
Security and privacy in
network

Damien Saucez	

Inria Sophia Antipolis 

March 2014

Université d’Avignon et des Pays de Vaucluse, CERI - Securité dans les réseaux - Mars 2014	

Peer-to-Peer Applications
From BitTorrent to Privacy

Arnaud Legout

INRIA, Sophia Antipolis, France
Projet Planète

Email: arnaud.legout@inria.fr

This work is licensed under the Creative Commons
BY-NC-SA License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/

version 2
January 2012

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Contact information

Damien Saucez

Email: damien.saucez@inria.fr

Mobile: +32 497 19.34.83

Phone: +33 4 89.73.24.18

���2

Table of Content
1. Reminders

2. Threats by the example

3. The basics of security

4. Securing communications

5. Overlay networking

6. Privacy

���3

References
O. Bonaventure. Computer Networking: Principles, Protocols and
Practice. http://inl.info.ucl.ac.be/CNP3.

slides inspired from this book

J. Kurose and K. Ross. Computer Networking: A Top-Down Approach,
Addison-Wesley, 6th Edition.

L. Peterson and B. Davie. 
Computer Networks: A Systems Approach.  
Morgan Kaufmann Publishers, 4th Edition.

A. Tanenbaum, D. Wetherall, Computer Networks, Prentice Hall, 4th
Edition

A. Legout, Peer-to-Peer Applications From BitTorrent to Privacy, Inria

slides inspired from this course

���4

Reminders

���5

Generalities

���6

Network
Network:

set of nodes (e.g., hosts, routers) exchanging information
and interconnected with links

Communication rules in a network are specified by a set of
protocols (e.g., IEEE 802.3, IP, OSPF, BGP)

Example of networks:

Telephone System

Mobile network

Television, radio

Internet, LAN

���7

Bus

!

!

Tree  

!

Full-Mesh

Star

!

!

Ring

Network topologies

���8

Transmission modes
Unicast (Point-to-Point)

one sender

one receiver

example: telephone

the variant where the receiver is taken in a set
of possible receivers is called anycast

anycast helps scalability 
 

���9

S D

C

BA

Transmission modes
(cont.)

Multicast (Point-to-Multipoint)

one sender

a group of receivers

every member of the group receives the same
information

example: videoconference

when the information is sent to every node, the
term broadcast is used (e.g., Terrestrial
television)

���10

S D

C

BA

Digital networking
communications modes

Circuit switching

before transmitting information, a dedicated circuit
is established from the source to the destination
nodes

the information is transmitted through its dedicated
circuit that guarantees the bandwidth during the
whole communication

each intermediate node knows how to forward
information received on circuits crossing itself

example: 19th century telephone system

���11

Circuit switching
example

���12

A

B

C

D

Circuit Send to

Red NW NE

Green NW NE

Blue SW SE

Circuit Send to

Red NW E

Green NW S

Circuit Send to

Red W SE

Blue SW SE

Circuit Send to

Red NW NE

Green SW SE

Blue NW NE

Circuit Send to

Green N E

Blue NW NE

Circuit Send to

Green W NE

R1

R2 R3

R4 R5

R6

Digital networking
communications modes (cont.)

Packet switching

data is divided in packets of information containing

a piece of data

the address of the source node

the address of the destination node

packets are transmitted on the network independently of
each others

each intermediate node knows how to forward information
to each destination

example: IP, Internet

���13

Packet switching
example

���14

A

B

C

D
Destination Send to

A NW

B SW

C NE

D NE

Destination Send to

A NW

B NW

C E

D E

Destination Send to

A W

B W

C NE

D NE

Destination Send to

A SW

B SW

C E

D S

Destination Send to

A W

B W

C SE

D SE

Destination Send to

A NW

B SW

C NE

D SE

Layered model

���15

Network systems are complex

dividing the functionality helps
reasoning on them

Divide network functionalities into layers

Layer i provides services to layer i+1

Layer i relies on services provided by
layer i-1

Layers

���16

Application

Transport

Network

Datalink

Physical

Physical transmission medium (e.g., UTP)

Exchange of useful information (Service Data Unit) between
applications relying on the transport layer hiding the network
complexity (e.g., HTTP)

Provide a service to (reliably) exchange data between hosts
with segments (e.g., TCP, UDP)

Provide a service to exchange packets of information between
hosts that can be arbitrarily distant (e.g., IP)

Provide a service to exchange structured group of bits called
frames (e.g., Ethernet)

Transmit bits between two physically connected devices (e.g.,
Manchester)

Physical

Layer of networking
devices

���17

Application

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Datalink

Physical

Application

Transport

Network

Datalink

Physical

Router HostHost Bridge

bits bits bits

frames frames

packetspackets

segments

SDU

frames

bits

Repeater

Middleboxes

���18

The original TCP/IP architecture is only
composed of hosts and routers

Modern networks contain devices that

process (e.g., proxies)

analyze (e.g., firewall)

modify (e.g., NAT)

Middleboxes can work at any layer or even
be cross layer

[HNR+11] Honda et al., Is it Still Possible to Extend TCP?	

[SHC+12] Sherry et al. 2012. Making middleboxes someone else's problem: network processing as a cloud service

Middleboxes are
everywhere

In enterprise networks [SHC+12]

!

!

!

!

