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Abstract

The report intends to give a, as much as possible, detailed description researches carried
out by the CNRS, during the last two years, under Gyrovision the project In particular the
present work is concerned with two different classical challenges in image processing, and with a
possible solution strategy proposed by the authors. The first one is to develop a fast algorithm
to process image of big size in the microscanning framework. The second one is to define, in
the context of color demosaicking, a new method to perform at the same time: demosaicking,
deblurring and denoising.



Introduction

The first part of the report is concerned with the classical image processing problem of recon-
structing highly resolved images from several multiple less resolved images. Improvements in
the resolution and fidelity of digital imaging systems have substantial value for remote sens-
ing, military surveillance and other applications. Microscanning is a systematic approach to
acquiring images with slightly different sample scene phases; between successive images the
system is shifted slightly in a pre-determined controlled pattern. This makes an important
difference with respect to general supersolution framework, where the system is shifted in a
random pattern. First of all we describe the image formation model, by providing definitions of
each standard acquisition operator: shifting, blurring, downsampling. Then in line with recent
works (see, for instance [8, 16]), we introduce a convex energy used to restore highly resolved
image out from low resolution frames. Such energy is made up by T'Vregularization term and
L?-discrepancy term, which takes into account the acquisition process. Then we focus on the
main issue of this first part, that is to address real or at least acceptable computation time.
For instance in aerosurveillance the imaging system is embedded on board, making crucial to
restore acquired images in real time. Several numerical strategies to perform efficiently total
variation minimization have been proposed in the literature. In this direction, as a preliminary
step, we adapted to microscanning setting, the approach proposed in [14].

However, because of its iterative-sequential formulation, this method is not able to address
in real-time, or at least in an acceptable computational time, extremely large problems. For
such large scale simulations we need to address methods which allow us to reduce the problem
to a finite sequence of sub-problems of a more manageable size. To do this we adapt to
our setting the overlapping domain decomposition algorithm for total variation minimization
proposed in [9].

So that we are able to reduce the minimization of the energy to a finite sequence of sub-
problems of a smaller size, so allowing, at least in principle, for parallel computation. Finally
we show applications and results on real and synthetic data.’.

The second part of the report addresses another classical challenging problem in image
processing: the so called demosaicking, used in digital cameras for reconstructing color images.
Let us give a short description.

Most digital cameras use a single sensor which is placed in front of color filter array:
the Bayer Matrix. The sensor therefore sampled only one color per spatial position and the

'a version of the Matlab code is available at the I3S laboratory (CNRS/UNS)



observed image is degraded by the effect of mosaic generation. It is therefore necessary to
implement, possibly fast, algorithms to define an image with three color components by spatial
position. The set of techniques used in the literature, to resolve this problem, is huge. Without
claiming of being exhaustive we refer the reader to [1] for a general dissertation.

The originality of our research, in this context, is to define a variational method well suited
to take into account all possible degradation effects due to: mosaic effect, blur and noise.
Looking at the literature in this direction it is worth mention the work of Condat (see [4])
where a demosaicking-denoising method is proposed, but without taking into account blur
effects. In [7, 15] all the degradation effects are considered, but with regularization energies,
which does not allow for fast convex optimization technique. Indeed in these works, in order
to take into account the correlation between the RGB components, the prior regularization
term has a complicated expression.

Here we analyze and test a new method to perform in a more direct and possibly faster way
demosaicking-deblurring-denoising problem. Our approach is based on two steps. The first
one, as in [4], is working in a suitable basis where the three color components are statistically
decorrelated. Then we are able to write our problem as a convex minimization problem. Finally
to solve such a problem and to restore the image, we adapt to our framework the, well known,
ADMM (Alternating Direction Multipliers Minimization) convex optimization technique. The
ADMM method and its variants are largely used to solve convex minimization problems in
image processing. We refer the reader to [6], for a general dissertation on convex optimization
techniques, such as ADMM methods or others, and their applications to image processing.

Organization of the report

The report is organized as follows. In section 1 of the first chapter we introduce the microscan-
ning framework and we define the acquisition operator in this setting. In section 2 we illustrate
the results obtained by adapting the Nesterov’s strategy. In section 3 we illustrate the over-
lapping decomposition method for microscanning framework. Section 3 is completely devoted
to run numerical tests.

