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Abstract

The paper is concerned with the de�niton and adaption, in the context of color demo-
saicking, of ADMM method to perform at the same time: demosaicking, deblurring and
denoising.

1 Introduction

In this paper we address another classical challenging problem in image processing: the so
called demosaicking, used in digital cameras for reconstructing color images. Let us give
a short description.

Most digital cameras use a single sensor which is placed in front of color �lter array:
the Bayer Matrix. The sensor therefore sampled only one color per spatial position and
the observed image is degraded by the e�ect of mosaic generation. It is therefore necessary
to implement, possibly fast, algorithms to de�ne an image with three color components
by spatial position. The set of techniques used in the literature, to resolve this problem,
is huge. Without claiming of being exhaustive we refer the reader to [1] for a general
dissertation.

The originality of our research, in this context, is to de�ne a variational method well
suited to take into account all possible degradation e�ects due to: mosaic e�ect, blur and
noise. Looking at the literature in this direction it is worth mention the work of Condat (see
[3]) where a demosaicking-denoising method is proposed, but without taking into account
blur e�ects. In [6, 7] all the degradation e�ects are considered, but with regularization
energies, which does not allow for fast convex optimization technique. Indeed in these
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works, in order to take into account the correlation between the RGB components, the
prior regularization term has a complicated expression.

Here we analyze and test a new method to perform in a more direct and possibly faster
way demosaicking-deblurring-denoising problem. Our approach is based on two steps.
The �rst one, as in [3], is working in a suitable basis where the three color components
are statistically decorrelated. Then we are able to write our problem as a convex mini-
mization problem. Finally to solve such a problem and to restore the image, we adapt to
our framework the, well known, ADMM (Alternating Direction Multipliers Minimization)
convex optimization technique. The ADMM method and its variants are largely used to
solve convex minimization problems in image processing. We refer the reader to [5], for a
general dissertation on convex optimization techniques, such as ADMM methods or others,
and their applications to image processing.

Organization of the paper

The paper is organized as follows. Section 2 is devoted to notation in discrete setting. In
section 3 we give a short description of the general ADDM method. In section 4 we de�ne
the new basis for which the channels of the color image are decorrelated. and we introduce
the Bayer matrix and the blur operator. Section 5 is concerned with the de�nition of our
variational model. We also show how to adapt the classical ADMM algorithm to our case.

Finally in the last section we give some applications of our algorithm on color images
of big sizes.1.

2 Discrete setting

We de�ne the discrete rectangular domain Ω of step size δx = 1 and dimension d1d2.
Ω = {1, ..., d1} × {1, ..., d2} ⊂ Z2. In order to simplify the notations we set X = Rd1×d2

and Y = X × X. u ∈ X denotes a matrix of size d1 × d2. For u ∈ X, ui,j denotes its
(i, j)-th component, with (i, j) ∈ {1, ..., d1}× {1, ..., d2}. For g ∈ Y , gi,j denotes the (i, j)-
th component of with gi,j = (g1i,j , g

2
i,j) and (i, j) ∈ {1, ..., d1} × {1, ..., d2} We endowed the

space X and Y with standard scalar product and standard norm. For u, v ∈ X:

〈u, v〉X =

d1∑
i=1

d2∑
j=1

ui,jvi,j .

For g, h ∈ Y :

〈g, h〉Y =

d1∑
i=1

d2∑
j=1

2∑
l=1

gli,jh
l
i,j .

For u ∈ X and p ∈ [1,+∞) we set:

‖u‖p := (

d1∑
i=1

d2∑
j=1

|ui,j |p)
1
p .

For g ∈ Y and p ∈ [1,+∞):

‖g‖p := (

d1∑
i=1

d2∑
j=1

2∑
l=1

|gli,j |
p
2)

1
p .

1a version of the matlab code is available at the I3S laboratory (CNRS/UNS)
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If G,F are two vector spaces and H : G→ F is a linear operator the norm of H is de�ned
by

‖H‖ := max
‖|u‖G≤1

(‖Hu‖F ).

3 Demosaicking-Deblurring-Denoising

We describe here a new algorithm to perform, in the same time, demosaicking deblurring,
denoising. To this purpose we will adapt to our context an ADMM type algorithm. We
recall the relevant features necessary to illustrate the application of such a method to
our setting. We refer the reader to [5] and references therein, for a general dissertation
on convex optimization techniques in image processing and recent developments on this
matter.

3.1 ADMM algorithm for constrained minimization problem

In this section we describe the optimization method, we will adapt to our setting. The
so called Alternating Direction Minimization Multipliers method ADMM. This particular
optimization technique is well suited for constrained minimization problem of the following
form:

(1) min
u,z

F (z) +G(u) subject to Bz +Au = b

where F,G : Rd → R and A and B matrix.
To solve problem (1) one considers the augmented Lagrangian and seeks its stationary

points.

