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Abstract  :  This  tutorial  intends  to  present  an  introduction  to  non-uniform 
cellular automata (CA). The difference between uniform cellular automata and 
non-uniform ones is that in uniform CA all cells share the same rule, or set of 
rules, in non-uniform CA this is not true, every cell can have a different sets of 
rules  or  even  no  rule  at  all.  We  will  see  here  that  this  single  difference 
increases the power of this kind of CA enabling them to perform computations 
impossible to their pairs in the same class of uniform CA. We will also see 
here  some  models  and  applications  that  show  that  non-uniform  CA  can 
perform  complex  tasks  indeed  being  able  even  to  perform  universal 
computation.  

1. Introduction
This  tutorial  presents  the  basic  concepts  behind  non-uniform cellular 

automata  and  tries  to  show  some  interesting  nuances  about  this  kind  of  cellular 
automata.  Cellular automata (CA) are dynamical systems in which the space and time 
are discrete.  They were created by the mathematician John Louis von Neumann as a 
way to  study the behavior  of  complex systems like models  of  self  replication on 
biological systems [1].  

A cellular automata, consists of a set of cells forming a regular grid, or a 
lattice. Each cell is characterized by a discrete set of integer variables that can have a 
finite number of values. The cell variables change simultaneously at discrete moments 
[2] following a set of rules. The canonical CA, as defined by von Neumann presents 
by definition: 

• Massive parallelism
•  Discrete behavior
•  Decentralized control
•  Local computations
•  Simple cells
•  The same set of rules on the entire grid

The three key characteristics, that make CA a powerful computational 
instrument are their massive parallelism, local computations and simple rules.  

  Fundamentally CA gives us a whole new, simplified and well known 
universe. This universe is far different of our universe that is complex and full of 
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obscure relations. Indeed this new universe can be as simple or as complex as we 
want. We can, for example, input simple rules in parts of this universe and analyze the 
global impact of these rules on the entire universe.   Cellular automata have many 
applications and have been used since as an alternative to differential equations [16] 
to a way to enhance landcover classification [17].  

The main problem in using CA came from the difficulty in use their 
complex behavior to perform useful computations [3].  Depending on the problem it is 
very hard to make a set of cells to work together to solve a problem or to find a global 
solution.

From the parallelism point of view, cellular automata are different from 
regular parallel systems. CA do not split the problem into different processors and 
after that combine the solutions in order to calculate the final solution.  Instead of it 
CA suggest a new approach in which complex behavior arises in a bottom-up manner 
from non-linear, spatially extended, local interactions [4].

On the  next  section  of  this  tutorial  we will  introduce  what  are  non-
uniform  cellular  automata,  after  that  we  will  talk  about  the  dynamicity  of  the 
information on CA. Then we will present some scenarios in which non-uniform CA 
can  be  applied  and  finally,  on  the  last  section,  we  will  present  a  conclusion  to 
summarize the most important points observed during the tutorial. 

2. What is a non-uniform cellular automata
Non-uniform cellular  automata  is  a  special  case  of  cellular  automata 

where not all cells present the same set of rules and these rules can change and evolve 
during the time.   Actually, in some sense, we could say that uniform CA is a special 
case of non-uniform CA, once this is more general.  Normally non-uniform CA still 
maintains the other characteristics of regular cellular automata.  They are still massive 
parallel, discrete, simple and local with respect to the computations. The relaxation on 
the uniformity of the rules is the only difference between non-uniform CA and regular 
CA. However this  difference,  as we will  see,  increases the power of  this  kind of 
cellular automata if compared to regular ones.

Other difference, that is consequence of the non-uniformity, is the size of 
the rules search space. As each cell in non-uniform CA can have different rules the 
rules search space is extremely larger than in regular cellular automata. At first sight 
this seems to be an impediment, but in fact the increased search space size engenders 
new evolutionary paths,  leading  to  high performance  systems  [3].   Moshe  Sipper 
claims  that  the  non-uniformity  of  this  kind  of  cellular  automata  reduces  the 
connectivity  requirements  among  the  cells  enabling  the  decrease  of  the  observed 
neighborhood [3].   This  means  that  even  observing  a  smaller  neighborhood non-
uniform  CA  can  perform  the  same  tasks  uniform  CA  can  do  with  a  higher 
performance.