In section 1 of chapter 2 we give a short description of the general ADDM method. In
section 2 we define the new basis for which the channels of the color image are decorrelated.
Section 3 is devoted to introduce the Bayer matrix and the blur operator. Section 4 is concerned
with the definition of our variational model. In section 5 we show how to adapt the classical
ADMM algorithm to our case.

Finally in the last section we give some applications of our algorithm on color images of

big sizes.?.

%a version of the matlab code is available at the I3S laboratory (CNRS/UNS)



Discrete setting

We define the discrete rectangular domain € of step size dx = 1 and dimension dids. ) =
{1,....d1} x {1,...,do} C Z2. 1In order to simplify the notations we set X = R%*% and
Y = X x X. u € X denotes a matrix of size di x da. For u € X, u;; denotes its (7,7)-th
component, with (¢, j) € {1,...,d1} x{1,...,d2}. For g € Y, g; ; denotes the (i, j)-th component
of with g;; = (gil’j,giz’j) and (i,7) € {1,...,d1} x {1,...,d2} We endowed the space X and Y
with standard scalar product and standard norm. For u,v € X:

di ds
(,0)x = ) i v
i=1 j=1
For g,h e Y:
di do 2
Iy
lg.hhy =D > aishiy
i=1 j=1 I=1
For u € X and p € [1,4+00) we set:
di d2 L
lullp = QD luigl?)».
i=1 j=1
For g € Y and p € [1,4+00):
di1 do 2 L
lgllp == QDD lgi,B)r.
i=1 j=1 =1

If G, F' are two vector spaces and H : G — F' is a linear operator the norm of H is defined by

[H] = max (|Hulp).

lulla<1



Chapter 1

Microscanning

We investigate a convex variational framework to reconstruct high resolution images from a
low resolution video. We analyze the image formation process and provide a well designed
model for warping, blurring, downsampling and restoration. We provide an investigation of
each model components. The super resolution problem is modeled as a convex minimization
problem. The minimization is performed with a recent decomposition domain technique, which
allows for parallel computing and real time algorithm.

1.1 The model

In what follows HR and LR stand for high and low resolution respectively. As in [8] we assume
the following acquisition process:

u(z,y) Real world scene

1
Hu(z,y) blurred image.

!
FyHu(z,y) blurred shifted image

1
DFyHu(z,y) downsampled blurred shifted image

!

ug(m,n) = DF*Hu(z,y) + b noisy blurred downsampled image.



The super-solution reconstruction problem is the following:
Given a set {u%}f of K = r?2 LR images (where r? is the resolution enhancement factor
between the LR and the HR image) , find u.
For any k we have the
ul = DF,Hu + by,

where:
e u{ is the LR frame: a vector of size [MN x 1]
e D is the down-sampling operator: a matrix of size [M N x r?M N|
e H* is the PSF: a matrix of size [r2M N x r2M N]
e FF* are the shifting operators: each F}, is a matrix of size [r2MN x r2M N]
e v is HR image: a vector of size: [r2MN x 1].

Considering that the frames are acquired with a unique camera we assume the following fact:
Dy, = D for each frame.
1.1.1 Assumption on the blur operator H

We define the blur operator H by means of its Fourier transform h: if f denotes a frequency
in the Fourier space and f. is the cutting frequency of the acquisition system.

’%x(arcsin(% — 2\ /1- (%)2)‘ if f<fe
0 if f = fe

(1.1) h(f) =

In particular we have that ||h||co < 1, which ensure that [|[H|| < 1. Such a blur is often used in
aerosurveillance system camera.

1.1.2 Assumption on the downsampling operator

Given a continuous image u, we define the pixel value u; ; of the corresponding discrete image

at the position (i,7) by integration of u on the area A;; = (i,7) + [—3, %)% Then we define

the downsampling operator as:
1 1

Ui Du; i =up ) = ————
i,J i,J k,l 272 A(Nl;l)

.
A(Aij VAL i g,
0<i,j<MN

where A7, = (k,1) + [~%,5)? and 7 is the scale factor and 1 < k,1 < 2 X 4 is the common
Lebesgue measure.
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Figure 1.1: The profile of the Fourier transform of the blur operator with cuttin frequency fe = 2.27.

