure, counts point-like singularities, which is pre-

cisely what is needed to preserve the singularities.

Example 2.2. We discuss an example of curve-like singularity. Let Ω = B1(0) ⊂ R2 be a ball centered

at the origin with radius 1. Let Γ be the segment with parametrization α(t) = (t, 0) with t ∈ [0, 1
2 ]. Let

δΓ be the measure supported on Γ de�ned in the following way: for every A ⊂ Ω Borel set

δΓ(A) =

∫
A∩Γ

α′(t)dt = H1(A ∩ Γ).

Let Rε ⊂ Ω be the rectangle [0, 1
2 ]× [−ε, ε].

We consider the weak solution of the Dirichlet problem:

(2.9)

{
−∆uε = δΓ x ∈ Rε
uε = 0 x ∈ ∂Rε.
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As before we suppose to have an image Iε given by:

Iε =

{
uε x ∈ Rε
0 x ∈ Ω \Rε

The same arguments of the previous example shows that∫
Rε

|∇Iε(x)|pdx→ 0.

It means that the Lp-norm of the gradient is not sensitive to curve-like singularities.

Next as in the example 2.1 we would like to compute the variation of the Laplacian measure.

Since uε is a weak solution of problem (2.9), we have that the variation of the Laplacian measure in

Rε coincides with the variation of the measure δΓ, that is the length of the segment. Thus, by taking

into account that uε = Iε, we have

|∆Iε|(Rε) = H1(Γ).

It means that Laplacian is sensitive to curve-like singularity.

2.4. Functionals and their properties. Let f : R → [0,+∞] and g : RN → [0,+∞] be convex

functions such that

(2.10) f(t) ≤ C1(1 + |t|) ∀t ∈ R,

where 0 < C1 < +∞ is a constant;

(2.11) g(ξ) ≤ C2(1 + |ξ|p) ∀ξ ∈ RN ,

where 0 < C2 < +∞ is a constant.

We shall consider the following functionals for u ∈ ∆Mp
loc(Ω) and A ∈ A(Ω):

(2.12) F (u,A) :=

{∫
A
f(∆u)dx+

∫
A
g(∇u)dx on C2(A),

+∞ on ∆Mp
loc(A) \ C2(A);

(2.13) F(u,A) :=

∫
A

f(∆u)dx+

∫
A

g(∇u)dx+

∫
A

f∞(
dµa

d|µa|
)d|µa|+

∫
A

f∞(
dµ0

d|µ0|
)d|µ0|,

where f∞ is the recession function given by lim
s→+∞

f(st)

s
, with t ∈ R and the measure µa and µ0 are

given by decomposition (2.5). dµa

d|µa| ,
dµ0

d|µ0| are the Radon-Nikodym derivatives of the measures µa and

µ0 with respect to their total variation.

Finally we will always assume 1 < p < N
N−1 . This restriction on p is due to the fact that when

p ≥ N
N−1 the distributional divergence of U , and therefore the distributional Laplacian of a Sobolev

function, cannot be a measure concentrated on sets with zero p-capacity (see [5]). We do this in order

to allow concentration on sets of N − 2 dimension such as points in 2D and curves in 3D. Indeed in

this case the support of µa = f −DivG contains sets of dimension N − 1 such as N − 1 manifolds with

or without boundary inside Ω (see [23], Section 4.7, for a detailed discussion on the space W−1,p′(Ω)),
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while the support of the term µ0 contains lower dimensional sets such as points for N ≥ 2 or curves

for N ≥ 3.

2.5. Relaxation. Let F be the functional de�ned in (2.12). For every u ∈ ∆Mp
loc(Ω) we de�ne the

lower semicontinuous envelope or relaxed functional with respect to the W 1,p
loc -weak convergence of F

given by:

(2.14) SC−F (u,Ω′) := inf
uh⊂C2(Ω′)

{lim inf
h→+∞

F (uh,Ω
′) uh ⇀ u},

For the convenience of the reader we recall here that a sequence {uh} ⊆ W 1,p
loc (Ω) W 1,p

loc -weakly

converges to u ∈W 1,p
loc (Ω) if and only if for all ϕ ∈W 1,−p′(Ω′) and Ω′ ⊂⊂ Ω we have

〈uh, ϕ〉W 1,p(Ω′)×W 1,−p′ (Ω′) → 〈u, ϕ〉W 1,p(Ω′)×W 1,−p′ (Ω′).