Non-uniform cellular automata are also capable of universal computation 
as proved by Sipper in [5].  Indeed on this particular paper it is proved that non-
uniform CA are able to do universal computation with a 2-state, 5-neighbor cellular 
automata.   With  this  same  configuration  Codd  in  [7],  proof  to  be  impossible  to 
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perform universal computations in uniform CA.  Just this fact by itself is enough to 
perceive the enormous power of non-uniform cellular automata.

3. Dynamics of Information
Moshe Sipper  presents  in [5]  an interesting discussion of under what 

conditions  we  can  expect  a  complex  dynamics  of  information  to  emerge 
spontaneously and dominate the behavior of a CA. His arguments are based on the 
works of Langton [6] and Codd [7], that in some way also approach this question.

Langton showed in [6] that the rule space in regular CA consists of two 
primary regimes of rules: periodic and chaotic. These two regimes are separated by a 
transition  regime.   Langton  concluded  in  his  work  that  nearly  a  critical  phase 
transition  the  information  processing  can  emerge  spontaneously  and  came  to 
dominate the dynamic of the entire system.

Codd in [7] proofed that uniform cellular automata, with one rule, two 
states and five neighbors cellular space is unable to perform universal computation. 
The  central  point  of  his  argument  is  that  either  every  configuration  yields  an 
unboundable propagation or every configuration yields a bounded propagation. In the 
context of Langton's work bounded propagation correspond to fixed point rules (class 
I)  and  unboundable  propagation  correspond  either  to  periodic  rules  (class  II)  of 
chaotic  ones (class III).  Complex behavior (class IV) cannot  be attained [5].  The 
classification is in accordance with Wolfram's classification [8]. The Figure 1 shows 
some examples of 1D CA to clarify how each class behaves. Being the class IV the 
one more likely to be the behavior of living things. 

Figure  1-  Classes  of  patterns  generated  by  the  evolution  of  cellular  automata  [8].  The  
leftmost is class I, the second class II, followed by a class III and finally the last one is a class  
IV CA 

What Sipper claims at [5] is that small perturbations on the set of rules 
may be enough to cause changes on the observed world.  These small changes could 
be enough to cause a transition from a class II to a class III or to class IV behavior. 
This change can happen independently of other regions of the virtual space. 

The  assumptions  made  by  Sipper  are  based  on  the  experiments 
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performed by Miller  [9], where he tries to emulate the primitive atmosphere of the 
earth which methane, ammonia, water and hydrogen. Miller arranged all this elements 
together in a controlled environment and submitted them to electrical sparks for a 
week. After this period simple amino acids were found in the system. In this way, in a 
simple  and  homogeneous  environment,  that  does  not  support  complex  (class  IV) 
behavior, in some point a spark causes a perturbation and a small number of “cells” 
change their  rule.  The main point here is that  if this can occur on this controlled 
environment why not in cellular automata? 

If this comparison is valid, and at least to us it makes a lot of sense, we 
can use non-uniform cellular automata to create artificial life in a level that goes far 
from the actual artificial life models and standards.  With simple non-uniform CA we 
can evolve complex and complete virtual worlds.  The possibilities are enormous, 
suppose for one instant that we could create these complex worlds. Probably, as the 
development of the rules are non deterministic, no two worlds would be exactly the 
same, so we could at some points verify what could happen if we “collide” some of 
these different worlds, or communities. As these worlds are digital, we could evolve 
them apart and join them in many different moments, verifying their evolving during 
the time. This kind of experiment could help us to understand the diversity of living 
elements  in  the  nature  or  even  how different  communities,  or  modern  organized 
societies, behave when exposed one each other. 

 

4. Studied Models
There  are  a  number  of  models  and  problems studied  under  the  non-

uniform CA point of view. These ones present here are just a small amount of all 
possible models to handle the rules in non-uniform CA. First we will observe how 
non-uniform, one-dimensional,  cellular  automata can be used to  solve the density 
classification problem. After that we will study some models applied to handle the 
changes that occur on the rules space of non-uniform CA. Then we will discuss how 
to handle complex structures such as self-replication structures, and finally, as one 
lest example, we will present the worm experiment. On this experiment we will see 
that higher order behavior can appear based on simple local rules.

4.1.Density classification
Determining the density of the initial configuration of one-dimensional 

cellular automata it is a classic problem. The computational task is to decide if the 
initial CA configuration contains more than 50% of ones or not. If the initial CA 
configuration has more than 50% of ones the entire CA should evolve to have every 
state as 1 or to have all states as 0 otherwise. 