In ISP networks [HRN+11]

very likely that your packet will be touched by a middlebox
before reaching its destination

Middleboxes limit deployment of new protocols in the Internet

Middleboxes can be used against user interests

���19

Naming and
addressing

���20

Name and addresses
in the Internet

���21

DNS Names identify hosts

IP addresses uniquely identify host interfaces
nslookup example.com  
Server: 138.96.0.10 
Address: 138.96.0.10#53 
 
Non-authoritative answer:  
Name: example.com  
Address: 192.0.43.10

Ethernet address identifies network adapters in a collision domain
arp -na  
? (138.96.192.3) at 0:50:56:88:0:0 on en1 ifscope [ethernet] 
? (138.96.192.250) at 0:1e:4a:e0:9e:0 on en1 ifscope [ethernet] 
? (138.96.193.164) at 0:23:df:aa:cc:4c on en1 ifscope
[ethernet]  
...

Names and addresses are hierarchically organized

Hierarchical naming/
addressing

Objectives: ensure uniqueness of names/addresses
and provide naming/addressing scalability

Flat: probe all the other naming/addressing
authorities before choosing a name/address

doesn’t scale

not robust to network partition

Hierarchy: carve up set of possible names/address
(i.e., the name/address space) into mutually
exclusive portions

���22

Addressing in Ethernet

���23

Objective: determine the origin and destination of
a frame within a collision domain

Every Ethernet network adapter is assigned a
unique datalink layer address encoded on 48 bits

Every frame is transmitted to all network
adapters of the collision domain

but only the network adapter with the address
corresponding to the destination address of the
frame accepts it

Addressing in IP
Objective: determine the origin and destination of a packet in the
Internet

Every host interface has its own IP address

routers have multiple interfaces, each with its own IP address

the IP address determines the topological position of the interface

Current version of IP is version 4 (IPv4)

addresses are encoded on 32 bits, fixed length

4 billions addresses were a lot... in 1981, but today it becomes too
short for 1 billion hosts [ISC]

IP version 6 (IPv6) starts to be deployed

addresses are encoded on 128 bits, fixed length*

���24 [ISC] http://www.isc.org/solutions/survey

IP address structure
Addresses are separated in two parts

network number: identifies the network the address
belongs to

local address: identifies the interface of the host in the
network

all bits = 0: network address

all bits = 1: broadcast address

Addresses are aggregated according to the network number

routing and packet forwarding are based on the network
number only, the local address is ignored

���25

Classless InterDomain
Routing (CIDR)

No predetermined separation position between network number
and local address with CIDR

number of bits allocated for the network number may vary
from 0 to 32 bits

the address contains no information about the separation
position

Routers determine the network number by using longest-
prefix matching

Notation a.b.c.d/n

a.b.c.d is the address

n is the number of bits assigned to the network number

���26

CIDR (cont.)
An address matches a route if both share the same
prefix

0.0.0.0/0 is the default route matched by every
addresses

With CIDR, an address can match several routes

192.0.2.1 matches 128.0.0.0/1, but also 192.0.2.0/24
or 0.0.0.0/0

Longest prefix matching is used to determine the route
that has the longest prefix in common with the address

Typically implemented with a trie

���27

Longest prefix
matching with a trie
Routes are inserted in a trie, route prefixes being node keys

The key of a node is a prefix of the key of all of its children,
recursively;

siblings cannot be prefixes

The binary tree is descended, starting from the root,
following the children with the key that is a prefix of the
address to match

The descend ends when no children has a key prefixing the
address to match

the route corresponding to the node where the descent
stopped it the best matching route

���28

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11000000 00000000 00000010 00000001	

(192.0.2.1)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)

11000000 00000000 00000010 00000001	

(192.0.2.1)  

 
 

!
Best match 192.0.2.0/24

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11011111 00000000 00000000 00000001	

(223.0.0.1)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11011111 00000000 00000000 00000001	

(223.0.0.1)

11011111 00000000 00000000 00000001	

(223.0.0.1)

Longest prefix matching
with a trie (examples)

���29

* 
(0.0.0.0/0)

00001010	

(10.0.0.0/8)

11000000 00000000 00000010	

(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	

(138.96.200.0/22)

11011111 00000000 00000000 00000001	

(223.0.0.1)

11011111 00000000 00000000 00000001	

(223.0.0.1)

11011111 00000000 00000000 00000001	

(223.0.0.1)  

Best match 128.0.0.0/1

IP to Ethernet Address
To put an IP packet over an Ethernet
frame, its IP addresses must be resolved
into Ethernet addresses

Protocol used:

Address Resolution Protocol (ARP) in
IPv4

Neighbor Discovery Protocol (NDP) in
IPv6

���30

ARP
ARP is used to get datalink layer address of a machine on the local subnet

Broadcast an ARP request frame on the local subnet for the IP address to resolve

destination address: FF:FF:FF:FF:FF:FF (broadcast)

source address: Ethernet address of the network adapter that issued the ARP request

The host (or a proxy) that owns the address replies with an ARP response frame

destination address: Ethernet address of the requester’s network adapter

source address: Ethernet address of the address’s owner’s (or proxy) network adapter

Every network device is required to listen for ARP requests and replies on its network adapters

Optimizations

replies are stored in an ARP cache to avoid that every single packet results in ARP request/
response

cached for a limited duration as host can change their IP address

ARP request message contains the IP address of the origin of the frame

destination (or any hosts in the local subnet) can learn the IP/Ethernet mapping for free

���31

ARP example

���32

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

ARP example

���32

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

ARP example

���32

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

ARP example

���32

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

I am 192.0.2.3

ARP example

���32

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.3
Ethernet: c

IP: 192.0.2.4
Ethernet: d

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3? (I am 192.0.2.2)

I am 192.0.2.3

Ethernet source: b Ethernet destination:c IP source: 192.0.2.2 IP destination: 192.0.2.3

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP: 203.0.113.1
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

ARP example (router)