We recall that if G : ∆Mp
loc(Ω) → R is a continuous functional with respect to the W 1,p

loc -weak

convergence we have:

(2.15) SC−(F +G) = SC−F +G.

For general properties of the relaxation we refer to [2, 7].

3. Relaxation theorem and existence of minimizers

In this section we state and prove the relaxation formula. The result is close, in the spirit, to

the the classical theorem of Go�mann-Serrin (see [16]) in the BV -framework. Indeed, in a similar

way, to extend functional (2.12) to the whole space ∆Mp
loc(Ω), the singular parts of the distributional

divergence of ∇u, have to be taken into account. To prove the relaxation argument we adapt the proof

of ([16]) to our variational framework.

Theorem 3.1. Let f : R → [0,+∞), g : RN → [0,+∞) be convex functions satisfying (2.10) and

(2.11). Then the following formula holds:

(3.1) SC−F (u,Ω′) = F(u,Ω′) ∀u ∈ ∆Mp
loc(Ω), ∀Ω′ ⊂⊂ Ω.

Proof. Step one: We prove �rst the lower bound:

(3.2) F(u,Ω′) ≤ SC−F (u,Ω′) ∀u ∈ ∆Mp
loc(Ω), ∀Ω′ ⊂⊂ Ω.

Let {uh}h ⊂ C2(Ω′) such that uh ⇀ u ∈ ∆Mp
loc(Ω). Since f is convex we have

(3.3) f(t) = sup
k

(ak + bkt), f∞(t) = sup
k

(bkt) t ∈ R.

Then for every test function ϕ ∈ C∞0 (Ω′) such that 0 ≤ ϕ ≤ 1 we get

F (uh,Ω
′) ≥

∫
Ω′
ϕf(∆uh)dx+

∫
Ω′
g(∇uh)dx ≥

∫
Ω′
ϕ(ak + bk∆uh)dx+

∫
Ω′
g(∇uh)dx.

By integrating by parts we obtain
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F (uh,Ω
′) ≥

∫
Ω′
ϕakdx−

∫
Ω′
bk∇ϕ∇uhdx+

∫
Ω′
g(∇uh)dx.

Then taking the weak limit and integrating by parts we get

lim inf
h→+∞

F (uh,Ω
′) ≥

∫
Ω′
akϕdx+

∫
Ω′
bkϕ dDiv∇u+

∫
Ω′
g(∇u)dx;

hence by taking into account decomposition (2.5) we infer

lim inf
h→+∞

F (uh,Ω
′) ≥

∫
Ω′
ϕ(ak + bk∆u)dx+

∫
Ω′
ϕbk

dµa

|dµa|
|dµa|+

∫
Ω′
ϕbk

dµ0

|dµ0|
|dµ0|+

∫
Ω′
g(∇u)dx.

Finally, since the measures dx, µa and µ0 are mutually singular, to achieve inequality (3.2) it su�ces

to take the supremum over ϕ and k �rst, and then in�mum over all the sequences {uh}h ⊂ C2(Ω′) .

So we get (3.2).

Step two : We now prove the upper bound SC−F (u,Ω′) ≤ F(u,Ω′) for every u ∈ ∆Mp
loc(Ω) and for

all Ω′ ⊂⊂ Ω.

For u ∈ ∆Mp
loc(Ω), let {ũh}h ⊂ C∞(Ωh) be the molli�ed sequence of u de�ned as ũh := u ∗ ρh with

{ρh}h a standard sequence of molli�ers and Ωh = {x ∈ Ω such that dist(x, ∂Ω) > 1
h}.