Mitchell et al. point in [10] that this task is non trivial for a small radius 
of CA, being the small radius is in relation to the size of the grid.  The main point of 
this observation is that the density is a global property based on the size of the grid. 
However  with  a  small  cell  size  we  can  just  relay  on  the  local  information  and 
iterations to find this global property.  
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The  best  algorithm  to  solve  this  problem  was  defined  by  Gacs 
Kurdyumov and Levin in [11].  Essentially their strategy (GKL) successively classify 
local densities with the locality range increasing over time. In regions of ambiguity a 
"signal" is propagated either as a checkerboard pattern in space-time or as a vertical 
white-to-black boundary [12].   Mitchell et al. in [12] approach this problem in a 
binary CA with 149 cells and a radius of 3, comparing their evolved solution to GKL. 
On Mitchell's work the best fitness values vary from 0.93 to 0.95, never being above 
0.95.  With the same fitness function GKL rule has a fitness ≈ 0.98 [4]. 

In [3] Sipper compares his work with the one of Mitchell et al. [12]. On 
his work he uses nearly the same parameters Mitchell uses and in addition Sipper also 
do an independent work with a smaller rule radius. In the same line of Mitchell's 
work, Sipper also creates a genetic algorithm to find a good set of rules. However his 
results  are  not  as  good as  he expected.   His  best  fitness is  0.92 when on in  the 
Mitchell's work, with similar parameters and fitness evaluation the fitness vary from 
0.93 to 0.95.  Sipper attributes the low performance of the non-uniform CA to the 
large search space his genetic algorithm has to find good solutions.  Since in this part 
of the work each cell contains one of 128 possible rules (r=3), and there are 149 cells, 
the search space size is (2128) 149 = 219072.  

A second part of Sipper’s paper verifies the behavior of the non-uniform 
CA in the same problem, but now with a smaller radius.  The work evaluates the 
problem with the smallest reasonable radius, r=1.  This means that each cell knows 
only its own value and the values of its closest two neighbor.  With this size radius 
the size of the search space decreases sensible, but it  is still  large, (28)  149  = 21192. 
However the size of the uniform CA search space is not,  the search space to the 
uniform CA with r=1 is (28) = 256 rules.  What Sipper did then was find the rules 
with the best fitness running every rule in 1000 different configurations. The results 
are showed at Figure 2. The highest fitness was 0.83 achieved by the rule 232. Thus 
this is the maximum performance one uniform r=2 cellular automata can reach.  Now 
the question starts to be, can a non-uniform CA do better than this? 
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Figure 2 - Fitness results of all possible uniform, r = 1 CA rules
  

According to the results presented by Sipper the answer is yes.  The best 
fitness with an r=1 CA was 0.93, lower than the 0.98 reached by the GKL algorithm, 
but much higher than the 0.83 achieved by the best non-uniform CA.  Thus it is in the 
same level of those achieved by r = 2 and r = 3 CAs.  This suggests that the non-
uniformity reduces the connectivity requirements [3] and the use of smaller radiuses is 
made possible.

Sipper uses few rules, in deed he classify his work as a quasi-uniform 
CA.  However the main point is that there are more than one rule at the cell space and 
one rule supports the other. Normally the evolved solutions present a dominant rule 
with other few cells with other dominated rules.  The evolved, non-uniform CA puts 
these two kinds of rules together, in a way that one supports the other and they work 
together to reach the final objective.  

 

4.2.Non-uniform automaton model 
 Now  we  will  considerate  two-dimensional  cellular  automata  and 

different ways of evolve their rules space.  In [14] Sipper presents some different CA 
models where the evolution of the cells do not occurs just in the cell value space, but 
it occurs also in the rules space also. 

4.2.1.  Evolution in rules space 
The first model presents a non-uniform CA with nine neighborhood and 

binary states by cell. On this model a cell's rule may be regarded as a genotype whose 
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phenotypic effect is achieved by rule application. A cell's genotype is reproduced if its 
phenotypic  effect  promotes  fitness.  What  the  author  intends  with  this  model  is 
evolving it in the rule space starting from a random gene pool.  The evolution of an 
unsuccessful  cell's  rule  is  accomplished  by  selecting  one  successful  neighbor  at 
random and copying its rule. If there is no successful neighbor then the unsuccessful 
rule remains unchanged.  