It is not difficult to check that ||D[| < 57 < 5.

Remark 1.1 Let us set Ty, = DFyH. By the assumptions on the acquisition operators we get
the following bound:

7,2 7.2 7’2
1
(1.2) I Tl < DTl < D IDIIEFIE] < ?“Qﬁ <L
k=1 k=1 k=1

1.2 Nesterov’s strategy

To retrieve 4 we minimize the residual error between the model and the measurements:
. 012
min > [T — w3,
k=1,...K

with K = r2. This minimization problem is ill-posed therefore we need to add an a priori
information on the unknown u. Then we are led to the TV-super resolution problem:

(1.3) min A[Vul(2) + > Teu— w3,
k=1,...K

where A is a positive weight and, in the discrete setting, |Vu|(£2) is the total variation on Q
of u, which in discrete setting is simply given by the I!-norm of the Vu. Here we briefly recall
the fast descent gradient Nesterov’s algorithm (see [11, 12]). We state it in the formulation
proposed in [13, 14|. For further details and general statements we refer the reader to |13, 14|
and references therein.

Definition 1.1 Let ¢ : X — R be a convez function. The operator

. 1
provy : X — X x— argmin{(y) + 5 ly - of3}

7



1s called prorimal operator associated to 1.
If proxyy can be computed exactly for every A > 0 and every x € X, the function v is said
to be simple.

Proposition 1.1 Let F : X — R be given by:
F(u) = Fi(u) + Fa(u) forue X,

where F1 is a convex L-Lipschitz differentiable function and Fs a simple function. Then the
following algorithm!:

up€X Ag=0 g=0 u=0

do forl:1,..., Lax

t=2
L
a=1t+ Vit +4tA
(1.4) v = prozap,(uo — g)
_ AutAv
y= A+a

u=provip(y—1VF(y)
g=g+aVFi(u)
A=A+a

ensures that:

|u* — U0|2

(L5) 0 < Flu) - F(u') < L0,

where u* € X is a mintmum point of F' and ug € X is an initial data.

The iteration numbers Ly, is fixed via inequality (1.5). For instance, if we want an error of
order l%, we need then a number L, of iterations of order .

In order to apply the previous algorithm we set Fi(u) = /|Vu[? +e+> 2, g | Teu—ul |13
with e small parameter and Fy = 0.
We made run the Matlab code on an Intel(R) Xeon(R) CPU 5120 @ 1.86GHz.

1.3 The Overlapping Domain decomposition method

To retrieve the super resolution image v we wish to minimize the following energy:

r2

(1.6) Fu) = 1T — u|| + 2X| Vul (Q)
k=1

MN
where T* = DHF* is a linear operator belonging to L(RMY R™Z") and |Vu|(f) stands for the
total variation of u in €. In order to obtain a fast minimization we follow the decomposition

lwe omit the dependence on [ to simplify the notation
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Figure 1.2: original image.
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Figure 1.3: downsampled LR image r2 = 4.
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Figure 1.4: Restored HR image.
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Figure 1.5: Convergence curve of algorithm 1.4. Size image 2561256. CPU time 5mn.
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domain decompose

€3

Figure 1.6: The domain decomposition. The blue line is the interface I';. The red line is the
interface I'y

overlapping domain method used in [9, 10]. So that instead of minimizing (1.6) on the whole
image domain, we split 2 in two overlapping sub domains 7 and Qs such that Q1 N Qg # 0.
We denote by I'1 the interface between 7 and Q9 \ €1 and by I'y the interface between {2y
and Ql \QQ.
RMN ig decomposed in two closed subspaces V; = {u € RMY : supp(u) C Q;}. Then we
can rewrite any u € RMV as

up () T e\ Q
ul(:c) + U2($) r € NN
ug(x) x €\

We define the trace operator as
Tr. ViR =12,
with T'r|. v; = v|. . We also require the following splitting properties of the total variation:

(1.7) |Vul|(Q) = W“Lnl [(21) + e

UL(92\91>UF1 )

(1.8) [Vul(Q2) = [V, [(Q2) + e

u L@s\ag)ury ) ’

with ¢y, ¢ suitable functions (see [9]) Finally to control the solutions on the overlapping parts
one needs to fix a bounded uniform partition of unity, that is {x1, x2} such that

L Tr.xi=x, =0fori=1,2,

13



2. x1+x2=1,
3. suppx; C Q; for i =1,2,
4. max{|[x1lloo, [[X2]lcc } = € < +00.

