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Abstract

The report intends to give a, as much as possible, detailed description researches carried
out by the CNRS, during the last two years, under Gyrovision the project In particular the
present work is concerned with two di�erent classical challenges in image processing, and with a
possible solution strategy proposed by the authors. The �rst one is to develop a fast algorithm
to process image of big size in the microscanning framework. The second one is to de�ne, in
the context of color demosaicking, a new method to perform at the same time: demosaicking,
deblurring and denoising.



Introduction

The �rst part of the report is concerned with the classical image processing problem of recon-
structing highly resolved images from several multiple less resolved images. Improvements in
the resolution and �delity of digital imaging systems have substantial value for remote sens-
ing, military surveillance and other applications. Microscanning is a systematic approach to
acquiring images with slightly di�erent sample scene phases; between successive images the
system is shifted slightly in a pre-determined controlled pattern. This makes an important
di�erence with respect to general supersolution framework, where the system is shifted in a
random pattern. First of all we describe the image formation model, by providing de�nitions of
each standard acquisition operator: shifting, blurring, downsampling. Then in line with recent
works (see, for instance [8, 16]), we introduce a convex energy used to restore highly resolved
image out from low resolution frames. Such energy is made up by TV regularization term and
L2-discrepancy term, which takes into account the acquisition process. Then we focus on the
main issue of this �rst part, that is to address real or at least acceptable computation time.
For instance in aerosurveillance the imaging system is embedded on board, making crucial to
restore acquired images in real time. Several numerical strategies to perform e�ciently total
variation minimization have been proposed in the literature. In this direction, as a preliminary
step, we adapted to microscanning setting, the approach proposed in [14].

However, because of its iterative-sequential formulation, this method is not able to address
in real-time, or at least in an acceptable computational time, extremely large problems. For
such large scale simulations we need to address methods which allow us to reduce the problem
to a �nite sequence of sub-problems of a more manageable size. To do this we adapt to
our setting the overlapping domain decomposition algorithm for total variation minimization
proposed in [9].

So that we are able to reduce the minimization of the energy to a �nite sequence of sub-
problems of a smaller size, so allowing, at least in principle, for parallel computation. Finally
we show applications and results on real and synthetic data.1.

The second part of the report addresses another classical challenging problem in image
processing: the so called demosaicking, used in digital cameras for reconstructing color images.
Let us give a short description.

Most digital cameras use a single sensor which is placed in front of color �lter array:
the Bayer Matrix. The sensor therefore sampled only one color per spatial position and the

1a version of the Matlab code is available at the I3S laboratory (CNRS/UNS)
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observed image is degraded by the e�ect of mosaic generation. It is therefore necessary to
implement, possibly fast, algorithms to de�ne an image with three color components by spatial
position. The set of techniques used in the literature, to resolve this problem, is huge. Without
claiming of being exhaustive we refer the reader to [1] for a general dissertation.

The originality of our research, in this context, is to de�ne a variational method well suited
to take into account all possible degradation e�ects due to: mosaic e�ect, blur and noise.
Looking at the literature in this direction it is worth mention the work of Condat (see [4])
where a demosaicking-denoising method is proposed, but without taking into account blur
e�ects. In [7, 15] all the degradation e�ects are considered, but with regularization energies,
which does not allow for fast convex optimization technique. Indeed in these works, in order
to take into account the correlation between the RGB components, the prior regularization
term has a complicated expression.

Here we analyze and test a new method to perform in a more direct and possibly faster way
demosaicking-deblurring-denoising problem. Our approach is based on two steps. The �rst
one, as in [4], is working in a suitable basis where the three color components are statistically
decorrelated. Then we are able to write our problem as a convex minimization problem. Finally
to solve such a problem and to restore the image, we adapt to our framework the, well known,
ADMM (Alternating Direction Multipliers Minimization) convex optimization technique. The
ADMM method and its variants are largely used to solve convex minimization problems in
image processing. We refer the reader to [6], for a general dissertation on convex optimization
techniques, such as ADMM methods or others, and their applications to image processing.

Organization of the report

The report is organized as follows. In section 1 of the �rst chapter we introduce the microscan-
ning framework and we de�ne the acquisition operator in this setting. In section 2 we illustrate
the results obtained by adapting the Nesterov's strategy. In section 3 we illustrate the over-
lapping decomposition method for microscanning framework. Section 3 is completely devoted
to run numerical tests.