���33

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 203.0.113.2
Ethernet: e

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

Ethernet source: d Ethernet destination:e IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24

Dynamic address
configuration

���34

Allow a set of hosts to share a pool of IP address

Two approaches

stateless auto-configuration

no infrastructure necessary

Dynamic Host Configuration Protocol (DHCP)

hosts query a DHCP server to obtain their configuration

Advantages

less address wastage: a host can use the address of another
hosts when it is not connected

improves flexibility and reduces the risk of configuration error as
no manual operation is necessary

Stateless auto-
configuration

When a host connects to the network:

1. The host choses an address randomly in 169.254/16 (not globally
routable)

2. Sends an ARP request for the chosen address

3. If an ARP reply is received (another host already uses the address

restart from point 1

4. Otherwise, the address the address is not used by another host and
the host can use it safely

Auto-configuration is used only for communications within the same
network

In IPv6, hosts can auto-configure their globally routable addresses
and discover network services (e.g., routers, DNS...)

���35

Dynamic Host Configuration
Protocol (DHCP)

When a host connects to the network, it broadcasts a DHCP discovery
datagram

Any DHCP server that receives such a message replies with a DHCP
offer datagram that contains an offer of IP address

The host picks one offer and broadcasts a DHCP request message to
announce the offers it selected

The selected DHCP server assigns the address to the host and sends
it back a DHCP acknowledgment that confirms the lease of the
address and give additional parameters such as the lease time, the IP
address of the default gateway, or the IP address of the DNS servers

when the lease time is elapsed, the address is released and made
available for other hosts

The other DHCP servers withdraw their offers

���36

Naming
Objective: provide a mean for human to easily identify (and
remember) hosts

Hosts receive textual names easy to remember but long and of
variable size (e.g., goo.gl, www.example.org,
3.14159265358979323846264338327950288419716939937510582
0974944592.com...)

wastes space to carry them in packet headers

hard to parse

Address are shorter and easy to process by hosts

Indirection

multiple names may point to the same address

upon address change, only the resolution table has to be updated

���37

Simplifies distributed naming/addressing

level i deals only with level i+1

Global uniqueness is guaranteed

level i ensures uniqueness at level i+1

Scales arbitrarily

level i+1 does  
not influence 
level i-1

Hierarchical naming

���38

Highest authority

Doe Kenedy Deere

John Jane Fitzgerald John

9R Series

Level 0

Level 1

Level 2

Level 3John

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.frResponse: ezp.inria.fr = 193.51.193.149

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: ezp.inria.fr

Iterative resolution

���39

.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

Query: ezp.inria.fr

ezp.inria.fr 
193.51.193.149

www.example.com
192.0.2.1

www.example.com
192.0.2.50

Internet

resolver

Response: ezp.inria.fr, ask fr.
@{192.5.4.2,194.0.9.1,193.176.144.6,

194.146.106.46,194.0.36.1}

Query: ezp.inria.fr
Response: ezp.inria.fr, ask inria.fr.

@{193.51.208.13,192.93.0.4,129.88.30.1,
192.93.2.78}

Query: ezp.inria.fr

Response: ezp.inria.fr = 193.51.193.149

The resolver learns the hierarchy

responses can be cached to avoid
querying twice the same server

Query: test.inria.fr

Query: ezp.inria.fr

Transport

���40

Transport of data
between hosts

Transport layer provides an end-to-end
communication service

applications just deal with stream of
bytes

Most popular protocols:

UDP: connection-less, non reliable

TCP: connection-full, reliable

���41

TCP connection
establishment

���42

A B

TCP connection
establishment

���42

A B
LISTEN

TCP connection
establishment

���42

A B
SYN, sequence number=123

LISTEN

TCP connection
establishment

���42

A B
SYN, sequence number=123

LISTEN

SYN-SENT SYN-RECEIVED

TCP connection
establishment

���42

A B
SYN, sequence number=123

LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

SYN-RECEIVED

TCP connection
establishment

���42

A B
SYN, sequence number=123

LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

ACK, acknowledgment number=790

SYN-RECEIVED

TCP connection
establishment

���42

A B
SYN, sequence number=123

LISTEN

SYN-SENT

SYN+ACK, sequence number=789, 
acknowledgment number=124

ACK, acknowledgment number=790

SYN-RECEIVED

ESTABLISHEDESTABLISHED

TCP data transfer

���43

A B

sent 1000 to 1499
sequence number=1000

ACK, ackn
owledgment number=1500sent 1500 to 1999

sequence number=1500

sent 2000 to 2499
sequence number=2000

ACK, ackn
owledgment number=2000

ACK, ackn
owledgment number=2500

window size = 1500B

sent 2500 to …
sequence number=2500

waiting to send the rest

ready to receive data
sequenced between
1000 and 2499

ready to receive data
sequenced between
1500 to 2999

ready to receive data
sequenced between
2500 to 3999

ready to receive data
sequenced between
2000 to 3499

…

TCP connection
termination

���44

A B

TCP connection
termination

���44

A B
ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567 ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN-WAIT-2

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568 CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSED

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

TCP connection
termination

���44

A B
FIN, sequence number = 567

FIN-WAIT-1
ACK, acknowledgment number=568

ACK, acknowledgment number=988

CLOSE-WAIT

CLOSEDCLOSED

FIN, sequence number = 987

FIN-WAIT-2

LAST-ACK

ESTABLISHED ESTABLISHED

TIME-WAIT

Threats by the
example

���45

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is f

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is f

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

who-has 192.0.2.2? (I am 192.0.2.1)

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 192.0.2.2? (I am 192.0.2.1)

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

ARP poisoning

���46

IP: 192.0.2.5
Ethernet: a

IP: 192.0.2.1
Ethernet: f

IP: 192.0.2.2
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 192.0.2.2? (I am 192.0.2.1)

Ethernet source: b Ethernet destination:a IP source: 192.0.2.2 IP destination: 203.0.113.2

I am 192.0.2.2

0.0.0.0/0 via 192.0.2.1
192.0.2.1 is a

Why does it work?

