
Security in networks
Damien Saucez

Inria Sophia Antipolis

UBINET/CSSR 02/01/2013
Evolving Internet II

Contact information

Damien Saucez

Office: Inria, Lagrange L.145

Email: damien.saucez@inria.fr

Phone: +33 4 89.73.24.18

2

Outline of the course
12/14/2012: naming and addressing

12/21/2012: routing and forwarding

01/25/2013: interior gateway protocols

02/01/2013: exterior gateway protocols

02/08/2013: security in networks

02/15/2013: final examination

3

Table of Content

The basics

Securing communications

Operational corner

Research corner

4

The basics

5

Security threats
Intrusion

an attacker gains remote access to some resources that are
normally denied to her

e.g., steal processing power, botnets

Eavesdropping

an attacker collects traffic of a target in order to gain access to
restricted sensitive information

e.g., steal passwords by sniffing wireless traffic

Denial of Service (DoS)

an attacker disrupts a specific targeted service

e.g., block the youtube website

6

The attackers
Hackers

look for challenge, notoriety, and fun

e.g., hackers, script kiddies, students :-D

Spies

look for political/business gains

e.g., intelligence, police, industrial spies

Criminals

look for financial gains, religious/political visibility, or just
to break something

e.g., criminals, terrorists, vandals

7

Definitions
Key

input of cryptographic functions to determine its output

Authentication

proof that the message is coming from the one claiming to be at the origin of the message

Integrity

proof that the message has not been altered since its creation

Non-repudiation of origin

an entity that generated a message cannot deny have generated the message

Encryption

action of encoding of a message such that an eavesdropper can’t read the message but
legitimate destination can

Decryption

action of decoding an encrypted message

Signature

a mathematically constructed proof of authenticity of a message

8

Hall of fame

9

Alice and Bob

are legitimate users, Alice and Bob exchange messages

Chuck

is a malicious user that is not between Alice and Bob

Eve

is a malicious user that can eavesdrop

Trudy

is a malicious user that can perform (wo)man-in-the-middle
attacks

Trent

is a legitimate user that plays the role of a trusted arbitrator

Why is good security
level so hard to obtain?

The security level of a system equals the
security level of the weakest part of the system

e.g., encrypting your HDD to avoid
information leak if the laptop is stollen is
useless if the password is written on a post-
it attached on the laptop

Digital system are complexes

interactions with many components,
distribution, easily bugged...

10

Security is a tradeoff
Compare cost and probability of an attack and cost of securing the system
against this attack

e.g., is that necessary to make data unbreakable for 20 years if they
are outdated after 1 hour?

Explain the security systems and their reasons

if a user does not understand why he must follow a procedure, he will
not follow it

e.g., how many of you already give their password to someone
else?

Never “over-secure” a system

if the system is too hard to use, people will find countermeasure

e.g., too hard to use corporate mails? Then use gmail to send
corporate mails...

11

Procedures!
Protection will never be perfect

Prepare procedures

what to do BEFORE an attack?

what to do to limit the risk (e.g., passwords) of attack
and to be ready if an attack happens (e.g., backup)

what to do DURING an attack?

the attack is on going, how to stop it

what to do AFTER an attack?

the attack succeeded, how to recover from it

12

The techniques

fill me

fill me

fill me

13

Securing
communications

14

Live work

15

Construct a communication mechanism
where Alice and Bob can safely
exchange messages

you have 20 minutes

Live work (contd.)

16

Break your neighbor’s mechanism

you have 5 minutes

Objective
Construct a communication mechanism
where Alice and Bob can exchange
messages such that

only Alice and Bob can generate
messages

nobody else than Alice or Bob can read
messages

nobody can alter messages

17

Steps

fill me

fill me

fill me

18

Hash function

19

Validate that a message has not been altered on its way between Alice and Bob

Hash functions map arbitrary large numbers of variable length to fixed-length numbers

h = H(m), h is called hash or digest

e.g., MD5, SHA-1, SHA-256

Good hash functions for cryptography must be such that

H(m) is not complex to compute

but finding a m2 such that H(m2) = H(m) is complex,

H(m) is deterministic,

H output must be evenly distributed over the output set

Example

SHA-1 maps messages its input space on a 160-bits output

SHA-1(Message to validate) = 5e06ee754bda0d33cf65ec305ffc779404e66029

SHA-1(Message tO validate) = b1c306f8cb792fa14d4d1fdcf6f37d86c2fe6bb9

Is that enough?