In section 1 of chapter 2 we give a short description of the general ADDM method. In
section 2 we de�ne the new basis for which the channels of the color image are decorrelated.
Section 3 is devoted to introduce the Bayer matrix and the blur operator. Section 4 is concerned
with the de�nition of our variational model. In section 5 we show how to adapt the classical
ADMM algorithm to our case.

Finally in the last section we give some applications of our algorithm on color images of
big sizes.2.

2a version of the matlab code is available at the I3S laboratory (CNRS/UNS)
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Discrete setting

We de�ne the discrete rectangular domain Ω of step size δx = 1 and dimension d1d2. Ω =

{1, ..., d1} × {1, ..., d2} ⊂ Z2. In order to simplify the notations we set X = Rd1×d2 and
Y = X × X. u ∈ X denotes a matrix of size d1 × d2. For u ∈ X, ui,j denotes its (i, j)-th
component, with (i, j) ∈ {1, ..., d1}×{1, ..., d2}. For g ∈ Y , gi,j denotes the (i, j)-th component
of with gi,j = (g1

i,j , g
2
i,j) and (i, j) ∈ {1, ..., d1} × {1, ..., d2} We endowed the space X and Y

with standard scalar product and standard norm. For u, v ∈ X:

〈u, v〉X =

d1∑
i=1

d2∑
j=1

ui,jvi,j .

For g, h ∈ Y :

〈g, h〉Y =

d1∑
i=1

d2∑
j=1

2∑
l=1

gli,jh
l
i,j .

For u ∈ X and p ∈ [1,+∞) we set:

‖u‖p := (

d1∑
i=1

d2∑
j=1

|ui,j |p)
1
p .

For g ∈ Y and p ∈ [1,+∞):

‖g‖p := (

d1∑
i=1

d2∑
j=1

2∑
l=1

|gli,j |
p
2)

1
p .

If G,F are two vector spaces and H : G→ F is a linear operator the norm of H is de�ned by

‖H‖ := max
‖|u‖G≤1

(‖Hu‖F ).
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Chapter 1

Microscanning

We investigate a convex variational framework to reconstruct high resolution images from a
low resolution video. We analyze the image formation process and provide a well designed
model for warping, blurring, downsampling and restoration. We provide an investigation of
each model components. The super resolution problem is modeled as a convex minimization
problem. The minimization is performed with a recent decomposition domain technique, which
allows for parallel computing and real time algorithm.

1.1 The model

In what follows HR and LR stand for high and low resolution respectively. As in [8] we assume
the following acquisition process:

u(x, y) Real world scene

↓

Hu(x, y) blurred image.

↓

FkHu(x, y) blurred shifted image

↓

DFkHu(x, y) downsampled blurred shifted image

↓

u0(m,n) = DF kHu(x, y) + b noisy blurred downsampled image.

5



The super-solution reconstruction problem is the following:
Given a set {u0

k}K1 of K = r2 LR images (where r2 is the resolution enhancement factor

between the LR and the HR image) , �nd u.
For any k we have the

u0
k = DFkHu+ bk

where:

• u0
k is the LR frame: a vector of size [MN × 1]

• D is the down-sampling operator: a matrix of size [MN × r2MN ]

• Hk is the PSF: a matrix of size [r2MN × r2MN ]

• F k are the shifting operators: each Fk is a matrix of size [r2MN × r2MN ]

• u is HR image: a vector of size: [r2MN × 1].

Considering that the frames are acquired with a unique camera we assume the following fact:
Dk = D for each frame.

1.1.1 Assumption on the blur operator H

We de�ne the blur operator H by means of its Fourier transform h: if f denotes a frequency
in the Fourier space and fc is the cutting frequency of the acquisition system.

(1.1) h(f) =


∣∣∣ 2
πx
(

arcsin( ffc −
x
γ

√
1− ( ffc )2

)∣∣∣ if f ≤ fc
0 if f ≥ fc

In particular we have that ‖h‖∞ ≤ 1, which ensure that ‖H‖ ≤ 1. Such a blur is often used in
aerosurveillance system camera.