One wishes to minimize energy (1.6) by picking an initial data u® = @{ + a3 € V4 + V5 and
iterate the following procedure:

w2 argmin F(vr +ay)

]-'(u’f“ + UQ)

v1€VIT, lp, v1=0

TL+1 ~ :
u2 - argmanQ €V2Tr LF17’2 =0

(1.9) S u711+1 + u;z—&-l
“no._ 1
a = xqut

uly = xou"

+1

1.3.1 Subspace minimization

Let us consider the minimization on €. The minimum problem is the following:

argmin  F (v + ug)

U1 eVlTTLFI v1=0

2

(1.10) = argmin Y [T — (uf — TFus) |3 + 2A|V (01 + ug|, ) |(9).

U1EV1TTLF1 v1=0 =1

As in [9] we introduce the surrogate functional to separate the variable u; from the action of
the operators Tk, For a,u1 € V1, us € Vo we define

2

Fiur +us,a) := Fluy +uz) + 2 lur = allf = Y | T"(ur = a)|3.
k=1

By same computation of [9] we obtain that

2

Fi(ur+ug,a) =Y [lur = (a+(T* (uf = T*us = T%a)) |, [[53+2M|V (w1 +u2) () +D(a, uf, uz),
k=1

where ® does not depend on u;. Then we obtain an approximate solution of problem (1.10)
by using the following algorithm:

+1 _ . s !
(111) {ul o argmlnulevlTerlulzo fl (Ul + ug, ul)? l Z 0

u?:a?evl

14



Moreover in (1.11) the total variation can be restricted on € only, since, by using (1.7)
and the interior boundary condition we have

(1.12) [V (ur +u2)[(2) = |V(u1 + uz)|, [(€21) + c1(uy,n00)ur,)-

Hence problem (1.11) turns out to be equivalent to:

r2

argmin Y |2 — wi[|3 + 20V (w1 +ua) |, [(),

ulevlTTLFlulzo k=1

where 2§ = ul + (Tk*(ulé — Thuy — Tkull))ml-

1.3.2 Oblique thesholding

We give here the analogous of Theorem 4.3 of [9]. The proof is the same up to minor changes.

Theorem 1.1 For ug € Vs, z]f € Vi and k =1, ...,7% the following statements are equivalent:

* : 7’2
1 vy = ArgMiNy, evig, o > het 121 = w3 4+ 2M|V (ur + u2) | (1),
1

2. there emists n € Vi with suppn = I'y such that n = (TTLFI)*TTLFl(EZil 28+ Pag(n —
2
(k= 2 + u2)))-

where K = {divp: ||p(2)|lcc <1 Vz € Q}.

The next proposition allows for explicit computation of n by iterating the following proce-
dure:

0 ew O—7
(1.13) {77 1, suppn 1

2 2
W = (T YT (S5 2+ Pac(™ — (S5 24 + )
Proposition 1.2 The following statements are equivalent:
1. there ezists n € Vi such that n = (Tr|. )*TTLH(ZZZ:l 28+ Py(n — (222:1 28+ ug)))
2. the iteration (1.18) converges to any n that satisfies condition (2) in Theorem 1.1.

The proof is as in |9] Proposition 4.4.

1.3.3 Convergence of the subspace minimization and computation of u,

We are now in position of computing iteration (1.11), which gives the solution of the subspace
minimization problem. Indeed we can iterate as follows

r2

(1.14) uft = (I = Poag) Ol + T (uf — TFuy — TFul) + up — n') — uy
k=1

15



where 7' is computed via iteration (1.13). Now (1.14) is equivalent, by recalling that 2 =

uh + (TF" (uf — Thug — Tkull))ml, to

2

(1.15) uf™ = (1= Pag) Q2 +uz — ') — ug
k=1

So that in order to compute u; we just need to know how to compute the projection Py onto
AK, where K is K = {divp: ||p(2)|lcc < 1 Vz € Q}.