20

Alice BobTrudy

Is that enough?

20

Alice Bob
msg

d = H(msg)

Trudy

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2)

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3
d3 = H(msg3)

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

Is that enough?

20

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3) valid as d3 = H(msg3)

Hash function with salt

21

Hash functions are deterministic

Add a salt such that the output of the
hash function is a function of the message
and the salt

h = H(m, s) where s is the salt or key of
the hash function

As long as Trudy does not know the salt,
she can’t forge a valid digest

Hash function with salt
(contd.)

22

Alice BobTrudy
K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)

Trudy
K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy
K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K)

K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3
d3 = H(msg3)

K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

K K

Hash function with salt
(contd.)

22

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3) invalid as d3 ≠ H(msg3, K)

K K

Problem solved?

23

fill me

fill me

fill me

Problem solved?

23

fill me

fill me

fill me

How can Alice and Bob agree on K?

Diffie-Hellman key
exchange

How can Alice and Bob agree on a
secret number and be sure that Eve will
not discover it?

Principle

do not exchange the secret number
but other numbers that are use to
build up the secret

24

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice BobEve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

Eve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

b

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

Eve

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

Eve

⌘

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

25

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

K Ab mod m (ga mod m)b mod p gba mod m (gb mod m)a mod m Ba mod m K

Eve

⌘

⌘

⌘

⌘

⌘⌘⌘⌘⌘⌘

Why can’t Eve guess K if she knows A, B, g, and m?

discrete exponentiation is linear with the size of the
argument

easy to compute x yz mod p

but for some discrete groups, no efficient algorithm is
known to compute discrete logarithm

hard to determine natural z that ensures x yz mod p

Eve knows A, B, g, and m but can’t determine neither a nor
b that are absolutely necessary to compute K

K Ab mod m (ga mod m)b mod p gba mod m
 (gb mod m)a mod m Ba mod m

Diffie-Hellman key
exchange (contd.)

26

⌘

⌘

⌘⌘⌘
⌘ ⌘

Trudy can break Diffie-Hellman

Diffie-Hellman key
exchange (contd.)

27

Alice Bob
a, g, m

A ga mod m
A, g, m

Bt B gtb mod mt

b

K‘ Atb mod mt

K Bta mod m

Trudy

At, gt, mt

K‘ Bat mod mt

B

Bt gbt mod m
bt

K Abt mod m

at, gt, mt

At gat mod mt

⌘

⌘

⌘

⌘
⌘

⌘
⌘
⌘

Diffie-Hellman key
exchange (contd.)

How can we protect Diffie-Hellman from
Trudy?

Principle

Alice and Bob sign the messages
exchanged in Diffie-Hellman (?!)

28

Asymmetric
cryptography

In asymmetric cryptography (aka public-key cryptography), two keys are
used

public key

publicly available to anybody (even attackers)

used to encrypt a message

private key

known only by the legitimate owner of the public key

used to decrypt a message

e.g., RSA, PGP, Diffie-Hellman

Public-key cryptography is 10 to 100 times slower than symmetric-key
cryptography

seldom (never?) used to encrypt communications

29

Eve cannot determine the message

Asymmetric
cryptography (contd.)

30

Alice Bob

m
c = crypt(m, PublicB)

Eve
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

decrypt(c, ???) = ?

Trudy can send a forged message

Asymmetric
cryptography (contd.)

31

Alice Bob

m
c = crypt(m, PublicB)

Trudy
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

c2

c3

m2
c2 = crypt(m2, PublicB)

m3
c3=crypt(m3, PublicB)

decrypt(c3, PrivateB)=m3

Eve can read the message

Asymmetric
cryptography (contd.)