1.1.2 Assumption on the downsampling operator

Given a continuous image u, we de�ne the pixel value ui,j of the corresponding discrete image
at the position (i, j) by integration of u on the area ∆i,j = (i, j) + [−1

2 ,
1
2)2. Then we de�ne

the downsampling operator as:

ui,j 7→ Dui,j = uk,l =
1

2r2

1

A(∆r
k,l)

∑
0≤i,j≤MN

A(∆i,j ∩∆r
k,l)ui,j ,

where ∆r
k,l = (k, l) + [− r

2 ,
r
2)2 and r is the scale factor and 1 ≤ k, l ≤ M

r ,
N
r . A is the common

Lebesgue measure.
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Figure 1.1: The pro�le of the Fourier transform of the blur operator with cuttin frequency fc = 2.27.

It is not di�cult to check that ‖D‖ ≤ 1
2r2 <

1
r2 .

Remark 1.1 Let us set Tk = DFkH. By the assumptions on the acquisition operators we get

the following bound:

(1.2) ‖
r2∑
k=1

Tk‖ ≤
r2∑
k=1

‖Tk‖ ≤
r2∑
k=1

‖D‖‖F k‖‖H‖ ≤ r2 1

2r2
< 1.

1.2 Nesterov's strategy

To retrieve u we minimize the residual error between the model and the measurements:

min
u

∑
k=1,...,K

‖Tku− u0
k‖22,

with K = r2. This minimization problem is ill-posed therefore we need to add an a priori
information on the unknown u. Then we are led to the TV-super resolution problem:

(1.3) min
u
λ|∇u|(Ω) +

∑
k=1,...,K

‖Tku− u0
k‖22,

where λ is a positive weight and, in the discrete setting, |∇u|(Ω) is the total variation on Ω

of u, which in discrete setting is simply given by the l1-norm of the ∇u. Here we brie�y recall
the fast descent gradient Nesterov's algorithm (see [11, 12]). We state it in the formulation
proposed in [13, 14]. For further details and general statements we refer the reader to [13, 14]
and references therein.

De�nition 1.1 Let ψ : X → R be a convex function. The operator

proxψ : X → X x� arg min
y∈X
{ψ(y) +

1

2
|y − x|22}
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is called proximal operator associated to ψ.

If proxλψ can be computed exactly for every λ ≥ 0 and every x ∈ X, the function ψ is said

to be simple.

Proposition 1.1 Let F : X → R be given by:

F (u) = F1(u) + F2(u) for u ∈ X,

where F1 is a convex L-Lipschitz di�erentiable function and F2 a simple function. Then the

following algorithm1:

(1.4)



u0 ∈ X A0 = 0 g = 0 u = 0

do for l : 1, ..., Lmax

t = 2
L

a = t+
√
t2 + 4tA

v = proxAF2(u0 − g)

y = Au+Av
A+a

u = prox 1
L
F2

(y − 1
L∇F1(y))

g = g + a∇F1(u)

A = A+ a

ensures that:

(1.5) 0 ≤ F (ul)− F (u∗) ≤ L |u
∗ − u0|2
l2

,

where u∗ ∈ X is a minimum point of F and u0 ∈ X is an initial data.

The iteration numbers Lmax is �xed via inequality (1.5). For instance, if we want an error of
order 1

l2
, we need then a number Lmax of iterations of order l.

In order to apply the previous algorithm we set F1(u) =
√
|∇u|2 + ε+

∑
k=1,...,K ‖Tku−u0

k‖22
with ε small parameter and F2 = 0.

We made run the Matlab code on an Intel(R) Xeon(R) CPU 5120 @ 1.86GHz.

1.3 The Overlapping Domain decomposition method

To retrieve the super resolution image u we wish to minimize the following energy:

(1.6) F(u) =

r2∑
k=1

‖T ku− uk0‖+ 2λ|∇u|(Ω)

where T k = DHF k is a linear operator belonging to L(RMN ,R
MN
r2 ) and |∇u|(Ω) stands for the

total variation of u in Ω. In order to obtain a fast minimization we follow the decomposition

1we omit the dependence on l to simplify the notation
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Figure 1.2: original image.
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Figure 1.3: downsampled LR image r2 = 4.
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Figure 1.4: Restored HR image.
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Figure 1.5: Convergence curve of algorithm 1.4. Size image 256x256. CPU time 5mn.
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Figure 1.6: The domain decomposition. The blue line is the interface Γ1. The red line is the
interface Γ2

overlapping domain method used in [9, 10]. So that instead of minimizing (1.6) on the whole
image domain, we split Ω in two overlapping sub domains Ω1 and Ω2 such that Ω1 ∩ Ω2 6= ∅.