���47

Why does it work?

Conceptual vulnerability

using non-requested information as
ground truth is dangerous

using non-authenticated information is
dangerous

���47

DNS cache poisoning

���48

resolver 192.0.2.1

DNS cache poisoning

���48

Query: rnd.example.org

resolver 192.0.2.1

DNS cache poisoning

���48

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

example.org. @{192.0.2.1}

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

example.org. @{192.0.2.1}

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

Query: bank.example.org

DNS cache poisoning

���48

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x01

Query: rnd.example.org

resolver 192.0.2.1

Query: rnd.example.org, ID:
0x02

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0x02

…

Response: rnd.example.org, ask
example.org. @{192.0.2.1}: ID: 0xff

example.org. @{192.0.2.1}

Response: rnd.example.org, ask
example.org. @{203.0.113.2}: ID: 0x02

Query: bank.example.org

Query: bank.example.org

Why does it work?

���49

Why does it work?
Birthday paradox

probability that n elements uniformly picked
from the finite set T is

!

!

!

Relying solely on transaction ID is dangerous

particularly when IDs are small (16 bits in DNS)

���49

YouTube Hijacking

BBC Breaking news: A router problem made YouTube
inaccessible for many

RIPE NIS: “On Sunday, 24 February 2008, Pakistan
Telecom (AS17557) started an unauthorised
announcement of the prefix 208.65.153.0/24. One of
Pakistan Telecom's upstream providers, PCCW Global
(AS3491) forwarded this announcement to the rest of
the Internet, which resulted in the hijacking of YouTube
traffic on a global scale”

���50

http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW
Global), are seen prepended by another 17557. The longer AS path means that more
routers prefer the announcement originated by YouTube.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

YouTube Hijacking
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement.
Routers around the world receive the announcement, and YouTube traffic is redirected to
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom)
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW
Global), are seen prepended by another 17557. The longer AS path means that more
routers prefer the announcement originated by YouTube.

Sunday, 24 February 2008, 21:01 (UTC): AS3491 (PCCW Global) withdraws all
prefixes originated by AS17557 (Pakistan Telecom), thus stopping the hijack of
208.65.153.0/24. Note that AS17557 was not completely disconnected by AS3491.
Prefixes originated by other Pakistani ASs were still announced by AS17557 through
AS3491. ���51

http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study

Why does it work?

���52

Why does it work?

���52

Any AS can claim to be the originator of a
prefix (i.e., she hijacks the prefix)

To protect against that, only the import
filters can be used

rely on databases that are not so
accurate

A not secure global routing system is a
major threat against freedom

TCP session hijacking

���53

Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www”

ACK, ackn
owledgment number=1024

window size = 1500B

ACK, acknowledgment number=7599

TCP session hijacking

���53

Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www”

ACK, ackn
owledgment number=1024

window size = 1500B

sequence number=1024,
data=“rm -rf /”

ACK, acknowledgment number=7599
sequence number=7600, data=“”

ACK, ackn
owledgment number=1096

Why does it work?

���54

Why does it work?

If the attacker can

guess the initial sequence number

guess actions from the sender

then easy to guess a sequence number
that will be accepted by the receiver

���54

The basics of security

���55

Security threats
Intrusion

an attacker gains remote access to some resources that are
normally denied to her

e.g., steal processing power, botnets

Eavesdropping

an attacker collects traffic of a target in order to gain access to
restricted sensitive information

e.g., steal passwords by sniffing wireless traffic

Denial of Service (DoS)

an attacker disrupts a specific targeted service

e.g., block the youtube website

���56

The attackers
Hackers

look for challenge, notoriety, and fun

e.g., hackers, script kiddies, students :-D

Spies

look for political/business gains

e.g., intelligence, police, industrial spies

Criminals

look for financial gains, religious/political visibility, or just
to break something

e.g., criminals, terrorists, vandals

���57

Definitions
Key

input of cryptographic functions to determine its output

Authentication

proof that the message is coming from the one claiming to be at the origin of the message

Integrity

proof that the message has not been altered since its creation

Non-repudiation of origin

an entity that generated a message cannot deny have generated the message

Encryption

action of encoding of a message such that an eavesdropper can’t read the message but legitimate
destination can

Decryption

action of decoding an encrypted message

Signature

a mathematically constructed proof of authenticity of a message

���58

Hall of fame

���59

Alice and Bob

are legitimate users, Alice and Bob exchange messages

Chuck

is a malicious user that is not between Alice and Bob

Eve

is a malicious user that can eavesdrop

Trudy

is a malicious user that can perform (wo)man-in-the-middle
attacks

Trent

is a legitimate user that plays the role of a trusted arbitrator

Why is good security
level so hard to obtain?

The security level of a system equals the
security level of the weakest part of the system

e.g., encrypting your HDD to avoid
information leak if the laptop is stollen is
useless if the password is written on a post-
it attached on the laptop

Digital system are complexes

interactions with many components,
distribution, easily bugged...

���60

Security is a tradeoff
Compare cost and probability of an attack and cost of securing the system
against this attack

e.g., is that necessary to make data unbreakable for 20 years if they are
outdated after 1 hour?