 The rules have now to have a criterion to determine their success or not. 
The criteria of success is defined as: 

1. Live - A cell is considered to be successful if it attains a state of one 
(or live). 

2. Agree - A cell is successful if it agrees, this means it is in the same 
state, with at least four of its neighbors.

An alternative, if we have non-binary success criteria, is to copy the most 
successful neighbor. Other factor to be observed is that the copy cannot be perfect, 
generating in this way mutations. In this specific model each cell contains just one 
rule. However, if each cell had a set of rules the imperfection at the copy could be 
done in terms of number of copied rules also.  With this  we could,  in some way, 
simulate a crossover among the rules during the rules space evolution. 

The problem with this model, that is called Live and Agree, is premature 
convergence.  Live and agree admits many local minima, and all of them are equally 
valid, as far what concern to the evolutionary process. Sipper claims that this method 
can find the global minima if it uses a criterion called parity.  The parity of a cell is 
equal to 0 if it has an even number of live neighbors and 1 otherwise. In such criteria 
a cell is successful if it is equal to the parity of its neighbors in the previous time step. 
However no real proof of experiment results are showed to support such claim.

Sipper also studied the behavior of this model when using a non-binary 
success criterion. The model he chose to be the criterion of success was the Iterated 
Prisoner's Dilemma (IPD) discussed by Axelrod in [13]. On this schema each cell 
plays IPD with its neighbors where ones represent cooperation and zeros represent 
defection. In this case a cell copies, with a small probability of mutation, the rule of 
the neighboring cell  with the highest ranking,  or total  payoff.  The total  payoff is 
computed by adding the eight neighbors individual payoffs. This method, like life and 
agree, also admits many local minima and do not have a good performance.  However 
what is interesting to notice about this experiment is that among the winning rules the 
average percentage of cooperation, ones, is 60%. This value is associated the quality 
of forgiveness, named a good quality for the game of life strategies. Indeed this value 
is  near  to  the  TIT-FOR-TAT strategy,  named to  be  best  strategy  for  solving  the 
Iterated Prisoner's Dilemma, where the percentage of ones is 64%. 

4.2.2.  Formation of Complex Structures
The second model introduces a slightly enhancement over the previous 

model, however the author claims that this enhancement is simple enough to not break 
any CA rule.  
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In this model each cell is either vacant, containing no rule, or operational 
consisting of a finite state automaton, having the following characteristics: 

1.  Each  cell  can  access  its  own state  and  the  state  of  its  immediate 
neighbors.

2.  The cell  can change its  own state  and the state of any immediate 
neighbor. If two cells try to change the same common neighbor at the 
same iteration, a criterion to resolve the concurrency must be defined. 
This criterion can be either random or deterministic. 

3. The cell is able to copy its rule onto a neighboring vacant cell.  A 
special case of copy is mobility, where the value, on the previous cell 
is erased. The same previous observation about concurrency is applied 
here.

4. A cell may contain a small number of different rules. However at a 
given  moment  only  one  rule  is  active  and  it  determines  the  cell's 
behavior. This works in the same line of recessive genes, where the 
non-active,  or recessive,  genes are  stored to be used in  the future. 
Non-active rules may also be activated or copied onto a neighboring 
cell.

The main difference between this model, the previous one and regular 
CAs is that this model allows one cell to change the values of its neighbors.  This is 
not a small change, but do not add much more complexity to the model and all actions 
are performed between neighbors. In this way the locality primitive is respected. 

4.3.Self Reproduction 
Using the last model Sipper presents, also in [14], some different ways to 

create self reproduction structures in non-uniform CAs. The first way he presents to 
create self reproduction is based on standard self replication machines where a loop 
structure projects an arm and this starts of the replication loop. 

On this experiment the entire cell space starts clean, no cell contain any 
rule, with exception of just one single loop, a set of five cells that contains the same 
loop rule.   The arm extends itself by copying its rule to neighbor cells.  If a loop finds 
itself  blocked  by  other  loop  it  dies.  Essentially  this  self  replication  loop  works 
copying itself to other cells based on the status of its neighbor cells. 