For x ∈ Ωh the support of ρh(x− ·) is contained in Ω, then by standard properties of the mollifying

sequence, we have for x ∈ Ωh

ak + bk∆ũh := ak + bk

∫
Ω

ρh(x− y) dDiv∇u

=

∫
Ω

ρh(x− y)(ak + bk∆u(y))dy +

∫
Ω

ρh(x− y)bk
dµa

|dµa|
|dµa|+

∫
Ω

ρh(x− y)bk
dµ0

|dµ0|
|dµ0|;

(for x ∈ Ωh we can write the integral over all Ω, since the integration with respect to y is actually

performed on the compact support of the kernel ρh(x− ·)).
By taking into account (3.3) we obtain

ak + bk∆ũh ≤
∫

Ω

ρh(x− y)f(∆u(y))dy +

∫
Ω

ρh(x− y)f∞(
dµa

|dµa|
)|dµa|

+

∫
Ω

ρh(x− y)f∞(
dµ0

|dµ0|
)|dµ0|.(3.4)

Let Ω′ ⊂⊂ Ω an open set. Since Ωh is a sequence invading Ω, we have for h large enough Ω′ ⊂ Ωh.

Then for h large enough by taking the supremum on k on the left hand side of (3.4) and integrating

over Ω′ with respect to x we get:∫
Ω′
f(∆ũh)dx ≤

∫
Ω′

(∫
Ω

ρh(x− y)f(∆u(y))dy
)
dx+

∫
Ω′

(∫
Ω

ρh(x− y)f∞(
dµa

|dµa|
)|dµa|

)
dx

+

∫
Ω′

(∫
Ω

ρh(x− y)f∞(
dµ0

|dµ0|
)|dµ0|

)
dx.(3.5)

By applying, thanks to (2.10), Fubini's Theorem to the right hand side of (3.5) we have∫
Ω′

(∫
Ω

ρh(x− y)f(∆u(y))dy
)
dx =

∫
Ω′
f(∆u(y))

(∫
Ω

ρh(x− y)dx
)
dy,
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∫
Ω′

(∫
Ω

ρh(x− y)f∞(
dµa

d|µa|
)d|µa|

)
dx =

∫
Ω′
f∞(

dµa

d|µa|
)
(∫

Ω

ρh(x− y)dx
)
d|µa|,∫

Ω′

(∫
Ω

ρh(x− y)f∞(
dµ0

d|µ0|
)d|µ0|

)
dx =

∫
Ω′
f∞(

dµ0

d|µ0|
)
(∫

Ω

ρh(x− y)dx
)
d|µ0|,

and then

(3.6)
∫

Ω′
f(∆ũh)dx ≤

∫
Ω′
f(∆u)dx+

∫
Ω′
f∞(

dµa

d|µa|
)d|µa|+

∫
Ω′
f∞(

dµ0

d|µ0|
)|dµ0|,

where we have used the fact that
∫

Ω
ρh(x− y)dx ≤

∫
RN ρh(x− y)dx = 1.

By the same argument we get also that

(3.7)
∫

Ω′
g(∇ũh)dx ≤

∫
Ω′
g(∇u)dx.

Then (3.6) and (3.7) imply

(3.8)
∫

Ω′
f(∆ũh)dx+

∫
Ω′
g(∇ũh)dx ≤ F(u,Ω′).

Therefore since {ũh}h ⊂ C2(Ω′) and ũh ⇀ u with respect to the W 1,p
loc (Ω) convergence, we have by

taking into account (3.8)

SC−F (u,Ω′) = inf
uh⊂C2(Ω′)

{lim inf
h→+∞

F (uh,Ω
′) uh ⇀ u}

≤ lim inf
h→+∞

F (ũh,Ω
′) ≤ F(u,Ω′),

and therefore, being Ω′ arbitrary, the thesis is achieved. �

4. Numerical Applications

In view of numerical applications we will always consider N = 2, f(t) = |t| and g(ξ) = 1
p |ξ|

p (with

1 < p < 2), so that the recession function f∞(t) is equal to |t|. Moreover we add an L2-discrepancy

term, and we consider the following functionals:

(4.1) J(u,Ω′) :=

{∫
Ω′
|∆u|dx+ 1

p

∫
Ω′
|∇u|pdx+ λ

2

∫
Ω′
|u− u0|2dx on C2(Ω),

+∞ on ∆Mp
loc(Ω) \ C2(Ω),

and for all Ω′ ⊂⊂ Ω

(4.2) J (u,Ω′) :=

∫
Ω′
|∆u|dx+

1

p

∫
Ω′
|∇u|pdx+ |µa|(Ω′) + |µ0|(Ω′) +

λ

2

∫
Ω′
|u− u0|2dx,

where u0 ∈ L2(Ω′) is the observed data, and λ is a positive weight.