This can be done as in [3], where such a projection is related to the convex conjugate of
the total variation.

One can compute P\g(f) of some element f, as the limit of adivp, where p, is obtain by
iterating the following procedure:

p(0) =0
ntl _ PMHT(V(divp"—4))
L7 (V(divpn—£))|

p

Then if 7 < %, one gets that Adivp, — Pyg(f).

Proposition 1.3 The iteration (1.14) converges to a solution uj € Viof of (1.10) for any
initial choice of u.

The proof of this proposition is as the proof of Proposition 4.7 of [9], since we have bound
(1.2).

1.3.4 Convergence Properties

We go back to the sequential algorithm (1.9). We rewrite the algorithm as follows: Pick as
initial data u® = @9 + @9 € V1 + V4 and iterate:

(1.16)

( ugn+1,0) —

uf Ty = Filw + g™ 1=0,., L1

= argminy ey,
(TL+170) — an
Uz = Uz
INES] . 1,L 1
ugn+ D argmin = ]:Qg(ugmr L) +u§‘,u§"+ ’m)) m=0,...M—1

U2€VETWLF2:0
1,L 1,M

n+l ,__ 1
af ™t = yqut
1. 1
ug+ _47X2un+

By using the bound (1.2), we have as in [9] the following proposition (see Proposition 5.4
and Theorem 5.7 of [9]). The numbers of iterations L, M are chosen according to the desired

16



error in the computation of  with procedure 1.14. By error we means the [?-distance between
u; and u;_1 in the subdomain €21, and between u,, and u,,_1 in the subdomain 9 .

Proposition 1.4 The algorithm (1.16) produces a sequence (u™) with the following properties:
1. Fu™) > Fumt)) for alln € N (unless ul™ = u(+1)
2. limy, 4 oo ™D — ™|y = 0;
3. the sequence (u(”)) has convergent subsequences.

4. the accumulation points of the sequence (u(")) are minamizer of F. If F has a unique
minimizer, then the sequence (u(™) converges to it.

1.4 Numerics

We simulate the super resolution problem. We stress out that in order to perform numerical
scheme we suppose to have the SR image that we want to reconstruct. Clearly in the real cases
one only disposes of the LR frames. We made run the Matlab code on an Intel(R) Xeon(R)
CPU 5120 @ 1.86GHz. Here below the results.

1.4.1 4 frames

e Size of images 512x512. number of sub domains 4
e CPU in the sub domains about 11 sec.

e MAE (Mean Absolute Error) between the original SR-image and the restored image is
9.3712e — 04

e MAE between the blurred image and the restored image is 21.3712e — 04.

One can notice that the error between the restored image and the SR original image is smaller
than the error between the blurred image and the restored image is 8.3712e — 04. It means
that the algorithm performs a correct deblurring.

1.4.2 16 frames

We perform the same experiment but with 16 LR-frames of size 64 x 64. The LR-frames are
obtained as before, by performing 16 shifting by using different motion vectors. The weight A
is fixed as 0.2. The computation time is about 2 s in the sub domains. Here below the results.

17



Fieal Image SR image

Figure 1.7: The SR real image we want to reconstruct.
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Elurred Image

Figure 1.8: The blurred image.

Figure 1.9: One of the 4 LR noisy and blurred frames. In the real case these frames are the
only data we have.
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Festared image

Figure 1.10: The restored SR image

20



original

al

100

150

200

2al

al 100 150 200 2al

Figure 1.11: Original image
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HR Elurred image fc=3.44
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Figure 1.12: Blurred image with FTM threshold fo = 2.27
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[owresolution

Figure 1.13: one of the 16 downsampled LR images with r2 = 4.
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Figure 1.14: Restored HR image.
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Chapter 2

Demosaicking-Deblurring-Denoising

We describe here a new algorithm to perform, in the same time, demosaicking deblurring,
denoising. To this purpose we will adapt to our context an ADMM type algorithm. We recall
the relevant features necessary to illustrate the application of such a method to our setting. We
refer the reader to [6] and references therein, for a general dissertation on convex optimization
techniques in image processing and recent developments on this matter.

