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ABSTRACT

We propose a new variational method to isolate points in biological
images. As points are fine structures they are difficult to detect by
derivative operators computed in the noisy image. In this paper we
propose to compute a vector field from the observed intensity so that
its divergence explodes at points. As the image could contains spots
but also noise and curves where the divergence also blows up, we
propose to capture spots by introducing suitable energy whose mini-
mizers are given by the points we want to detect. In order to provide
numerical experiments we approximate this energy by means of a se-
quence of more treatable functionals by a Γ-convergence approach.
Results are shown on synthetic and biological images.

Index Terms— biological images, points detection,
Γ-convergence

1. INTRODUCTION

In biological images, detection of points is an important issue. For
instance in a membrane affected by some virus, a point can represent
an immune cell which biologists wish to count. Another example is
provided by target proteins in subcellular structures like organelles
and vesicles. In all these applications, isolating points from the other
structures like curves could be of vital importance. For more details
on this subject we refer to [18] and the references therein.

In this work we propose a new model for point detection, where
a point is considered as a singularity in the image given in term of
a proper differential operator defined on a vector field. We provide
a new variational formulation for detection of such singularities in
noisy images as biological ones.

2. THE VARIATIONAL METHOD

In the variational model Ω ⊂ R2 is an open set (the image domain),
and I : Ω → R is the initial image. In order to predetect the point
of the image, we use a vector field U0 linked to the initial image I ,
which can be singular on points. Such a vector field can be provided
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by the gradient ∇f of the weak solution f of the classical Dirichlet
problem. (

−∆f = I on Ω

f = 0 on ∂Ω.
(1)

Indeed it is possible to show that in a neighoborood of a singular
point of I the divergence of ∇f is equal to∞. This feature makes
the divergence operator the appropriate one to detect points.

From a practical point of view, working with vector field U0

rather than I allows us to handle with a first order differential op-
erator and permits us to formulate the minimization problem in a
common functional framework.

Unfortunately the singular set of U0 = −∇f could contains
several structures, that we want to remove from the original image
like for instance curves or points generated by some noise. Hence,
we have to clear away all the structures we are not interested in, by
building up, starting from the initial data U0, a new vector field U
whose singularities are given by the points of the image I we want
to isolate. Thus, from one hand we have to force the concentration
set of the divergence measure of U0 to contain only the points we
want to catch, and on the other hand we have to regularize the initial
data U0 outside the points of singularities. To this end, we propose
to minimize an energy involving a competition between a divergence
term and the Hausdorff measure H0, which simply counts the num-
ber of points. More precisely the energy is the following

J(U,P ) =

Z
Ω\P
|divU |2 + λ

Z
Ω

|U − U0|p +H0(P ), (2)

where P denotes the set of points we want to detect and the exponent
p is strictly less than 2. The restriction on p is due to the fact that,
in general, the initial vector field U0 belongs to the space Lp(Ω; R2)
for any p < 2 (see [17]).

Like in the classical Mumford-Shah (see [15] and also [1, 5] for
a general survey on free discontinuity problems) functional for the
detection of contours, the first integral is a regularization term, the
second one is a data term and the last one counts the singularities in
the image.

It is worth noticing that this approach allows to remove curves
in the image which usually is a difficult task in the literature. Indeed
to achieve this goal, one should find a differential operator singular
on nothing else but points. Such an operator exists (see [4]) but its



discrete version recognized a curve in the image as a sequence of a
points (see for instance [2]). On the contrary, our energy, thanks to
presence of the measureH0(P ) which counts the number of points,
strongly penalizes the presence of curve in the image, giving an infi-
nite value for curves.

In order to provide computer examples, we must approximate
the functional (2) by means of a sequence of more convenient func-
tionals from the point of view of the numerical minimization. The
approximation, we suggest in this paper, is based on the so called Γ-
convergence, the notion of variational convergence introduced by De
Giorgi (see [10, 11]). This theory is designed to approximate a vari-
ational problem by a sequence of different variational problems with
more regularity. The most important feature of the Γ-convergence
relies on the fact that it implies the convergence of minimizers of the
approximating functionals to those of the limiting functional. For
a general survey on the Γ-convergence we refer, among others, to
[5, 8].