Let us prove the existence and uniqueness of a minimum for functional J , before that we focus on
discrete analysis.

Proposition 4.1. There exists a unique minimum u ∈ ∆Mp
loc(Ω) of functional J de�ned in (4.2).

Moreover the following equality holds for all Ω′ ⊂⊂ Ω

(4.3) inf
u∈C2(Ω)

J(u,Ω′) = inf
u∈∆Mp

loc(Ω)
J(u,Ω′) = min

u∈∆Mp
loc(Ω)

J (u,Ω′).
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Proof. Let {uh}h ⊂ ∆Mp
loc(Ω) be a minimizing sequence of J . Then it follows that

‖uh‖pLploc(Ω)
+ ‖∇uh‖pW 1,p

loc (Ω)
≤M.

Therefore, there exists a subsequence, still denoted by {uh}h ⊂ ∆Mp
loc(Ω), and a function u ∈W 1,p

loc (Ω)

such that uh → u with respect to the W 1,p
loc (Ω)-weak convergence. From Theorem 2.1 we have for all

Ω′ ⊂⊂ Ω

|Div∇u|(Ω′) ≤ lim inf
h→+∞

J (uh,Ω
′) ≤M,

which implies u ∈ ∆Mp
loc(Ω). As immediate consequence of Theorem 3.1 and property (2.15), func-

tional J is lower semicontinuous with respect to the W 1,p
loc -weak convergence. Then the existence

of a minimum follows via the direct methods of the calculus of variations, while the uniqueness is

consequence of the strong convexity of J .
Finally property (4.3) can be achieved by standard arguments (see for instance [7]). �

4.1. Discrete setting. We de�ne the discrete rectangular domain Ω of step size δx = 1 and dimension

d1d2, where Ω = {1, ..., d1}×{1, ..., d2} ⊂ Z2. In order to simplify the notations we set X = Rd1×d2 and

Y = X×X. u ∈ X denotes a matrix of size d1×d2. For u ∈ X, ui,j denotes its (i,j)-th component with

(i, j) ∈ {1, ..., d1} × {1, ..., d2}. For g ∈ Y , gi,j denotes the i,j-th component of g with gi,j = (g1
i,j , g

2
i,j)

and (i, j) ∈ {1, ..., d1} × {1, ..., d2}
We endowed the space X and Y with standard scalar product and standard norm. For u, v ∈ X we

have:

〈u, v〉X =

d1∑
i=1

d2∑
j=1

ui,jvi,j .

For g, h ∈ Y we have:

〈g, h〉Y =

d1∑
i=1

d2∑
j=1

2∑
l=1

gli,jh
l
i,j .

For u ∈ X and p ∈ [1,+∞) we set:

|u|p := (

d1∑
i=1

d2∑
j=1

|ui,j |p)
1
p .

For g ∈ Y and p ∈ [1,+∞):

‖g‖p := (

d1∑
i=1

d2∑
j=1

|gi,j |p2)
1
p .

If G,F are two vector spaces and H : G→ F is a linear operator, then the norm of H is de�ned by

‖H‖ := max
‖u‖G≤1

(‖Hu‖F ).

De�nition 4.1. A function F : X → R is said to be L-lipschitz di�erentiable if it is di�erentiable and

|∇F (u)−∇F (v)|2 ≤ L|u− v|2,

for every u, v ∈ X.
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De�nition 4.2. Let ψ : X → R be a convex function. The operator

proxψ : X → X x� arg min
y∈X
{ψ(y) +

1

2
|y − x|22}

is called proximal operator associated to ψ.