32

Alice Bob

m
s = sign(m, PrivateA)

Eve
PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)

How to build sign and
check?

s = sign(m, k) = crypt(H(m), k)

check(m, s, K) = (H(m)==decrypt(s, K))

where k is the private key of the signer and K
is the public key

Asymmetric cryptography is slow and m can be
large

encrypting m would be too costly

solution: consider the digest of m while signing

33

How to safely obtain Bob’s public key?

Public key
infrastructure

34

Alice BobTrudy
PublicB, PrivateB

How to safely obtain Bob’s public key?

Public key
infrastructure

34

Alice BobTrudy
PublicB, PrivateB

What is your public key?

How to safely obtain Bob’s public key?

Public key
infrastructure

34

Alice BobTrudy
PublicB, PrivateB

What is your public key?

PublicB

How to safely obtain Bob’s public key?

Public key
infrastructure

34

Alice BobTrudy
PublicB, PrivateB

PublicB

What is your public key?

PublicB

Trudy can send a forged key

Public key
infrastructure (contd.)

35

Alice BobTrudy
PublicB, PrivateB

PublicT

What is your public key?

PublicT

PublicT, PrivateT

Alice and Bob trust a third party (e.g., Trent) for authentication

Public key
infrastructure (contd.)

36

Alice TrentBob
PublicT, PrivateT

PublicB

Are you Bob?

S(Yes, PrivB),
S(PubB, PrivT)

PublicT,
PublicB,PrivateB,

S(PubB, PrivT)

PublicT

Practically, Bob sends a certificate (e.g., X.509), not only its public
key and signature

A certificate provides many information to be able to correctly
identify and authenticate its subject (e.g., Bob)

the subject name and organization

the subject public key (and type)

the issuer name and organization

the certificate validity time (valid not before and not after)

the certificate signature and type, signature made by the issuer
of the certificate

...

Public key
infrastructure (contd.)

37

A certificate signed with the private key of the public key indicated into the
certificate is said self-signed

prove nothing except that the issuer knows the private key of the subject

Certificates can be chained, the subject is certified by its issuer, the issuer
itself is certified by its own issuer, and so on until the root of the certification
is reach

when a certificate is not self-signed, it indicates the chain of certificates
used for its authentication

The entity verifying the certificates backtracks the chain of certificate until is
reaches the certificate of a certification authority (CA) he knows

Trusted parties are installed separately (e.g., hardcoded, during OS
updates)

assumption: the trusted party is not compromised

Public key
infrastructure (contd.)

38

Public key
infrastructure (contd.)

39

Certificates are issued once and valid during a given time
period, whatever the number of time it is used

What if the subjects leaves its organization? The private key of
the subject is stolen? The private key of the issuer is stolen?

Keys are selected big enough to not be broken during validity
time

When a certified key is compromised, the certificate is revoked

the issuer maintains the list of revoked certificates

when a certificate is checked for validity, the verifying
client should verify that the certificate is not in the
revoked certificates list

Public key
infrastructure (contd.)

“A public key infrastructure is a set of hardware, software, people,
policies, and procedures needed to create, manage, distribute,
use, store, and revoke digital certificates” [1]

A certificate Cert1 issued by a CA can be used to certify any
certificate Cert2

Cert2 is authenticated if
 check(Cert2, Cert2.signature, Cert2.issuer.public_key) &
 check(Cert1, Cert1.signature, Cert1.issuer.public_key) &
 Cert2 not in Cert2.issuer.revoke_list &
 Cert1 not in Cert1.issuer.revoke_list

where Cert2.issuer is identified with Cert1 and Cert1.issuer
is identified by CA’s certificate

assuming that the verifier knows CA’s certificate

40 [1] http://en.wikipedia.org/wiki/Public-key_infrastructure

Public key
infrastructure (contd.)

41

Public key
infrastructure (contd.)

41

Public key
infrastructure (contd.)