More in details, the energy we are interested in, is given by (2).
In view of the discretization the main difficulty is represented by the
counting measure H0(P ) which has to be substituted by proper in-
tegral term for the minimization. If we deal with a length measure,
like for instance in the countour detecting problem, such an opera-
tion could be done in a useful way (see [13, 14]). The crucial idea
is then to replace the term H0(P ) of the functional (2) by a more,
variationally speaking, handy, functional involving a smooth domain
whose perimeter is given by the length measureH1. Following some
suggestions from the paper of Braides and March (see [6, 7]) such a
functional is given by:

Gβε(D) =
1

4π

Z
∂D

` 1

βε
+ βεκ

2(x)
´
dH1(x); (3)

where D is a set of discs set containing the points of the set P , κ is
the curvature of its boundary, the constant 1

4π
is a normalization fac-

tor, and βε infinitesimal as ε → 0. Roughly speaking the minimum
of each functional is achieved on the union of balls of small radius,
so that when βε → 0 the functional shrink to the atomic measure
H0(P ). Now we use the Modica-Mortola’s approach (see [14]) to
compute the length measureH1. This measure can be computed us-
ing a regularizing sequence depending on a regular scalar function
w taking values into [0, 1]:

µε(w,∇w)dx =
`
ε|∇w|2 +

V (w)

ε

´
dx, (4)

where V (w) = w2(1 − w)2 is a double well functional. It is
shown in [13, 14] that when ε → 0 the solution wε which mini-
mizes (4) tends to a boolean function taking values in {0, 1}, and
such that the length of the interface between level sets 0 and 1 is
minimal. Then (4) approximate the length measure dH1. So it gives
an approximation of the first term of the integral in (3). The last
step is to approximate the second term of the integral in (3), that
is the curvature term κ. Such an approximation is based on a cele-
brated conjecture due to De Giorgi (see [9]) recently proven in [16].
This argument states that we can replace the term κ by the term

2ε∆w− V
′
(w)
ε

. So that we can formally write the complete approx-

imating functional:

Φε(U,w) : =

Z
Ω

w2|div(U)|2dx+
1

4π

Z
Ω

βε(2ε∆w

− V ′(w)

ε
)2dx

+
1

βε

Z
Ω

µε(w,∇w)dx

+ λ

Z
Ω

|U − U0|pdx, (5)

The first variation of this functional leads to the following gradient
flow system

∂U

∂t
= 2∇(w2divU)− 2λp(

U − U0

|U − U0|2−p
)

∂w

∂t
= −4

∆h

βε
+ βεh

+
2

ε2

1

βε
V

′′
(w)h− 2w|divU |2 (6)

where h is given by the equation

h = 2ε∆w − 1

ε
V ′(w).

From one hand if (Uε, wε) is a minimizing sequence of Φε, then
wε must be very close to the values 1 when ε goes to 0, since the
double well potential is positive except for wε = 0, 1 and w must be
equal to 1 on the ∂Ω. On the other hand, near the points where the
divergence is very big, wε must be close to 0. When ε→ 0, βε goes
to 0 as well, so that the singular set D is given by an union of balls
of a small radius βε. Therefore, while the functions Uε approximate
a minimizer U of the original functional, the level set {wε = 0}
approximate the set P .

3. DETECTION

In our model the image contains an atomic measure. Thus, in order
to find an initial vector field which copies the singularities of the
initial image, we use the gradient of the solution of the Dirichlet
problem (1). In this way we obtain a vector field whose divergence is
singular on a proper set which contains the points we want to detect.
In general this set could contain other structures. For instance if
the initial image is a measure concentrated both on points and on
curves, the divergence of −∇f is singular on points and on curves
at the same time. Besides if there is some noise in the image, it
could be not clear how to differentiate the singular points due to the
noise, from those we want to catch. As a consequence, by solving
the problem (1), we get just a predetection, which has to be refined.
To this purpose we search for a minimizer of the energy Φε(U,w)
via solving equations (6) with initial data U0 given by −∇f . So we
obtain a vector field U whose divergence is relevant only on the set
P and a function w whose zeros give the set P .

4. DISCRETIZATION

The image is an N × N vector. We endowed the space R2N with
the standard scalar product and standard norm. Let I ∈ R2N . Then
the gradient ∇I is an element of the space R2N × R2N given by:
(∇I)i,j = ((∇I)1

i,j , (∇I)2
i,j) where

(∇I)1
i,j =

(
Ii+1,j − Ii,j if i < N

0 if i = N,



(∇I)2
i,j =

(
Ii,j+1 − Ii,j if j < N

0 if j = 0.

The discrete version of the divergence operator is simply defined
as the adjoint operator of the gradient: div = −∇∗. Then we
can define the discrete version of the Laplacian operator as ∆I =
div(∇I).