The second reproduction method, called Reproduction by Copier Cells, 
presents a set of active mobile cells acting over a set  of static passive cells.  This 
method has his roots in how the information flow in protein synthesis. On this process 
active  tRNA structures  translates  passive  mRNA structures  into  amino acid  cells. 
Each tRNA cell matches one specific codon in the mRNA structure and synthesis one 
amino acid. This structure is represented by a fixed structure of ones and zeros and 
many “floating” X, Y and Z elements. These elements float through the space trying 
to  find  a  right  match,  when  this  occurs,  this  floating  structure  creates  the  right 
complement to the static passive structure. 

The last self reproduction structure discussed on the paper is the most 
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complex one and it intends to form and replicate complex organisms.  The cell space 
is  randomly  initialized  with  builder  cells,  represented  by  A,  replicators  cells 
represented by B and two core replicant cells represented by 1. These last cells will 
catalyze the building structure process. 

Both  cells  A  and  B  are  randomly  spread  over  the  space  and  work 
together  to  create  new  and  complex  structures.   The  builder,  A,  when  find  a  1 
structure it attaches another 1 on both sides of the growing structure.   When a B cell 
are attached at one end of the growing structure the construction at that structure end 
stops.   

Now follow Sipper explanation about the replication process observing 
the times showed in the Figure 3.  When a B cell attaches itself to the upper end of a 
structure already possessing one zero a C cell is spawned, which travels down the 
length of the structure to the other end. If that end is as yet uncompleted the C cell 
simply waits for its completion (time 172). The C cell then moves up the structure, 
duplicating its right half which is also moved one cell to the right (time 179). Once 
the C cell reaches the upper end it travels down the structure, spawns a D cell at the 
bottom and begins traveling upward while duplicating and moving the right half (time 
187). Meanwhile the D cell travels upwards between two halves of the structure and 
joins them together (time 190).  This process is then repeated. The C cell travels up 
and down the right side of the structure, creating a duplicate half on its way up. As it 
reaches  the  bottom end  a  D  cell  is  spawned  which  travels  upward  between  two 
disjoint halves and joins them together. Since joining two halves occurs every second 
pass the D cell dies immediately every other pass (e.g. Time 195) [14].
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Figure 3 - Formation and reproduction of complex organisms[14]

Through this  last  model  we can see clearly  that  non-uniform cellular 
automata,  enable  the  creation  of  models  in  which  different  automatons  work 
cooperatively to create new structures.  This cooperative behavior among the cells can 
be very interesting when working in real and complex problems where we can broke 
the problem in small pieces that can be solved by different rules. 

 

4.4.Mobility 
The  last  experiment  we  will  present  in  this  review  is  a  worm-like 

structure that it  is free to move through a grid of non-uniform Cellular Automata. 
Moshe Sipper presents this structure in [15] and the system consists  with worms, 
which are active mobile structures represented by cells in state 1, and blocks, which 
are fixed structures in state 0.  If a worm, that is a mobile rule, reaches a block it 
makes a 90° turn and continues its path.   If we input more than one worm at the space 
at the same time, this simple scenario permits very interesting and complex high order 
behaviors.

When we have more than one worm at the grid the results when one 
worm meet other can be:

•  One of them splits into two
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•  Both worms merge into one

•  A worm looses part of its body

•  Nothing happen to any one 

In all  cases the resulting worms behave exactly  in the same way the 
normal worm behaves.  It is interesting to observe the formation of such high order 
behavior because the rules act locally, not globally.  Basically the programmed rules 
determine how the worm header and tail will behave, no rule was crated to handle 
collision  between  worms.  The  Figure  4 shows  the  worms  experiment  in  some 
different moments.

Figure 4 -  A system consisting of several worms [15]

5. Conclusions
This tutorial  intended to show a little bit about what are non-uniform 

Cellular Automata and what people have been doing with them.  During this paper we 
sow that the only difference between uniform and non-uniform cellular automata is 
that the set of rules on the first one is the same to every cell and on the second no. 
Even though this is the only difference between the two CA forms, we sow that this 
increases the power of this new class of cellular automata. However they maintain 
unchanged the key CA features namely:

• Massive parallelism
• Discrete behavior
• Decentralized control
• Local computations

The main power of non-uniform CA is their cooperative behavior.  Some 
times even if you have a good solution, but not a perfect one, you can use other rules 
to correct errors of your good solution. Interested readers can find deeper discussion 
about this subject in [3].