We denote by Γ1 the interface between Ω1 and Ω2 \Ω1 and by Γ2 the interface between Ω2

and Ω1 \ Ω2.
RMN is decomposed in two closed subspaces Vj = {u ∈ RMN : supp(u) ⊂ Ωj}. Then we

can rewrite any u ∈ RMN as 
u1(x) x ∈ Ω1 \ Ω2

u1(x) + u2(x) x ∈ Ω1 ∩ Ω2

u2(x) x ∈ Ω2 \ Ω1

We de�ne the trace operator as

TrbΓi
: Vi 7→ RΓi , i = 1, 2,

with TrbΓivi = vbΓi
. We also require the following splitting properties of the total variation:

(1.7) |∇u|(Ω) = |∇ubΩ1
|(Ω1) + c1(ub(Ω2\Ω1)∪Γ1

)

(1.8) |∇u|(Ω) = |∇ubΩ2
|(Ω2) + c1(ub(Ω1\Ω2)∪Γ2

),

with c1, c2 suitable functions (see [9]) Finally to control the solutions on the overlapping parts
one needs to �x a bounded uniform partition of unity, that is {χ1, χ2} such that

1. TrbΓiχi = χbΓi = 0 for i = 1, 2,

13



2. χ1 + χ2 = 1,

3. suppχi ⊂ Ωi for i = 1, 2,

4. max{‖χ1‖∞, ‖χ2‖∞} = c < +∞.

One wishes to minimize energy (1.6) by picking an initial data u0 = ũ0
1 + ũ0

2 ∈ V1 + V2 and
iterate the following procedure:

(1.9)



un+1
1
∼= argminv1∈V1TrbΓ1

v1=0
F(v1 + ũn2 )

un+1
2
∼= argminv2∈V2TrbΓ1

v2=0
F(un+1

1 + v2)

un+1 := un+1
1 + un+1

2

ũn1 := χ1u
n+1

ũn2 := χ2u
n+1

1.3.1 Subspace minimization

Let us consider the minimization on Ω1. The minimum problem is the following:

argmin
v1∈V1TrbΓ1

v1=0

F(v1 + u2)

= argmin
v1∈V1TrbΓ1

v1=0

r2∑
k=1

‖T kv1 − (uk0 − T ku2)‖22 + 2λ|∇(v1 + u2bΩ1
)|(Ω).(1.10)

As in [9] we introduce the surrogate functional to separate the variable u1 from the action of
the operators T k. For a, u1 ∈ V1, u2 ∈ V2 we de�ne

Fs1(u1 + u2, a) := F(u1 + u2) + r2‖u1 − a‖22 −
r2∑
k=1

‖T k(u1 − a)‖22.

By same computation of [9] we obtain that

Fs1(u1 +u2, a) :=

r2∑
k=1

‖u1−(a+(T k
∗
(uk0−T ku2−T ka))bΩ1

‖22 +2λ|∇(u1 +u2)|(Ω)+Φ(a, uk0, u2),

where Φ does not depend on u1. Then we obtain an approximate solution of problem (1.10)
by using the following algorithm:

(1.11)

{
ul+1

1 = argminu1∈V1TrbΓ1
u1=0
Fs1(u1 + u2, u

l
1), l ≥ 0

u0
1 = ũ0

1 ∈ V1 .
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Moreover in (1.11) the total variation can be restricted on Ω1 only, since, by using (1.7)
and the interior boundary condition we have

(1.12) |∇(u1 + u2)|(Ω) = |∇(u1 + u2)bΩ1
|(Ω1) + c1(ub(Ω2\Ω1)∪Γ1

).