Explain the security systems and their reasons

if a user does not understand why he must follow a procedure, he will
not follow it

e.g., how many of you already give their password to someone else?

Never “over-secure” a system

if the system is too hard to use, people will find countermeasure

e.g., too hard to use corporate mails? Then use gmail to send
corporate mails...

���61

Security is a tradeoff
(contd.)

Protection system

lifetime = 10 years

cost = 10,000 EUR

Attack

yearly probability = 10%

cost of restoring the system = 1,000 EUR

Do I invest?

���62

Procedures!
Protection will never be perfect

Prepare procedures

what to do BEFORE an attack?

what to do to limit the risk (e.g., passwords) of attack
and to be ready if an attack happens (e.g., backup)

what to do DURING an attack?

the attack is on going, how to stop it

what to do AFTER an attack?

the attack succeeded, how to recover from it

���63

Securing
communications

���64

Objective
Construct a communication mechanism
where Alice and Bob can exchange
messages such that

only Alice and Bob can generate
messages

nobody else than Alice or Bob can read
messages

nobody can alter messages

���65

Steps

fill me

fill me

fill me

���66

Hash function

���67

Validate that a message has not been altered on its way between Alice and Bob

Hash functions map arbitrary large numbers of variable length to fixed-length numbers

h = H(m), h is called hash or digest

e.g., MD5, SHA-1, SHA-256

Good hash functions for cryptography must be such that

H(m) is not complex to compute

but finding a m2 such that H(m2) = H(m) is complex,

H(m) is deterministic,

H output must be evenly distributed over the output set

Example

SHA-1 maps messages its input space on a 160-bits output

SHA-1(Message to validate) = 5e06ee754bda0d33cf65ec305ffc779404e66029

SHA-1(Message tO validate) = b1c306f8cb792fa14d4d1fdcf6f37d86c2fe6bb9

Is that enough?

���68

Alice BobTrudy

Is that enough?

���68

Alice Bob
msg

d = H(msg)

Trudy

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2)

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3
d3 = H(msg3)

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

Is that enough?

���68

Alice Bob
msg

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2
d2 = H(msg2) msg2, d2

msg3, d3
msg3

d3 = H(msg3) valid as d3 = H(msg3)

Hash function with salt

���69

Hash functions are deterministic

Add a salt such that the output of the hash
function is a function of the message and
the salt

h = H(m, K) where s is the salt or key of
the hash function

As long as Trudy does not know the salt,
she can’t forge a valid digest

Hash function with salt
(contd.)

���70

Alice BobTrudy
K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)

Trudy
K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy
K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K)

K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3
d3 = H(msg3)

K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3)

K K

Hash function with salt
(contd.)

���70

Alice Bob
msg

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3

d3 = H(msg3) invalid as d3 ≠ H(msg3, K)

K K

Problem solved?

���71

fill me

fill me

fill me

Problem solved?

���71

fill me

fill me

fill me

How can Alice and Bob agree on K?

Diffie-Hellman key
exchange

How can Alice and Bob agree on a
secret number and be sure that Eve will
not discover it?

Principle

do not exchange the secret number
but other numbers that are use to
build up the secret

���72

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice BobEve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

Eve

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

b

Eve

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

Eve

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod m

Eve

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

Eve

⌘

⌘

⌘

⌘

Working on finite group and positive integers

Diffie-Hellman key
exchange (contd.)

���73

Alice Bob

a, g, m

A ga mod m
A, g, m

B

B gb mod m

b

K Ab mod mK Ba mod m

K Ab mod m (ga mod m)b mod m gba mod m (gb mod m)a mod m Ba mod m K

Eve

⌘

⌘

⌘

⌘

⌘⌘⌘⌘⌘⌘

Why can’t Eve guess K if she knows A, B, g, and m?

discrete exponentiation is linear with the size of the
argument

easy to compute x y
z
 mod p

but for some discrete groups, no efficient algorithm is known
to compute discrete logarithm

hard to determine natural z that ensures x y
z
 mod p

Eve knows A, B, g, and m but can’t determine neither a nor b
that are absolutely necessary to compute K

K A
b
 mod m (g

a
 mod m)

b
 mod p g

ba
 mod m 

 (g
b
 mod m)

a
mod m B

a
 mod m

Diffie-Hellman key
exchange (contd.)

���74

⌘

⌘

⌘⌘⌘
⌘ ⌘

Trudy can break Diffie-Hellman

Diffie-Hellman key
exchange (contd.)

���75

Alice Bob
a, g, m

A ga mod m
A, g, m

Bt B gtb mod mt

b

K‘ Atb mod mt

K Bta mod m

Trudy

At, gt, mt

K‘ Bat mod mt

B

Bt gbt mod m
bt

K Abt mod m

at, gt, mt

At gat mod mt

⌘

⌘

⌘

⌘
⌘

⌘
⌘
⌘

Diffie-Hellman key
exchange (contd.)

How can we protect Diffie-Hellman from
Trudy?

Principle

Alice and Bob sign the messages
exchanged in Diffie-Hellman (?!)

���76

Asymmetric
cryptography

In asymmetric cryptography (aka public-key cryptography), two keys are
used

public key

publicly available to anybody (even attackers)

used to encrypt a message

private key

known only by the legitimate owner of the public key

used to decrypt a message

e.g., RSA, PGP, Diffie-Hellman

Public-key cryptography is 10 to 100 times slower than symmetric-key
cryptography

seldom (never?) used to encrypt communications

���77

Eve cannot determine the message

Asymmetric
cryptography (contd.)

���78

Alice Bob

m
c = crypt(m, PublicB)

Eve
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

decrypt(c, ???) = ?