It is important to notice also that non-uniform and uniform CA, in the 
same category, have different capacities in solve problems. A good example of it is 
that while Langton proved in [6] that 2-state, 5-neighbor uniform CA are unable to 
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perform universal  computation,  in  [5]  Moshe Sipper  shows that  non-uniform CA, 
with this same configuration, can perform universal computation. 

However  even  non-uniform  CA  being  clearly  more  powerful  than 
uniform ones finding the right set of rules to apply on non uniform CA can be a draw 
back. The rules search space in most cases simply increases in a prohibitive way. 
Some times this search space is so huge that can be just impossible to find a good set 
of rules to solve a specific problem. 

In short this new kind of CA has some very good and positive points, but 
has also some drawbacks that difficult its usage.   We believe that non-uniform CA is 
a  field in with there are still  a  lot  of room for  research,  mainly in areas such as 
evolving knowledge and studding society behavior.  We also believe that non-uniform 
cellular automata provide an effective way to explore and study artificial life in its 
more variable forms. 

6. References

[1]  J.von  Neumann,  Theory  of  Self-Reproducing  Automata,  University  of 
Illinois Press, Illinois, 1966. Edited and completed by A. W. Burks

[2] V  K  Vanag,  Study  of  spatially  extended  dynamical  systems  using 
probabilistic cellular automata, Physics – Uspekhi 42 (5) 413-434, 1999

[3] M.  Sipper,  Co-evolving  non-uniform  cellular  automata  to  perform 
computations, Physica D, vol. 92, pp. 193-208, 1996

[4] M. Mitchell, James P. Crutchfield, and Peter T. Hraber, Evolving cellular 
automata to perform computations: Mechanisms and impediments, Physica D, 
75:361-391, 1994

[5] M.  Sipper,  Quasi-uniform  computation-universal  cellular 
automata,ECAL'95: Third European Conference on Artificial Life, F. Morán, 
A. Moreno, J. J. Merelo, and P. Chacón, Eds., Heidelberg, 1995, vol. 929 of 
Lecture Notes in Computer Science, pp. 544-554, Springer-Verlag

[6] Christopher  Langton,  Langton,  et  al  editors,  Artificial  Life  II,  41-91, 
Redwood City, CA, 1992, Addison-Wesley

[7] E. F. Codd, Cellular Automata, Academic Press, New York, 1968

[8] Stephen Wolfram, Cellular Automata as Models  of Complexity,  Nature, 
311, 419-424, October, 1984 

[9] S. L. Miller, A production of amino acids  under possible primitive earth 
conditions. Science, 117:528-529, May 1959

[10] Melanie  Mitchell,  J.  P.  Crutchfield,  and  P.  T.  Hraber,  Dynamics 
computation and the “edge of chaos”: A re-examination. In G. Cowan, D. Pines 
and D. Melzner, editors, Complexity: Metaphors, Models and Reality, pages 
491-513, Addison-Wesley, Reading, MA, 1994

[11] P. Gacs,  G. L.  Kurdyumov and L. A. Levin. One-dimensional uniform 
arrays that wash out finite islands. Problemy Peredachi Informatsii,  14:2-98, 

12



Non-Uniform Cellular Automata a Review

1978

[12] M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of 
chaos: Evolving cellular automata to perform computations. Complex Systems, 
7:89- 130, 1993

[13]  R. Axelrod, The Evolution of Cooperation, New-York: Basic Books, Inc. 
1994

[14] Moshe Sipper, Non-Uniform Cellular Automata: Evolution in Rule Space 
and Formation of Complex Structures, Artificial Life IV, R. A. Brooks and P. 
Maes (eds.), pages 394-399, 1994. copyright The MIT Press 1994.

[15]Moshe Sipper, Studying Artificial Life Using a Simple, General Cellular 
Mode,  Artificial  Life  Journal,  Volume  2,  Number  1,  pages  1-35,  1995. 
Copyright, The MIT Press 1995.

[16] Toffoli T., Cellular automata as an alternative to Differential equations, in 
Modelling Physics, Physica 10D, 1984

[17] Joseph P. Messina, Stephen J. Walsh, Greg Taff, and Gabriela Valdivia, 
The  Application  of  Cellular  Automata  Modeling  for  Enhanced  Land Cover 
Classification  in  the  Ecuadorian  Amazon,  IV  International  Conference  on 
GeoComputation, Fredericksburg, VA, USA, 25-28 July 1999

13