Hence problem (1.11) turns out to be equivalent to:

argmin
u1∈V1TrbΓ1

u1=0

r2∑
k=1

‖zk1 − u1‖22 + 2λ|∇(u1 + u2)bΩ1
|(Ω1),

where zk1 = ul1 + (T k
∗
(uk0 − T ku2 − T kul1))bΩ1

.

1.3.2 Oblique thesholding

We give here the analogous of Theorem 4.3 of [9]. The proof is the same up to minor changes.

Theorem 1.1 For u2 ∈ V2, z
k
1 ∈ V1 and k = 1, ..., r2 the following statements are equivalent:

1. u∗1 = argminu1∈V1TrbΓ1
u1=0

∑r2

k=1 ‖zk1 − u1‖22 + 2λ|∇(u1 + u2)bΩ1
(Ω1),

2. there exists η ∈ V1 with suppη = Γ1 such that η = (TrbΓ1
)∗TrbΓ1

(
∑r2

k=1 z
k
1 + PλK(η −

(
∑r2

k=1 z
k
1 + u2))).

where K = {divp : ‖p(x)‖∞ ≤ 1 ∀x ∈ Ω}.
The next proposition allows for explicit computation of η by iterating the following proce-

dure:

(1.13)

{
η(0) ∈ V1, suppη0 = Γ1

ηm+1 = (TrbΓ1
)∗TrbΓ1

(
∑r2

k=1 z
k
1 + PλK(ηm − (

∑r2

k=1 z
k
1 + u2)))

Proposition 1.2 The following statements are equivalent:

1. there exists η ∈ V1 such that η = (TrbΓ1
)∗TrbΓ1

(
∑r2

k=1 z
k
1 + Pλk(η − (

∑r2

k=1 z
k
1 + u2)))

2. the iteration (1.13) converges to any η that satis�es condition (2) in Theorem 1.1.

The proof is as in [9] Proposition 4.4.

1.3.3 Convergence of the subspace minimization and computation of u1

We are now in position of computing iteration (1.11), which gives the solution of the subspace
minimization problem. Indeed we can iterate as follows

(1.14) ul+1
1 = (I − PαK)(

r2∑
k=1

ul1 + T k
∗
(uk0 − T ku2 − T kul1) + u2 − ηl)− u2

15



where ηl is computed via iteration (1.13). Now (1.14) is equivalent, by recalling that zk1 =

ul1 + (T k
∗
(uk0 − T ku2 − T kul1))bΩ1

, to

(1.15) ul+1
1 = (I − PλK)(

r2∑
k=1

zk1 + u2 − ηl)− u2

So that in order to compute u1 we just need to know how to compute the projection PλK onto
λK, where K is K = {divp : ‖p(x)‖∞ ≤ 1 ∀x ∈ Ω}.

This can be done as in [3], where such a projection is related to the convex conjugate of
the total variation.

One can compute PλK(f) of some element f , as the limit of αdivpn where pn is obtain by
iterating the following procedure:p(0) = 0

pn+1 =
pn+τ(∇(divpn− f

λ
))

1+|τ(∇(divpn− f
λ

))|
.

Then if τ < 1
8 , one gets that λdivpn → PλK(f).

Proposition 1.3 The iteration (1.14) converges to a solution u∗1 ∈ V1of of (1.10) for any

initial choice of u0
1.

The proof of this proposition is as the proof of Proposition 4.7 of [9], since we have bound
(1.2).

1.3.4 Convergence Properties

We go back to the sequential algorithm (1.9). We rewrite the algorithm as follows: Pick as
initial data u0 = ũ0

1 + ũ0
2 ∈ V1 + V2 and iterate:

(1.16)

u
(n+1,0)
1 = ũn1

u
(n+1,l+1)
1 = argminu1∈V1TrbΓ1

=0
= Fs1(u1 + ũn2 , u

(n+1,l)
1 ) l = 0, ..., L− 1u

(n+1,0)
2 = ũn2

u
(n+1,l+1)
2 = argminu2∈V2TrbΓ2

=0
= Fs2(u

(n+1,L)
1 + un2 , u

(n+1,m)
2 ) m = 0, ...,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũn+1
1 := χ1u

n+1

ũn+1
2 := χ2u

n+1

By using the bound (1.2), we have as in [9] the following proposition (see Proposition 5.4

and Theorem 5.7 of [9]). The numbers of iterations L,M are chosen according to the desired

16



error in the computation of η with procedure 1.14. By error we means the l2-distance between
ul and ul−1 in the subdomain Ω1, and between um and um−1 in the subdomain Ω2 .