2.1 ADMM algorithm for constrained minimization problem

In this section we describe the optimization method, we will adapt to our setting. The so called
Alternating Direction Minimization Multipliers method ADMM. This particular optimization
technique is well suited for constrained minimization problem of the following form:

(2.1) min F'(2) + G(u) subject to Bz + Au=1»>

U,z

where F,G : R - R and A and B matrix.
To solve problem (2.1) one considers the augmented Lagrangian and seeks its stationary
points.

2.2) La(z,u,\) = F(2) + G(u) + (\, Au+ Bz — b) + %HAU + Bz — b2

Then one iterate as follows:

{<2k+1,uk+1) = argmin, , La(2,u, AF)

2.3
( ) AL — )k + a(AukJrl 4 Bk+1 _ b), A0 =0
The following result has been proven in [5].

Theorem 2.1 (Eckstein, Bertsekas) Suppose B has full column rank and G(u) + || A(u)||?
1s strictly convezx. Let Ao and ug arbitrary and let a > 0. Suppose we are also given sequences
{ur} and {vg} with 3 77 i, < 00 and > 7" v < 0o. Assume that

1. ||ZF — argmin, gy F(2) + (AF, Bz) + 9| Au* + Bz — b?|| <

25



2. [|uF ! — argmin,cpa G(u) + (AF, Au) + 4[| Au + B2F+ — b|12|| < v,
8. ML = AF o (AuFt! 4+ B2F —p).

If there exists a saddle point of La(z,u,\) then (2%, uF,\F) — (2*,u*, \*) which is such a
saddle points. If no such saddle point exists, then at least one of the sequences {uF} or {\.}
1s unbounded.

2.2 Decorrelation
It is well known the RGB components of a color image u® = (uR,uG,uB)T
statistically correlated. Tt is possible to show, from an experimental point of view, (Alleyson et
al. [2]), that there exists a basis L, C¢/M C®/B in which the image u® = (ur, uG/M oF/B)T
is now approximately decorrelated.

This new orthonormal basis L, C¢/M CFR/B with decorrelation is given by:

are strongly

o L= %[1, 1,1]7 is the luminance

o CG/M = L 1_1 2 —1]7 is the green magenta chrominance

S

o CH/B = %[1, 0,—1]7 the red blue chrominance

Moreover the change of basis matrices have the following expression:

ut 1oL b g
(2.4) ut = | uG/M = -1 1 _1 u€ =T (u)
‘ 7 3 1
uR/B _% 0 % UB
and
ult 1 -1 =2 ul
(2.5) ut = | u® =|1 1 0 uG/M =T 1(ud).
uB 1 —-10 2 uft/B

Hereafter u® denotes the image in the canonical basis R, G, B, while u? is the image in the
basis L, CG/M CR/B,

2.3 Bayer filter and blur operator

For every (i,j) € Z% we define the color image u¢ = (u(i, 7)) ,j)ez2 Wwhere

u®(i, §) = [uf(i, ), u (0, 5),u" (i, )"

26
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Figure 2.1: Bayer filter

is the color of the pixel of u® at location (7,j) in the canonical R, G, B base. We define the
following Bayer filter
(2.6)

u® = [uf(i, ), uC (0, ), uP (i, )] = Bu®) = (u)XD with X(i,5) € {R.G, B} V(i, ),

So that the image (uc)X(i’j) has only one of the components RGB per spatial position.
Concerning the blur operator we assume that it is the same for every components. In
particular we suppose the following form (with abuse of notation):

Where H is a matrix representing standard convolution with some Gaussian kernel.

2.4 The variational model

Let us start by recalling the acquisition camera sequence. We have as usual:
(2.7) u®+— Hu® — BHu® — BHu® + b = uy.

On the other hand from (2.5) we have u¢ = T~ (u?). So that from (2.7) we get an ideal

acquisition process for u?

(2.8) u? — T u?) —» HT Y (u?) — BHT Y(u?) - BHT ' (u?) + b = uy.