41

Trudy cannot perform her attack anymore

Diffie-Hellman key
exchange (the return)

42

Alice Bob

a, g, m

A ga mod m
sA=sign((A,g,m), PrivateA) A, g, m, sA

B, sB

B gb mod m

check((A,g,m),sA,PublicA)
b

K Ab mod m
sB=sign(B, PrivateB)check(B, sB, PublicB)

K Ba mod m

Trudy
PublicA, PublicB, PrivateBPublicA, PrivateA, PublicB PublicA PublicB

⌘
⌘

⌘

⌘

Problem solved?

43

fill me

fill me

fill me

Problem solved?

43

fill me

fill me

fill me

Replay attacks are still possible!

Trudy can replay a message

Nonce

44

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

remember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is openremember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA)

remember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

remember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

remember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s

remember (m, s)

Trudy can replay a message

Nonce

44

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s
check(m, s, PublicA)
door is open !!

remember (m, s)

Nonce (contd.)
A nonce is a number used only once

Three general methods to create nonces

sequential number

increment after each use

keep it in non-volatile storage in case of reboot

timestamp

current time of the nonce generation

be sure clock is not going backward (e.g., winter time)

random number

low collision probability if the pseudo random number generator is good
and random number is big enough (e.g., more than 128 bits)

Nonce alone is rarely enough to have a good protection

not robust to eavesdropping or man-in-the-middle attack

45

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA)

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, s2

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

46

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s
check((m,n), s, PublicA)
nonce already used: skip

remember (m, n, s)

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

47

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9 “abcd56789”

TCP segment injection attack can be mitigated for short
connections when there is not eavesdropping by

setting the initial sequence number with a good nonce, but
sequence number is short (32 bits)

only allowing reception of segments that fit in the window

keeping small enough window (attackers can try a lot of
sequence numbers on 1Gbps links!)

In case of eavesdropping or long connections, segments should
be authenticated

TCP MD5 option [RFC2385] tags every segment with its MD5
hash (without options and checksum) and a secret shared
between Alice and Bob

Nonce (contd.)

48

Problem solved?

49

fill me

fill me

fill me

Problem solved?

49

fill me

fill me

fill me

DoS attacks are still possible!

Denial of Services
Resources are always limited

e.g., processor, memory, link capacity

The easiest way of leading a DoS is to
overwhelm CPUs, memory, or links of the
target

A more complicated way is to manage an
intrusion and neutralize the target

imagine you gain administrative access to
border router of your network!

50

Danger of state
Establishment and maintenance of session requires
state

often maintained in “tables” with predefined capacity

An attacker can saturate state tables by initiating
multiple sessions

Principle

require attacker to maintain state before maintaining
state yourself

in general it is too costly for an attacker to maintain
state

51

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

52

Alice ChuckBob

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

52

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

52

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received:
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

52

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received:
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

52

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received:
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

When to remove state?

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

53

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Cannot force state at Bob
without creating local state

Danger of complexity
Protection mechanism can be complex and can
require important processing power

An attacker can overwhelm her target CPU by
triggering protection mechanisms

Principle

require attacker to perform more processing
than yourself

in general an attacker does not want to have
to do heavy computation

54

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by Bob
[RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

55

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by Bob
[RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

55

Link overloading
Messages are sent to Bob by traversing links

If an attacker can send packets at a high
enough rate, she can saturate links toward Bob
and make him unavailable

Unfortunately, Bob cannot make anything to
block packet before they reach him

Principle

tweak the network to not suffer too much of
such attacks

56

Example of Distributed Denial of
Service (DDoS) attack

Link overloading
(contd.)

57

Alice Bob

ChuckChuck

Link overloading
(contd.)

A first parade is to filter illicit traffic before
it can harm the target

e.g., firewall, access lists

A set of rules is specified a priori, if the
traffic does not match the rules, it is
discarded

always block everything but what is
acceptable

58

Link overloading
(contd.)