Proposition 1.4 The algorithm (1.16) produces a sequence (un) with the following properties:

1. F(u(n)) > F(u(n+1)) for all n ∈ N (unless u(n) = u(n+1))

2. limn→+∞ ‖u(n+1) − u(n)‖2 = 0;

3. the sequence (u(n)) has convergent subsequences.

4. the accumulation points of the sequence (u(n)) are minimizer of F . If F has a unique

minimizer, then the sequence (u(n)) converges to it.

1.4 Numerics

We simulate the super resolution problem. We stress out that in order to perform numerical
scheme we suppose to have the SR image that we want to reconstruct. Clearly in the real cases
one only disposes of the LR frames. We made run the Matlab code on an Intel(R) Xeon(R)
CPU 5120 @ 1.86GHz. Here below the results.

1.4.1 4 frames

• Size of images 512x512. number of sub domains 4

• CPU in the sub domains about 11 sec.

• MAE (Mean Absolute Error) between the original SR-image and the restored image is
9.3712e− 04

• MAE between the blurred image and the restored image is 21.3712e− 04.

One can notice that the error between the restored image and the SR original image is smaller
than the error between the blurred image and the restored image is 8.3712e − 04. It means
that the algorithm performs a correct deblurring.

1.4.2 16 frames

We perform the same experiment but with 16 LR-frames of size 64 × 64. The LR-frames are
obtained as before, by performing 16 shifting by using di�erent motion vectors. The weight λ
is �xed as 0.2. The computation time is about 2 s in the sub domains. Here below the results.

17



Figure 1.7: The SR real image we want to reconstruct.
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Figure 1.8: The blurred image.

Figure 1.9: One of the 4 LR noisy and blurred frames. In the real case these frames are the
only data we have.
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Figure 1.10: The restored SR image
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Figure 1.11: Original image
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Figure 1.12: Blurred image with FTM threshold fC = 2.27
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Figure 1.13: one of the 16 downsampled LR images with r2 = 4.
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Figure 1.14: Restored HR image.
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Chapter 2

Demosaicking-Deblurring-Denoising

We describe here a new algorithm to perform, in the same time, demosaicking deblurring,
denoising. To this purpose we will adapt to our context an ADMM type algorithm. We recall
the relevant features necessary to illustrate the application of such a method to our setting. We
refer the reader to [6] and references therein, for a general dissertation on convex optimization
techniques in image processing and recent developments on this matter.

2.1 ADMM algorithm for constrained minimization problem

In this section we describe the optimization method, we will adapt to our setting. The so called
Alternating Direction Minimization Multipliers method ADMM. This particular optimization
technique is well suited for constrained minimization problem of the following form:

(2.1) min
u,z

F (z) +G(u) subject to Bz +Au = b

where F,G : Rd → R and A and B matrix.
To solve problem (2.1) one considers the augmented Lagrangian and seeks its stationary

points.

(2.2) Lα(z, u, λ) = F (z) +G(u) + 〈λ,Au+Bz − b〉+
α

2
‖Au+Bz − b‖2.

Then one iterate as follows:

(2.3)

{
(zk+1, uk+1) = argminz,u Lα(z, u, λk)

λk+1 = λk + α(Auk+1 +Bzk+1 − b), λ0 = 0

The following result has been proven in [5].

Theorem 2.1 (Eckstein, Bertsekas) Suppose B has full column rank and G(u) + ‖A(u)‖2
is strictly convex. Let λ0 and u0 arbitrary and let α > 0. Suppose we are also given sequences

{µk} and {νk} with
∑∞

k µk <∞ and
∑∞

k νk <∞. Assume that

1. ‖zk+1 − argminz∈RN F (z) + 〈λk, Bz〉+ α
2 ‖Au

k +Bz − b‖2‖ ≤ µk
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2. ‖uk+1 − argminz∈RM G(u) + 〈λk, Au〉+ α
2 ‖Au+Bzk+1 − b‖2‖ ≤ νk

3. λk+1 = λk + α(Auk+1 +Bzk+1 − b).