If proxλψ can be computed exactly for every λ ≥ 0 and every x ∈ X, the function ψ is said to be

simple.

If u ∈ X the gradient ∇u ∈ Y is given by:

(∇u)i,j = ((∇u)1
i,j , (∇u)2

i,j)

where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < d1

0 if i = d1,

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < d2

0 if j = d2.

We also introduce the discrete version of the divergence operator de�ned as the adjoint operator of the

gradient: div = −∇∗. If p ∈ Y , we have

(divp)i,j =



p1
i,j + p2

i,j if i, j = 1

p1
i,j + p2

i,j − p2
i,j−1 if i = 1, 1 < j < d2

p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1 if 1 < i < d1, 1 < j < d2

−p1
i−1,j + p2

i,j − p2
i,j−1 if i = d1, 1 < j < d2

p1
i,j − p1

i−1,j + p2
i,j if 1 < i < d1, j = 1

p1
i,j − p1

i−1,j − p2
i,j−1 if 1 < i < d1, j = d2

−(p1
i−1,j + p2

i,j−1) if i = d1, j = d2.

Then we can de�ne the discrete version of the Laplacian operator as ∆u = div(∇u).

4.2. Nesterov scheme. Here we brie�y recall the fast descent gradient Nesterov's algorithm (see

[18, 19]). We state it in the formulation proposed in [21, 22]. For further details and general statements

we refer the reader to [21, 22] and references therein.

Proposition 4.2. Let F : X → R be given by:

F (u) = F1(u) + F2(u) for u ∈ X,



13

where F1 is a convex L-Lipschitz di�erentiable function and F2 a simple function. Then the following

algorithm3:

(4.4)



u0 ∈ X A0 = 0 g = 0 u = 0

do for k : 1, ...,K

t = 2
L

a = t+
√
t2 + 4tA

v = proxAF2(u0 − g)

y = Au+Av
A+a

u = prox 1
LF2

(y − 1
L∇F1(y))

g = g + a∇F1(u)

A = A+ a

ensures that:

(4.5) 0 ≤ F (uk)− F (u∗) ≤ L |u
∗ − u0|22
k2

,

where u∗ ∈ X is a minimum point of F and u0 ∈ X is an initial data.

Remark 4.1. In order to apply the previous algorithm it is crucial to compute exactly the proximal

operator proxαF2 for every α ∈ R+. This is the case since by assumption F2 is a simple function.

4.3. The discrete functionals. For u ∈ X we de�ne the discrete version of functional (4.1)

(4.6) J(u) = ‖∆u‖1 +
1

p
‖∇u‖pp +

λ

2
|u− u0|22.

We also introduce its smoother counterpart given by:

(4.7) Jε(u) =

d1∑
i=1

d2∑
j=1

wε(|(∆u)i,j |) +
1

p

d1∑
i=1

d2∑
j=1

wε(|(∇u)i,j |p) +
λ

2

d1∑
i=1

d2∑
j=1

|ui,j − (u0)i,j |2,

where ε > 0 is a small �xed parameter and wε is the Huber function given by:

wε(x) =

{
|x| if |x| ≥ ε
x2

2ε + ε
2 .

We shall consider the minimization problems:

(4.8) min
u∈X

J(u),

(4.9) min
u∈X

Jε(u).

As in [22] we de�ne the notion of δ-solution associated to problem (4.8), which will be used to give

an estimation of the number of iterations of the minimization algorithm.

De�nition 4.3. A δ-solution of (4.8) is an element uδ ∈ X such that

J(uδ)− J(u) ≤ δ,

where u is a solution of problem (4.8).

3we omit the dependance on k to simplify the notation
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4.4. The proposed algorithm. We minimize Jε by applying algorithm (4.4) with

F1(u) = Jε(u) =

d1∑
i=1

d2∑
j=1

wε(|(∆u)i,j |)+
1

p

d1∑
i=1

d2∑
j=1

wε(|(∇u)i,j |p)+
λ

2

d1∑
i=1

d2∑
j=1

|ui,j−(u0)i,j |2 F2(u) = 0.