(2) Lα(z, u, λ) = F (z) +G(u) + 〈λ,Au+Bz − b〉+
α

2
‖Au+Bz − b‖2.

Then one iterate as follows:

(3)

{
(zk+1, uk+1) = argminz,u Lα(z, u, λk)

λk+1 = λk + α(Auk+1 +Bzk+1 − b), λ0 = 0

The following result has been proven in [4].

Theorem 3.1 (Eckstein, Bertsekas) Suppose B has full column rank and G(u)+‖A(u)‖2
is strictly convex. Let λ0 and u0 arbitrary and let α > 0. Suppose we are also given se-

quences {µk} and {νk} with
∑∞
k µk <∞ and

∑∞
k νk <∞. Assume that

1. ‖zk+1 − argminz∈RN F (z) + 〈λk, Bz〉+ α
2 ‖Au

k +Bz − b‖2‖ ≤ µk
2. ‖uk+1 − argminz∈RM G(u) + 〈λk, Au〉+ α

2 ‖Au+Bzk+1 − b‖2‖ ≤ νk
3. λk+1 = λk + α(Auk+1 +Bzk+1 − b).

If there exists a saddle point of Lα(z, u, λ) then (zk, uk, λk) → (z∗, u∗, λ∗) which is such

a saddle points. If no such saddle point exists, then at least one of the sequences {uk} or
{λk} is unbounded.
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4 Decorrelation and acquisition operators

4.1 Decorrelation

It is well known the RGB components of a color image uc = (uR, uG, uB)T are strongly
statistically correlated. It is possible to show, from an experimental point of view, (Al-
leyson et al. [2]), that there exists a basis L,CG/M , CR/B in which the image ud =
(uL, uG/M , uR/B)T is now approximately decorrelated.

This new orthonormal basis L,CG/M , CR/B with decorrelation is given by:

• L = 1√
3
[1, 1, 1]T is the luminance

• CG/M = 1√
2
[−1, 2,−1]T is the green magenta chrominance

• CR/B = 1√
2
[1, 0,−1]T the red blue chrominance

Moreover the change of basis matrices have the following expression:

(4) ud =

 uL

uG/M

uR/B

 =

 1
4

1
2

1
4

− 1
4

1
2 − 1

4
− 1

4 0 1
4

  uR

uG

uB

 = T (uc)

and

(5) uc =

 uR

uG

uB

 =

 1 −1 −2
1 1 0
1 −10 2

  uL

uG/M

uR/B

 = T−1(ud).

Hereafter uc denotes the image in the canonical basis R,G,B, while ud is the image in the
basis L,CG/M , CR/B .

4.2 Bayer �lter and blur operator

For every (i, j) ∈ Z2 we de�ne the color image uc = (uc(i, j))(i,j)∈Z2 where

uc(i, j) = [uR(i, j), uG(i, j), uB(i, j)]T

is the color of the pixel of uc at location (i, j) in the canonical R,G,B base. We de�ne
the following Bayer �lter
(6)
uc = [uR(i, j), uG(i, j), uB(i, j)]T → B(uc) = (uc)X(i,j) with X(i, j) ∈ {R,G,B} ∀(i, j),

So that the image (uc)X(i,j) has only one of the components RGB per spatial position.
Concerning the blur operator we assume that it is the same for every components. In

particular we suppose the following form (with abuse of notation):

H =

H 0 0
0 H 0
0 0 H


Where H is a matrix representing standard convolution with some Gaussian kernel.
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Figure 1: Bayer �lter

5 The variational model

Let us start by recalling the acquisition camera sequence. We have as usual:

(7) uc 7→ Huc 7→ BHuc → BHuc + b = u0.

On the other hand from (5) we have uc = T−1(ud). So that from (7) we get an ideal
acquisition process for ud

(8) ud 7→ T−1(ud) 7→ HT−1(ud) 7→ BHT−1(ud)→ BHT−1(ud) + b = u0.

The idea is then to restore ud by working with the, much more convenient, decorrelation
basis L,CG/M , CR/B . Finally, at once ud is restored, simply set uc = T (ud).

In order to retrieve ud, we have to solve an ill posed inverse problem. So that as usual
we seek for minimizer of an energy given by an L2-discrepancy term plus a regularization
penalty.

Now the key point is that, since we are working in the decorrelation basis, it makes to
consider the following minimization problem:

arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖BHT−1(ud)− u0‖22.

5.1 Application of ADMM method to our problem

In order to apply the ADMM method, we must rewrite the problem

(9) arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖BHT−1(ud)− u0‖22,

in the form (1), which was

min
u,z

F (z) +G(ud) subject to Bz +Aud = b.