Trudy can send a forged message

Asymmetric
cryptography (contd.)

���79

Alice Bob

m
c = crypt(m, PublicB)

Trudy
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

c2

c3

m2
c2 = crypt(m2, PublicB)

m3
c3=crypt(m3, PublicB)

decrypt(c3, PrivateB)=m3

Eve can read the message

Asymmetric
cryptography (contd.)

���80

Alice Bob

m
s = sign(m, PrivateA)

Eve
PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)

How to build sign and
check?

s = sign(H(m), k) = crypt(H(m), k)

check(m, s, K) = (H(m)==decrypt(s, K))

where k is the private key of the signer and K
is the public key

Asymmetric cryptography is slow and m can be
large

encrypting m would be too costly

solution: consider the digest of m while signing

���81

How to safely obtain Bob’s public key?

Public key
infrastructure

���82

Alice BobTrudy
PublicB, PrivateB

How to safely obtain Bob’s public key?

Public key
infrastructure

���82

Alice BobTrudy
PublicB, PrivateB

What is your public key?

How to safely obtain Bob’s public key?

Public key
infrastructure

���82

Alice BobTrudy
PublicB, PrivateB

What is your public key?

PublicB

How to safely obtain Bob’s public key?

Public key
infrastructure

���82

Alice BobTrudy
PublicB, PrivateB

PublicB

What is your public key?

PublicB

Trudy can send a forged key

Public key
infrastructure (contd.)

���83

Alice BobTrudy
PublicB, PrivateB

PublicT

What is your public key?

PublicT

PublicT, PrivateT

Alice and Bob trust a third party (e.g., Trent) for authentication

Public key
infrastructure (contd.)

���84

Alice TrentBob
PublicT, PrivateT

PublicB

Are you Bob?

S(Yes, PrivB), 
S(PubB, PrivT)

PublicT, 
PublicB,PrivateB, 

S(PubB, PrivT)

PublicT

Practically, Bob sends a certificate (e.g., X.509), not only its public
key and signature

A certificate provides many information to be able to correctly identify
and authenticate its subject (e.g., Bob)

the subject name and organization

the subject public key (and type)

the issuer name and organization

the certificate validity time (valid not before and not after)

the certificate signature and type, signature made by the issuer of
the certificate

...

Public key
infrastructure (contd.)

���85

A certificate signed with the private key of the public key indicated into the
certificate is said self-signed

prove nothing except that the issuer knows the private key of the subject

Certificates can be chained, the subject is certified by its issuer, the issuer
itself is certified by its own issuer, and so on until the root of the certification
is reach

when a certificate is not self-signed, it indicates the chain of certificates
used for its authentication

The entity verifying the certificates backtracks the chain of certificate until is
reaches the certificate of a certification authority (CA) he knows

Trusted parties are installed separately (e.g., hardcoded, during OS
updates)

assumption: the trusted party is not compromised

Public key
infrastructure (contd.)

���86

Public key
infrastructure (contd.)

���87

Certificates are issued once and valid during a given time
period, whatever the number of time it is used

What if the subjects leaves its organization? The private key of
the subject is stolen? The private key of the issuer is stolen?

Keys are selected big enough to not be broken during validity
time

When a certified key is compromised, the certificate is revoked

the issuer maintains the list of revoked certificates

when a certificate is checked for validity, the verifying
client should verify that the certificate is not in the
revoked certificates list

Public key
infrastructure (contd.)

“A public key infrastructure is a set of hardware, software, people,
policies, and procedures needed to create, manage, distribute,
use, store, and revoke digital certificates” [1]

A certificate Cert1 issued by a CA can be used to certify any
certificate Cert2

Cert2 is authenticated if 
 check(Cert2, Cert2.signature, Cert2.issuer.public_key) & 
 check(Cert1, Cert1.signature, Cert1.issuer.public_key) & 
 Cert2 not in Cert2.issuer.revoke_list & 
 Cert1 not in Cert1.issuer.revoke_list

where Cert2.issuer is identified with Cert1 and Cert1.issuer is
identified by CA’s certificate

assuming that the verifier knows CA’s certificate

���88 [1] http://en.wikipedia.org/wiki/Public-key_infrastructure

Public key
infrastructure (contd.)

���89

Public key
infrastructure (contd.)

���89

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Public key
infrastructure (contd.)

���90

Trudy cannot perform her attack anymore

Diffie-Hellman key
exchange (the return)

���91

Alice Bob

a, g, m

A ga mod m
sA=sign((A,g,m), PrivateA) A, g, m, sA

B, sB

B gb mod m

check((A,g,m),sA,PublicA)
b

K Ab mod m
sB=sign(B, PrivateB)check(B, sB, PublicB)

K Ba mod m

Trudy
PublicA, PublicB, PrivateBPublicA, PrivateA, PublicB PublicA PublicB

⌘
⌘

⌘

⌘

Problem solved?

���92

fill me

fill me

fill me

Problem solved?

���92

fill me

fill me

fill me

Replay attacks are still possible!