The idea is then to restore u? by working with the, much more convenient, decorrelation basis
L,CG/M CR/B_ Finally, at once u? is restored, simply set u¢ = T'(u).

In order to retrieve u®

, we have to solve an ill posed inverse problem. So that as usual we
seek for minimizer of an energy given by an L2-discrepancy term plus a regularization penalty.
Now the key point is that, since we are working in the decorrelation basis, it makes to

consider the following minimization problem:

arg min ||V |1 + [ VaM ||+ |Va Py pl| BHT (u) — uoll3.
u
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2.5 Application of ADMM method to our problem

In order to apply the ADMM method, we must rewrite the problem
(2.9) argmin | Va® |y + [Va M|l + |V P |l + pl| BHT ™ (u?) = o3,
u

in the form (2.1), which was

min F(z) + G(u?) subject to Bz + Au? = b.

U,z

Then we set

(2.10)
w1 VUL VL
- wo _ qu/M - - vG/M _
= ws | Vult/B » B=-I, A= VE/B b=
v BHT " (u?) — ug BHT!
We also need the dual variable
b1
A= | P2
ps3
q

To simplify the notation we write

o e [2) LS J-[2] (2]

)\ p
q

We can now write down the corresponding augmented lagrangian as:
La(zut, A) = l[wlls + o2 + (p, Vul = w) + (g, Ku — up — v)
o

(2.12) + gHv—Kud—FuoHQ.

The ADMM iterations are then given by:

. o k k b
W= argmin wll + Zllw - V()" = D) =3
w
k
. o k q
o = argminpfolly + o = K@) +uo— L3
w
. k
k+1 .« @
() ~ argmin §Hvud _ bt 4 %H% + g K~ R — g 4 qg“%
u
k+1
pk+1 _ pk-f-Oé(V(ud) _wk+1)
F o= Q(K(ud)kﬂ —ug — oF T,
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with p = ¢ =0 a > 0.
The standard explicit formulas for w1, v5+1 and (u®)*™" are:

k
W = 5y (V) 4 %)
k
VP = Sg(K(ud)k —ug + %
(2.13) @H*™ = A+ KK (VR 4 K (0R 4 ug)

where S1(t) is the standard soft thresholding, that is

@

1 )
a otherwise.

t — Lsign(t t|> 4L
S(t):{g Lsign(t) [t >

S is defined in the same way, up to the obvious replacement of é with £. K* denotes the

adjoint matrix of the matrix K = BHT ! given by K* = (T~1)*H*B*. Note that one can
compute all of these adjoint operators. A denotes the usual Laplace’s operator.

While, concerning the last iteration of system (2.13), we used a classical conjugate gradient
method.

2.6 Numerics

We test our method on images of big size ( number of pixels 1550 < P < 4000). In order to
have a blurred mosaicked image to test, we follow the following standard procedure:

1 we pick a color image as a reference u¢, which is a good approximation of a color image to
without mosaicking effect.;

2 we apply in the right order the acquisition operator to get the observed degraded image ug:
ug = BHuS + b;

L

3 we formally write u¢ = T~ 'u? and we work with the new basis (u ,u%,u%). So we have

ug = BHT 1 (u?) + b;

4 We apply the ADMM algorithm to restore u?;
5 We set u® = T'(u?).

As blur operator we always have considered a standard Gaussian low pass filter of size h = 11,
with standard deviation e = 1. In figures 2.2 2.3,2.4 we restore an image of size 2.200 with a
low level of noise. When the level noise is high, u cannot be too small otherwise, the algorithm
does not perform a good demosaicking. In this case the parameter u is chosen in order to have

29



200

400

&00

ann

1000

1200

1400

1600

: } P
200 400 G600 &00 1000 1200 1400 1600 1800 2000 2200

Figure 2.2: Original image u® = T~ !(u?). Size image 2200x2000

a good balancing between denoising and demosaicking. In figure 2.5 we show the restoration
results of an image reference detail with different value of the parameter p. Then in figures
2.7,2.8 we show the restoration result obtained on the whole image.