Indeed it is not di�cult to check that

(4.10) ∇F1(u) = ∆(Ψ)− div(Φ) + λ(u− u0)

where

Ψi,j =

{
(∆u)i,j
|(∆u)i,j | if |(∆u)i,j | ≥ ε
(∆u)i,j

ε otherwise
Φi,j =

{
(∇u)i,j

|(∇u)i,j |2−p if |(∇u)i,j |p ≥ ε
(∇u)i,j

ε otherwise.

Then, taking into account that Ψ and Φ are Lipschitz functions with constant 1
ε and 1

εp respectively,

we infer

|∇F1(u)−∇F1(v)|2 ≤ (
‖∆‖22
ε

+
‖div‖22
ε2−p

+ λ)|u− v|2.

Therefore, by recalling that, if N = 2, ‖∆‖2 ≤ 8 and ‖div‖2 ≤ 2
√

2, we conclude that

(4.11) |∇F1(u)−∇F1(v)|2 ≤ (
64

ε
+

8

ε2−p
+ λ)|u− v|2.

Thanks to inequality (4.11) we are in position of applying algorithm (4.4). Then in our case algorithm

(4.4) ensures that:

(4.12) 0 ≤ Jε(uk)− Jε(u∗ε ) ≤ (
64

ε
+

8

ε2−p
+ λ)

|u∗ε − u0|22
k2

,

where u∗ε is a minimum of Jε.

4.5. Computer examples. Before running our algorithm all the parameters have to be �xed. It is

easy to see that for every u ∈ X we have

(4.13) 0 ≤ Jε(u)− J(u) ≤ d1d2ε.

Then by using (4.13) (4.12) and the fact that u∗ε is a minimum of Jε we have

J(uk) ≤ Jε(uk) ≤ Jε(u∗ε ) + (
64

ε
+

8

ε2−p
+ λ)

|u∗ε − u0|22
k2

≤ Jε(u) + (
64

ε
+

8

ε2−p
+ λ)

|u∗ε − u0|22
k2

,

where u is a minimum of J . By applying again bound (4.13) we deduce

J(uk) ≤ J(u) + d1d2ε+ (
64

ε
+

8

ε2−p
+ λ)

|u∗ε − u0|22
k2

.

Therefore the worst case precision to get a δ-solution of (4.8) is:

J(uk)− J(u) = (
64

ε
+

8

ε2−p
+ λ)

|u− u0|22
k2

+ d1d2ε;

then the optimal choices are

ε =
δ

d1d2
, K =

[√
(
64d1d2

δ
+ 8

d1d2

δ2−p + λ)]C
]

+ 1,

where C := maxX |u− u0|2 and K the total number of iterations. For images rescaled in [0, 1], in the

worst case problem we deal with (see Figure 5), the number of iterations K needed to get a δ-solution

of order 1 does not exceed the value 30000. In all numerical tests we let run the algorithm for no more
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than 2000 iterations. The parameter ε is always �xed in order to get a δ-solution of order 1. This

choice seems to lead to good restoration results.

The parameter λ is tuned according to the level noise and its value is speci�ed on each numerical

test.

Finally as exponent p we always take p = 1.5.

4.6. A model synthetic example. In Figure 1 we build up an example of ideal original image u we

have in mind. Such an image must mimic the solution of the problem:

(4.14)

{
−∆u = µ, on B

u = 0 on ∂B,

where µ can be a measure concentrate on curves or points and B is a suitable neighborhood of the

support of the measure µ.

For instance if for i = 1, ..., l Γi is an open line, we consider the image δΓi{
δΓi(i, j) = 1 if (i, j) ∈ Γi

0 otherwise

We �x a window Wi containing Γi. We consider the Dirichlet problem

(4.15)

{
−∆vi = δΓi , on Wi

vi = 0 on ∂Wi,

To compute vi we minimize via classical descent gradient the following functional:

F (vi) =
1

2
|∇vi|2 − δΓivi.

Indeed, if vi is a minimum we have that

0 = ∇F (vi) = −∆vi − δΓi .