4.1. Discretization in time

We simply replace ∂U
∂t

and ∂w
∂t

by
Un+1

i,j −U
n
i,j

δt
and

wn+1
i,j −w

n
i,j

δt
re-

spectively. Then we write the system (6) in the form (for simplicity
we omit the dependance on ε)8><>:

Un+1
1 = δtΦU1(Un, wn)

Un+1
2 = δtΦU2(Un, wn)

wn+1 = δtΦw(Un, wn).

We initialize our algorithm withU(0) = ∇f , where f is the solution
of the problem (1). To initialize our algorithm, we need of an initial
guess on w. So we choose w(0) = 1.

5. EXAMPLES

5.1. Parameter settings

Before running our algorithm, all the parameters have to be fixed.
The most important are ε and βε , which govern the set D ap-
proximating points we want to detect. Those parameters are related
by the condition lim

ε→0

ε

βε
= 0. Furthermore, since the mesh grid

size is 1 and βε gives the radius of a ball centered in the singular
point we want to detect, from a discrete point of view the smallest
value we can take is

√
2

2
. Then we use the values 0.2 for ε, 0.7 for

βε. Concerning the parameter λ we mainly used the small value
λ = 0.1, in order to force the algorithm to regularize as much as
possible the initial data U0. Since we deal with small values of ε,
in order to have some stability, we must take a small discretization
time step, Practically we mainly used the value δt = 1 × 10−6.
Concerning the stop criterion we iterate the algorithm until maxn
|Un+1

1 −Un
2 |

|Un
1 |

,
|Un+1

2 −Un
2 |

|Un
2 |

, |w
n+1−wn|
|wn|

o
≤ 0.001. Finally we set

p = 1, 5.

5.2. Results

Our task is to catch the finest structure present in the image: the so
called spots, that is the bright points. After the minimization process
we obtain a function w who takes values close to 0 on the points of
the image and close to 1 otherwise. This makes possible, by fixing a
threshold value α = 0.5, the detection of the spot. Then the points
are simply given by the level-set {wε ≤ 0.5}. We test our algorithm
on synthetic images first. The figure 1 shows how resistant to the
noise our model is. In (a) we display a synthetic image with intensity
1 on five points and 0 otherwise. In (b) we add a significant gaussian
noise to the initial image, the PSNR is 5.5Db. In (c) we show the
function w before fixing the threshold value α. Finally in (d) ,by
choosing α = 0.5, we retrieve the five points of the initial image in
(a). We point out that a simple tresholding cannot be easily applied,
since it would be much more difficult to fix a threshold value starting
from the image, while our method allows to choose the threshold
value in an easier way (see [12] for more details).

(a) Original image (b) Noisy image

(c) the function w (d) the set {w ≤ 0.5}

Fig. 1. Synthetic noisy image PSNR 5.5Db: we test our algorithm on noisy images.
When the parameters ε and βε are small as much as possible the detection is accom-
plished .

In figure 2 we test our algorithm on curves and points at the same
time. The result is that, as desired, our algorithm is capable of elimi-
nating the curve from the initial image. We stress that this goal is not
achieved by classical detecting-points methods (see for instance [2]
on this subject). According to the continuous setting when ε takes
values close to 0 the approximating energy (5) behaves similarly to
the limit energy (2), so that the presence of the curve is penalized in
the minimization process. Then the set {wε ∼= 0} contains nothing
else but points. Finally in figure 3 and 4 we deal with biological im-
ages of spots. Our task is catching the finest structure present in the
image. In figures 3 and 4 the isolated points are detected, while the
branches of the cellule are not.

In every numerical examples, the parameters are all fixed as
specified in the previous section.

(a) Original image

(b) the function w (c) the set {w ≤ 0.5}

Fig. 2. Synthetic image: curve and points are present in the initial image. As expected
our method is capable of removing the curve from the image.



(a) Original image

(b) the function w (c) the set {w ≤ 0.5}

Fig. 3. (a) The original image of biological cell.(b) The function w takes values
close to 0 on points.(c) By fixing a threshold value α we are capable of isolating the
spots from the filament in the image.

(a) Original image

(b) the function w (c) the set {w ≤ 0.5}

Fig. 4. (a) The original image of biological cell with spots.(b) Even in this case
the funcion w takes values close to 0 near the points we want to detect.(c) By fixing a
threshold value α we isolate the spots in the image.

6. CONCLUSION

In this work, a new variational method for spot detection in bio-
logical images has been proposed and tested. We emphasize that,
according to our knolewdge, our method it is the first method which
makes possible isolating the spots from a filament in the observed
image. Moreover it also permits in a noisy image to fix in a noisy
image a threshold value in a simple and direct way.

Finally we believe that a suitable generalization of this method
for the detection of spots and even filaments in 3-D biological images
can be provided. This is a subject of our current investigation
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