Trudy can replay a message

Nonce

���93

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s

remember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is openremember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA)

remember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

remember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

remember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s

remember (m, s)

Trudy can replay a message

Nonce

���93

Alice BobTrudy

m = “open door”
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)
door is open

m2 = “close door”
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA)
door is closed

m, s
check(m, s, PublicA)
door is open !!

remember (m, s)

Nonce (contd.)
A nonce is a number used only once

Three general methods to create nonces

sequential number

increment after each use

keep it in non-volatile storage in case of reboot

timestamp

current time of the nonce generation

be sure clock is not going backward (e.g., winter time)

random number

low collision probability if the pseudo random number generator is good and
random number is big enough (e.g., more than 128 bits)

Nonce alone is rarely enough to have a good protection

not robust to eavesdropping or man-in-the-middle attack

���94

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy
PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA)

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s

remember (m, n, s)

Nonce (contd.)
Each message is make unique thanks to the nonce

���95

Alice BobTrudy

m
n = nonce

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA)
nonces = {n}

m2
n2 = nonce

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA)
nonces = {n, n2}

m, n, s
check((m,n), s, PublicA)
nonce already used: skip

remember (m, n, s)

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd” m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9

TCP sequence number does not protect against
segment injection attacks in TCP

Nonce (contd.)

���96

Alice ChuckBob
m = “abcd”

m2 = “ef”

m, seq=x

mc = “123456789”
mc, seq=x

“abcd”

“abcd56789”

ack = x+4

ack = x+9

m2, seq=x+4

“abcd56789”

ack = x+9 “abcd56789”

TCP segment injection attack can be mitigated for short
connections when there is not eavesdropping by

setting the initial sequence number with a good nonce, but
sequence number is short (32 bits)

only allowing reception of segments that fit in the window

keeping small enough window (attackers can try a lot of
sequence numbers on 1Gbps links!)

In case of eavesdropping or long connections, segments should be
authenticated

TCP MD5 option [RFC2385] tags every segment with its MD5
hash (without options and checksum) and a secret shared
between Alice and Bob

Nonce (contd.)

���97

Problem solved?

���98

fill me

fill me

fill me

Problem solved?

���98

fill me

fill me

fill me

DoS attacks are still possible!

Denial of Services
Resources are always limited

e.g., processor, memory, link capacity

The easiest way of leading a DoS is to
overwhelm CPUs, memory, or links of the target

A more complicated way is to manage an
intrusion and neutralize the target

imagine you gain administrative access to
border router of your network!

���99

Danger of state
Establishment and maintenance of session requires
state

often maintained in “tables” with predefined capacity

An attacker can saturate state tables by initiating
multiple sessions

Principle

require attacker to maintain state before maintaining
state yourself

in general it is too costly for an attacker to maintain
state

���100

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

���101

Alice ChuckBob

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

���101

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

���101

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

���101

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

TCP relied on a state machine started upon reception of
a SYN packet

Danger of state
(contd.)

���101

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seqA=x)

SYN.received: 
{src=IPA:portA,

dst=IPB:portB,
seqA=x,
seqB=y}

SYN+ack,
seqB=y

When to remove state?

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Always create state at the end of session establishment
(e.g., TCP SYN cookie)

Danger of state
(contd.)

���102

Alice ChuckBob
(src=IPA:portA,
dst=IPB:portB,
SYN,
seq=x)

No state created
y=H(IPA, PortA, secret)SYN+ack,

seqB=y

ACK(seq=x+1,ack=y+1)

check ack= 1 + H(IPA, PortA, secret)
create state

Cannot force state at Bob
without creating local state

Danger of complexity
Protection mechanism can be complex and can
require important processing power

An attacker can overwhelm her target CPU by
triggering protection mechanisms

Principle

require attacker to perform more processing
than yourself

in general an attacker does not want to have
to do heavy computation

���103

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by
Bob [RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

���104

Danger of complexity
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker
to succeed some challenges to get access. This technique is usually called challenge-response

time challenges

when an attack is suspected, force the attacker to wait or slow down but the DoS
protection can lead to a DoS

e.g., rate limiting

mathematical challenges

ask the initiator to solve a mathematical challenge that is hard to compute but easy to
check, this might negatively impact legitimate clients

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N
is a nonce and K sets the complexity of the puzzle, both parameters are decided by
Bob [RFC5201]

human processing challenge

some services are reserved for users and don’t want to be accessed by bots

ask Alice to succeed a challenge that is simple for a human but hard for a computer

e.g., CAPTCHA

���104

Link overloading
Messages are sent to Bob by traversing links

If an attacker can send packets at a high
enough rate, she can saturate links toward Bob
and make him unavailable

Unfortunately, Bob cannot make anything to
block packet before they reach him

Principle

tweak the network to not suffer too much of
such attacks

���105

Example of Distributed Denial of
Service (DDoS) attack

Link overloading
(contd.)

���106

Alice Bob

ChuckChuck

Link overloading
(contd.)

A first parade is to filter illicit traffic before
it can harm the target

e.g., firewall, access lists

A set of rules is specified a priori, if the
traffic does not match the rules, it is
discarded

always block everything but what is
acceptable

���107

Link overloading
(contd.)

Filtering based on origin

useful to avoid spoofing

e.g., block any packet which source address does not belong
to the customer cone of a BGP neighbor

does not work so well as it depends on every network between
the origin and the target

Filtering based on traffic pattern

analyze the traffic and if it deviates from what is normal, drop it

e.g., drop malformed packets, rate limit a source if it sends
too much SYN packets, ignore mails from well known SPAM
servers, block any flow initiated by the outside if there is no
server in the network

���108

Network Intrusion
Detection System (NIDS)

An NIDS aims at discovering non-
legitimate operations

The NIDS analyses the traffic to detect
abnormal patters

Upon anomaly detection, the NIDS
triggers an alert with a report on the
anomaly

NOC follows procedures upon detection

���109

Network Intrusion
Detection System (contd.)