We deal with rescaled images in [0,1]. We made run the Matlab code on an Intel(R)
Xeon(R) CPU 5120 @ 1.86GHz.
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Figure 2.3: Observed mosaicked blurred and noisy image ug = BHT ! (u) +b. o = 0.01.

200
400
G600
a0
1000
1200
1400

1600

h Pl
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Figure 2.4: Restored image u¢ = T(u?). CPU time about 30mn, number of iterations 30
w =30
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Detail of original image Observed image convergence of the algorithm

10
25

= A 0
E] 1m0 150 ] B 10 [ 20 2 20

| restored image with u = 0.5 || restored image with =5 || restored image with p = 50

250

Figure 2.5: Top left: crop of the original image. Crop size 256x256. Top center: blurred
mosaicked noisty image. Top right: convergence of the algorithm. Down left: restored image
with a small u to promote the denoising against the demosaicking. Number of iterations 30.
Down center and down right : restored image with a greater value of i to promote demosaicking
against the denoising. Number of iterations 30. Cpu time 4mn.
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Figure 2.6: Original image of size 768x512

Figure 2.7: Observed mosaicked blurred and noisy image. ¢ = 0.5
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Figure 2.8: Restored image u¢ = T'(u?). CPU time about 20 mn, number of iterations 30
w=20

34



Acknowledgments: The first author author warmly thanks Mikael Carlavan, Phd student
of Morpheme project at I3s, to help him with the Matlab code of the ADMM algorithm.

35



Bibliography

1]
2]

3]

8]

9]

D.Alleyson 30 ans de démosaicage Traitement du signal vol 21 2000, 563-581

D. Alleyson, S.Susstrunk and J.Hérault Linear demosaicking inspired by the human visual
system IEEE Trans. Image Processing, vol.14, no.4 pp.439-449. Apr. 2005

A.Chambolle An algorithm for total variation minimization and applications J. Math. Imag-
ing Vision 20 (2004), no. 1-2, 89-97.

L.Condat A simple fast and efficient approach to demosaicking and denoising Proceeding
of 2010 IEEE 17th International conference on Image processing Hong Kong.

J.Eckstein D.Bertsekas On the Douglas-Rachford splitting method and proximal monotone
operators, Mathematical Programming 55, North-Holland 1992

E. Essier Primal Dual Algorithms for Convex Models and Applications to Image Restora-
tion, Registration and Nonlocal Inpainting Phd Thesis 2009.

S. Farsiu, M. Eladb , P. Milanfar Multi-Frame Demosaicing and Super-Resolution from
Under-Sampled Color Images SPIE Symposium on Electronic Imaging 2004, January 2004
in San Jose, CA. Volume 5299, Page(s): 222-233.

S.Farsiu, M.Robinson,M.Elad, P.Milanfar Fast and Robust Multiframe Super Resolution
IEEE Transactions on Image Processing Volume: 13 n.10 pp.1327-1344 Octobre 2004

M.Fornasier, A. Langer, C. Schonlieb. A convergent overlapping decomposition method for
total variation Minimization”. Numerische Mathematik, Vol. 116, No. 4, 2010, pp. 645-685

[10] M.Fornasier, C. Schonlieb Subspace correction method for total variation minimization,

Siam J. Numer. Anal., Vol. 47, No. 5, 2009, pp. 3397-3428

[11] Y.Nesterov. A method for unconstrained convexr minimization problem with the rate of

convergence O(%) Doklady AN SSSR 547 (1983), 543-547.

[12] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematic Programming,

Ser. A; 103 (2005) ,127-152.

36



[13] P.Weiss. Algorithmes rapides d’optimisation convexe. Application a la restauration
d’images et a la détection de changements. Phd Thesis (2008).

[14] P. Weiss, L. Blanc-Féraud , G. Aubert. Efficient schemes for total variation minimization
under constraints in image processing. STAM journal on Scientific Computing 31 (2009),
2047-2080.

[15] F. Soulez, E. Thié¢baut Joint deconvolution and demosaicing 16th International conference
on image processing Cairo Egypt.

[16] M. Unger, T. Pock, M. Werlberger, H. Bischof A convex approach for variational super-
resolution, Proceedings of the 32nd DAGM conference on Pattern recognition.

37