Then we set

(10)

z =


w1

w2

w3

v

 =


∇uL
∇uG/M
∇uR/B

BHT−1(ud)− u0

 , B = −I, A =


∇L
∇G/M
∇R/B
BHT−1

 b =

[
0
u0

]
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We also need the dual variable

λ =


p1
p2
p3
q

 .
To simplify the notation we write

(11) z =

[
w
v

]
=

[
∇ud

BHT−1(ud)− u0

]
A =

[
∇
K

]
b =

[
0
u0

]
an �nally

λ =

[
p
q

]
We can now write down the corresponding augmented lagrangian as:

Lα(z, ud, λ) = ‖w‖1 + µ‖v‖21 + 〈p,∇ud − w〉+ 〈q,Kud − u0 − v〉

+
α

2
‖v −Kud + u0‖2.(12)

The ADMM iterations are then given by:

wk+1 = argmin
w
‖w‖1 +

α

2
‖w −∇(ud)

k −D(ud)
k − pk

α
‖22

vk+1 = argmin
w

µ‖v‖1 +
α

2
‖v −K(ud)

k
+ u0 −

qk

α
‖22

(ud)
k+1

= argmin
u

α

2
‖∇ud − wk+1 +

pk

α
‖22 +

α

2
‖Ku− vk+1 − u0 +

qk

α
‖22

pk+1 = pk + α(∇(ud)
k+1 − wk+1)

qk+1 = qk + α(K(ud)
k+1 − u0 − vk+1),

with p0 = q0 = 0 α > 0.

The standard explicit formulas for wk+1, vk+1 and (ud)
k+1

are:

wk+1 = S 1
α

(∇(ud)
k

+
pk

α
)

vk+1 = S µ
α

(K(ud)
k − u0 +

qk

α

(ud)
k+1

= (−∆ +K∗K)−1
(
∇∗wk+1 +K∗(vk+1 + u0)

)
(13)

where S 1
α

(t) is the standard soft thresholding, that is

S 1
α

(t) =

{
t− 1

αsign(t) |t| > 1
α

0 otherwise.

S µ
α
is de�ned in the same way, up to the obvious replacement of 1

α with µ
α . K

∗ denotes

the adjoint matrix of the matrix K = BHT−1 given by K∗ = (T−1)∗H∗B∗. Note that
one can compute all of these adjoint operators. ∆ denotes the usual Laplace's operator.

While, concerning the last iteration of system (13), we used a classical conjugate gra-
dient method.
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Figure 2: Original image uc = T−1(ud). Size image 2200x2000

6 Numerics

We test our method on images of big size ( number of pixels 1550 ≤ P ≤ 4000). In order
to have a blurred mosaicked image to test, we follow the following standard procedure:

1 we pick a color image as a reference uc, which is a good approximation of a color image
to without mosaicking e�ect.;

2 we apply in the right order the acquisition operator to get the observed degraded image
u0:

u0 = BHuc + b;

3 we formally write uc = T−1ud and we work with the new basis (uL, u
G
M , u

R
B ). So we

have
u0 = BHT−1(ud) + b;

4 We apply the ADMM algorithm to restore ud;

5 We set uc = T (ud).

As blur operator we always have considered a standard Gaussian low pass �lter of size
h = 11, with standard deviation ε = 1. In �gures 2 3,4 we restore an image of size 2.200
with a low level of noise. When the level noise is high, µ cannot be too small otherwise, the
algorithm does not perform a good demosaicking. In this case the parameter µ is chosen in
order to have a good balancing between denoising and demosaicking. In �gure 5 we show
the restoration results of an image reference detail with di�erent value of the parameter
µ. Then in �gures 7,8 we show the restoration result obtained on the whole image.

We deal with rescaled images in [0, 1]. We made run the Matlab code on an Intel(R)
Xeon(R) CPU 5120 @ 1.86GHz.
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Figure 3: Observed mosaicked blurred and noisy image u0 = BHT−1(ud) + b. σ = 0.01.

Figure 4: Restored image uc = T (ud). CPU time about 30mn, number of iterations 30 µ = 30
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Detail of original image Observed image convergence of the algorithm

restored image with µ = 0.5 restored image with µ = 5 restored image with µ = 50

Figure 5: Top left: crop of the original image. Crop size 256x256. Top center: blurred
mosaicked noisty image. Top right: convergence of the algorithm. Down left: restored image
with a small µ to promote the denoising against the demosaicking. Number of iterations 30.
Down center and down right : restored image with a greater value of µ to promote demosaicking
against the denoising. Number of iterations 30. Cpu time 4mn.
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Figure 6: Original image of size 768x512

Figure 7: Observed mosaicked blurred and noisy image. σ = 0.5

10



Figure 8: Restored image uc = T (ud). CPU time about 20 mn, number of iterations 30 µ = 20
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