Moreover F is Lipschitz di�erentiable with Lipschitz constant L ≤ ‖∆‖2 ≤ 8. In order obtain a

minimum vi we iterate the standard procedure:{
vn+1
i = vni − dt∇F (vni )

vi(0) = 0

with dt ≤ 1
L (we consider dt = 1

10 ). Thus limn→+∞ vni = vi, with vi minimum of F . Then we extend

vi as 0 outside W . So we have :

ui =

{
vi in Wi

0 otherwise.

We repeat this procedure for every i and we de�ne the ideal original image as

u =

l∑
i=1

ui.

In such a way we have a synthetic image u which locally behaves as the solution of Dirichlet problem

(4.14) (see Figure 1).
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The image δΓ = δ∪li=1Γi the model original image u =
∑l
i=1 ui

Figure 1. Synthetic images. The construction of the ideal original image. Top

left: the image of �laments δΓ. Top right: the image u, that we consider as

original image.

Original image proposed method classical total variation

Figure 2. Synthetic images. Left bottom: original image. Center bottom:

restored image by using our method. Right bottom: restored image by using

classical total variation minimization. Since the gradient is not sensitive to

curve-like singularities, the total variation does not preserve such singularities

and some �laments tends to disappear.

In �gure 2 we compare our method with the classical total variation minimization one, in order to

verify that the minimization of the proposed functional performs a better preservation of curve-like

singularities. In 3 and 4 we test the algorithm against noise on the ideal synthetic image u. A Gaussian

Noise is added to the original image. The image domain is of size d1 × d2 = 256 × 256. CPU time is

about 40 s running on an Intel (R) Xeon(R) CPU 5120 at 1.86GHz.

4.7. Test on real images. Here we test our model on real images. We assume that these image

behave like the ideal image u0 in previous section.

Figure 5 shows an application of the algorithm on a biological image of cell spots provided for us

by "Institut Pasteur de Paris". The image domain is of size d1 × d2 = 757 × 510. We always �x
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Original image observed noisy image PSNR= 20.4Db

Restored image u (ε = 1
(256)2 , λ = 1

30 ) the image |∆u|

Figure 3. Synthetic images. Top left: Original images. Top right: noisy

image. Down left: Restored image given by a δ-solution of order 1. Down right:

The support of |∆u|, where u is the restored image. The curve like-singularities

are preserved in the denoising process

ε = 1
757×510 . We let run the algorithm until 2000 iterations to obtain a δ-solution of order 1 shown in

Figure 6. CPU time is about 5 mn running on an Intel (R) Xeon(R) CPU 5120 at 1.86GHz.

Finally in Figure 8 we test our model on a real noisy image which contains spots and curves. The

image domain is of size d1× d2 = 570× 560. CPU time is about 7mn running on an Intel (R) Xeon(R)

CPU 5120 at 1.86GHz.
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Original image Observed noisy image PSNR= 14.1Db

Restored image (ε = 1
(256)2 , λ = 1

50 ) Convergence of the algorithm (K = 2000)

Figure 4. Synthetic images. We test the proposed algorithm on noisy data.

Top left: Original image. Top right: noisy image. Down left: Restored image

given by a δ-solution of order 1. Down right: Convergence on the algorithm.

On the y-axis the value of J(uk). On the x-axis the number of iterations.
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Figure 5. Noisy image of cell spots.

Figure 6. Restored image given by a δ-solution of order 1. Number of itera-

tions K = 2000, λ = 1
20 . since the level of noise is not too high and the intensity

of the images on spots is elevated, the algorithm is capable to restore the image

by preserving point-like structures.
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Figure 7. Convergence of the algorithm. On the y-axis the value of J(uk).
On the x-axis the number of iterations.

Figure 8. Real noisy image: we test our algorithm on a real image of a blood

vessels network corrupted by Gaussian noise. Image size d1 × d2 = 560× 570.
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Figure 9. Restored image: δ = 1, λ = 1
100 , ε = 1

560×570 . Number of iterations

K = 2000

Figure 10. Convergence of the algorithm. On the y-axis the value of J(uk).
On the x-axis the number of iterations

.
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