Filtering based on origin

useful to avoid spoofing

e.g., block any packet which source address does not
belong to the customer cone of a BGP neighbor

does not work so well as it depends on every network between
the origin and the target

Filtering based on traffic pattern

analyze the traffic and if it deviates from what is normal, drop it

e.g., drop malformed packets, rate limit a source if it sends
too much SYN packets, ignore mails from well known
SPAM servers, block any flow initiated by the outside if
there is no server in the network

59

Network Intrusion
Detection System (NIDS)

An NIDS aims at discovering non-
legitimate operations

The NIDS analyses the traffic to detect
abnormal patters

Upon anomaly detection, the NIDS
triggers an alert with a report on the
anomaly

NOC follows procedures upon detection

60

Network Intrusion
Detection System (contd.)

Signature based detection

a database of abnormal behavior is maintained to construct a signature
for each attack

if the traffic corresponds to a signature in the database, trigger an alarm

risk of false negative (0-day attack)

e.g., Snort, Bro, antivirus

Outlier detection

the anomaly detector learns what is the normal behavior of the network

went an outlier is detected, an alarm is triggered

risk of false positive and false negative

e.g., cluster analysis, time series analysis, spectral analysis

61

Attacks are often to random destinations or with
random sources

backscatter traffic to a sink-hole that can
receive a lot of traffic attack without impacting
the network

Link overloading
(contd.)

62

Alice Bob

ChuckChuck

Use the sink-hole to attract bizarre
packets

Link overloading
(contd.)

63

Alice Bob

ChuckChuck

IBGP:
prefix: 0.0.0.0/0
nexthop: sink-hole
NO_EXPORT

Use the sink-hole to protect the target

Link overloading
(contd.)

64

Alice Bob

ChuckChuck

IBGP:
prefix: Bob/32
nexthop: sink-hole
NO_EXPORT

Problem solved?

65

fill me

fill me

fill me

Problem solved?

65

fill me

fill me

fill me

Relay attacks are still possible!

Relay attack
In a relay attack, Chuck does not contact Alice directly but
goes via Bob

If the traffic from Bob to Alice is bigger than the traffic from
Chuck to Bob, the attack is called amplification attack

As for DoS, hard to protect correctly against relay attacks

use filters (e.g., deactivate ICMP)

authentication of the source

but correct spoofing protection that doesn’t open a
relay attack door is very hard to deploy in practice as
it requires messages in both directions between
parties

66

What did we miss?

67

What did we miss?

To terminate the session!

with the same care as the opening of
the session

this is often neglected

67

Perfect Forward
Secrecy

With perfect forward secrecy (PFS),
Eve cannot decrypt messages sent
between Alice and Bob

even if she captures every message

even if she breaks into Alice and Bob
after the communication to steal their
secrets (e.g., private keys)

68

Perfect Forward
Secrecy (contd.)

PFS is provided using ephemeral keys

the ephemeral key is generated and used
only during the session

the session key is not stored after the
communication

the session key is independent of stored
information (e.g., good PRNG)

for long sessions, change the session key
regularly

69

Perfect Forward
Secrecy (contd.)

1. Initiate the communication between Alice and Bob

authenticity proven with public/private key pairs

2. Alice and Bob agree on a secret K

use Diffie-Hellman

authenticate DH messages with public/private key pairs

3. Encrypt/Decrypt messages with symmetric cryptography using K as
the key

no need to sign as it is encrypted

be sure a nonce is used to avoid replay

4. If session is too long, back to 2.

5. Close the session correctly and be sure K is not stored anywhere

70

Operational corner

71

Timing cryptanalysis

72

Public-key cryptography is complex

processing time depends on data

An attacker that can frequently measure the time necessary to
decrypt (or sign) some data, she can determine the private key
that is used

the public key is obtained by analyzing crypt (or check) but
not really useful as it is already public!

Countermeasures

randomize operation time is not effective

ensure that any operation using the private key takes a
fixed amount of time

Research corner

73

How would you protect BGP
against prefix hijacking?

74

fill me

fill me

fill me

Homework

75

due date 02/15/2013

Exam

Everything is part of the exam, even
homework, operational corners, and
research corners

No book, no computer, no (smart)phone

76