If there exists a saddle point of Lα(z, u, λ) then (zk, uk, λk) → (z∗, u∗, λ∗) which is such a

saddle points. If no such saddle point exists, then at least one of the sequences {uk} or {λk}
is unbounded.

2.2 Decorrelation

It is well known the RGB components of a color image uc = (uR, uG, uB)T are strongly
statistically correlated. It is possible to show, from an experimental point of view, (Alleyson et
al. [2]), that there exists a basis L,CG/M , CR/B in which the image ud = (uL, uG/M , uR/B)T

is now approximately decorrelated.
This new orthonormal basis L,CG/M , CR/B with decorrelation is given by:

• L = 1√
3
[1, 1, 1]T is the luminance

• CG/M = 1√
2
[−1, 2,−1]T is the green magenta chrominance

• CR/B = 1√
2
[1, 0,−1]T the red blue chrominance

Moreover the change of basis matrices have the following expression:

(2.4) ud =

 uL

uG/M

uR/B

 =

 1
4

1
2

1
4

−1
4

1
2 −1

4
−1

4 0 1
4

  uR

uG

uB

 = T (uc)

and

(2.5) uc =

 uR

uG

uB

 =

 1 −1 −2
1 1 0
1 −10 2

  uL

uG/M

uR/B

 = T−1(ud).

Hereafter uc denotes the image in the canonical basis R,G,B, while ud is the image in the
basis L,CG/M , CR/B.

2.3 Bayer �lter and blur operator

For every (i, j) ∈ Z2 we de�ne the color image uc = (uc(i, j))(i,j)∈Z2 where

uc(i, j) = [uR(i, j), uG(i, j), uB(i, j)]T
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Figure 2.1: Bayer �lter

is the color of the pixel of uc at location (i, j) in the canonical R,G,B base. We de�ne the
following Bayer �lter
(2.6)
uc = [uR(i, j), uG(i, j), uB(i, j)]T → B(uc) = (uc)X(i,j) with X(i, j) ∈ {R,G,B} ∀(i, j),

So that the image (uc)X(i,j) has only one of the components RGB per spatial position.
Concerning the blur operator we assume that it is the same for every components. In

particular we suppose the following form (with abuse of notation):

H =

H 0 0
0 H 0
0 0 H


Where H is a matrix representing standard convolution with some Gaussian kernel.

2.4 The variational model

Let us start by recalling the acquisition camera sequence. We have as usual:

(2.7) uc 7→ Huc 7→ BHuc → BHuc + b = u0.

On the other hand from (2.5) we have uc = T−1(ud). So that from (2.7) we get an ideal
acquisition process for ud

(2.8) ud 7→ T−1(ud) 7→ HT−1(ud) 7→ BHT−1(ud)→ BHT−1(ud) + b = u0.

The idea is then to restore ud by working with the, much more convenient, decorrelation basis
L,CG/M , CR/B. Finally, at once ud is restored, simply set uc = T (ud).

In order to retrieve ud, we have to solve an ill posed inverse problem. So that as usual we
seek for minimizer of an energy given by an L2-discrepancy term plus a regularization penalty.

Now the key point is that, since we are working in the decorrelation basis, it makes to
consider the following minimization problem:

arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖BHT−1(ud)− u0‖22.
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2.5 Application of ADMM method to our problem

In order to apply the ADMM method, we must rewrite the problem

(2.9) arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖BHT−1(ud)− u0‖22,

in the form (2.1), which was

min
u,z

F (z) +G(ud) subject to Bz +Aud = b.

Then we set

(2.10)

z =


w1

w2

w3

v

 =


∇uL
∇uG/M
∇uR/B

BHT−1(ud)− u0

 , B = −I, A =


∇L
∇G/M
∇R/B
BHT−1

 b =

[
0
u0

]

We also need the dual variable

λ =


p1

p2

p3

q

 .
To simplify the notation we write

(2.11) z =

[
w
v

]
=

[
∇ud

BHT−1(ud)− u0

]
A =

[
∇
K

]
b =

[
0
u0

]
an �nally

λ =

[
p
q

]
We can now write down the corresponding augmented lagrangian as:

Lα(z, ud, λ) = ‖w‖1 + µ‖v‖21 + 〈p,∇ud − w〉+ 〈q,Kud − u0 − v〉

+
α

2
‖v −Kud + u0‖2.(2.12)

The ADMM iterations are then given by:

wk+1 = argmin
w
‖w‖1 +

α

2
‖w −∇(ud)

k −D(ud)
k − pk

α
‖22

vk+1 = argmin
w

µ‖v‖1 +
α

2
‖v −K(ud)

k
+ u0 −

qk

α
‖22

(ud)
k+1

= argmin
u

α

2
‖∇ud − wk+1 +

pk

α
‖22 +

α

2
‖Ku− vk+1 − u0 +

qk

α
‖22

pk+1 = pk + α(∇(ud)
k+1 − wk+1)

qk+1 = qk + α(K(ud)
k+1 − u0 − vk+1),
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with p0 = q0 = 0 α > 0.
The standard explicit formulas for wk+1, vk+1 and (ud)

k+1
are:

wk+1 = S 1
α

(∇(ud)
k

+
pk

α
)

vk+1 = S µ
α

(K(ud)
k − u0 +

qk

α

(ud)
k+1

= (−∆ +K∗K)−1
(
∇∗wk+1 +K∗(vk+1 + u0)

)
(2.13)

where S 1
α

(t) is the standard soft thresholding, that is

S 1
α

(t) =

{
t− 1

αsign(t) |t| > 1
α

0 otherwise.

S µ
α
is de�ned in the same way, up to the obvious replacement of 1

α with µ
α . K

∗ denotes the

adjoint matrix of the matrix K = BHT−1 given by K∗ = (T−1)∗H∗B∗. Note that one can
compute all of these adjoint operators. ∆ denotes the usual Laplace's operator.

While, concerning the last iteration of system (2.13), we used a classical conjugate gradient
method.

2.6 Numerics

We test our method on images of big size ( number of pixels 1550 ≤ P ≤ 4000). In order to
have a blurred mosaicked image to test, we follow the following standard procedure:

1 we pick a color image as a reference uc, which is a good approximation of a color image to
without mosaicking e�ect.;

2 we apply in the right order the acquisition operator to get the observed degraded image u0:

u0 = BHuc + b;

3 we formally write uc = T−1ud and we work with the new basis (uL, u
G
M , u

R
B ). So we have

u0 = BHT−1(ud) + b;

4 We apply the ADMM algorithm to restore ud;

5 We set uc = T (ud).

As blur operator we always have considered a standard Gaussian low pass �lter of size h = 11,
with standard deviation ε = 1. In �gures 2.2 2.3,2.4 we restore an image of size 2.200 with a
low level of noise. When the level noise is high, µ cannot be too small otherwise, the algorithm
does not perform a good demosaicking. In this case the parameter µ is chosen in order to have
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Figure 2.2: Original image uc = T−1(ud). Size image 2200x2000

a good balancing between denoising and demosaicking. In �gure 2.5 we show the restoration
results of an image reference detail with di�erent value of the parameter µ. Then in �gures
2.7,2.8 we show the restoration result obtained on the whole image.

We deal with rescaled images in [0, 1]. We made run the Matlab code on an Intel(R)
Xeon(R) CPU 5120 @ 1.86GHz.
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Figure 2.3: Observed mosaicked blurred and noisy image u0 = BHT−1(ud) + b. σ = 0.01.

Figure 2.4: Restored image uc = T (ud). CPU time about 30mn, number of iterations 30
µ = 30
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Detail of original image Observed image convergence of the algorithm

restored image with µ = 0.5 restored image with µ = 5 restored image with µ = 50

Figure 2.5: Top left: crop of the original image. Crop size 256x256. Top center: blurred
mosaicked noisty image. Top right: convergence of the algorithm. Down left: restored image
with a small µ to promote the denoising against the demosaicking. Number of iterations 30.
Down center and down right : restored image with a greater value of µ to promote demosaicking
against the denoising. Number of iterations 30. Cpu time 4mn.
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Figure 2.6: Original image of size 768x512

Figure 2.7: Observed mosaicked blurred and noisy image. σ = 0.5

33



Figure 2.8: Restored image uc = T (ud). CPU time about 20 mn, number of iterations 30
µ = 20
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