Signature based detection

a database of abnormal behavior is maintained to construct a signature
for each attack

if the traffic corresponds to a signature in the database, trigger an alarm

risk of false negative (0-day attack)

e.g., Snort, Bro, antivirus

Outlier detection

the anomaly detector learns what is the normal behavior of the network

went an outlier is detected, an alarm is triggered

risk of false positive and false negative

e.g., cluster analysis, time series analysis, spectral analysis

���110

Attacks are often to random destinations or with
random sources

backscatter traffic to a sink-hole that can
receive a lot of traffic attack without impacting
the network

Link overloading
(contd.)

���111

Alice Bob

ChuckChuck

Use the sink-hole to attract bizarre
packets

Link overloading
(contd.)

���112

Alice Bob

ChuckChuck

IBGP:
prefix: 0.0.0.0/0
nexthop: sink-hole
NO_EXPORT

Use the sink-hole to protect the target

Link overloading
(contd.)

���113

Alice Bob

ChuckChuck

IBGP:
prefix: Bob/32
nexthop: sink-hole
NO_EXPORT

Problem solved?

���114

fill me

fill me

fill me

Problem solved?

���114

fill me

fill me

fill me

Relay attacks are still possible!

Relay attack
In a relay attack, Chuck does not contact Alice directly but
goes via Bob

If the traffic from Bob to Alice is bigger than the traffic from
Chuck to Bob, the attack is called amplification attack

As for DoS, hard to protect correctly against relay attacks

use filters (e.g., deactivate ICMP)

authentication of the source

but correct spoofing protection that doesn’t open a
relay attack door is very hard to deploy in practice as it
requires messages in both directions between parties

���115

What did we miss?

���116

What did we miss?

To terminate the session!

with the same care as the opening of
the session

this is often neglected

���116

Perfect Forward
Secrecy

With perfect forward secrecy (PFS),
Eve cannot decrypt messages sent
between Alice and Bob

even if she captures every message

even if she breaks into Alice and Bob
after the communication to steal their
secrets (e.g., private keys)

���117

Perfect Forward
Secrecy (contd.)

PFS is provided using ephemeral keys

the ephemeral key is generated and used
only during the session

the session key is not stored after the
communication

the session key is independent of stored
information (e.g., good PRNG)

for long sessions, change the session key
regularly

���118

Perfect Forward
Secrecy (contd.)

1. Initiate the communication between Alice and Bob

authenticity proven with public/private key pairs

2. Alice and Bob agree on a secret K

use Diffie-Hellman

authenticate DH messages with public/private key pairs

3. Encrypt/Decrypt messages with symmetric cryptography using K as
the key

no need to sign as it is encrypted

be sure a nonce is used to avoid replay

4. If session is too long, back to 2.

5. Close the session correctly and be sure K is not stored anywhere

���119

Overlay networking

���120

Overlay network

Constructed on top of another network,
called the underlay

Nodes in the overlay appear 
to be connected 
independently of the overlay

���121

Definitions
Peer

A node involved in forming the overlay (can
be a computer, an end-user, an
application…)

Leecher

A peer that is both client and server

Seed

A peer that is only server

���122

Definitions (contd.)
Peer-to-peer (P2P) application

No general definition

Specific to an application

Every peer is client and server

Peers form an overlay network

In general, we define P2P application as
overlay network formed by end-users

���123

P2P
P2P applications capitalize on any
resource from anybody

CPU

Bandwidth

Storage

In this course, we focus on file sharing
(mostly BitTorrent)

���124

P2P is still alive

���125

https://www.sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf, 02/2014

P2P is still alive

���125

https://www.sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf, 02/2014

Why to study P2P
When designed properly, P2P-based
file sharing applications can be very
efficient and fast to distribute contents

e.g., Twiter uses Murder to update
their servers since 2010

https://blog.twitter.com/2010/
murder-fast-datacenter-code-
deploys-using-bittorrent

���126

Before Murder

���127

credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent

With Murder

���128

credit: https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent

Content replication

���129

Definitions
Service capacity

Number of peers that can serve a content

= 1 in client-server, constant with time

Flash crowd of n

Simultaneous request of n peers (e.g., soccer match, iOS
update…)

Piece/chunk/block

Element of a partition of the content

Each piece can be independently retrieved

The union of pieces forms the content

���130

Interest of P2P to
replicate contents

Service capacity grows up exponentially with
time

Average download time for a flash crowd n
is then in log(n)

Average download time decreases in 
 when the number of pieces increases

if we ignore the overhead 

���131

1

of pieces

Content transfer
model

Simple deterministic model

Each peer serves only one peer at a time

The unit of transfer is the content

n-1 peers want the content, with n=2k

T is the time to complete an upload

T=s/b, s content size, b upload capacity

Peer selection strategy with Binary tree

global knowledge

���132

Capacity C of the
service

���133

t=0

Capacity C of the
service

���133

t=0

t=T

Capacity C of the
service

���133

t=0

t=T

t=2T

Capacity C of the
service

���133

t=0

t=T

t=2T

t=3T

Capacity C of the
service

t=0 => C = 20 peers

t=T => C = 21 peers

t=2*T => C = 22 peers

…

t=i*T => C = 2i peers

➡ C = 2t/T peers

���133

t=0

t=T

t=2T

t=3T

Finish time
seed only at time t = 0

20 peers finish at t = T

21 peers finish at t=2T

…

2k-1 peers finish at t=k*T

➡ content transferred to all
peers at t = k*T = T * log2(n) 
vs n*T in client-server

���134

t=0

t=T

t=2T

t=3T

Can we speed up
transfers?

���135

Piece transfer model
Same as before but the transfer unit is the
piece instead of the content

a content is divided into m equal size
pieces

m > k

Piece downloaded in T/m

➡content transferred to all peers at t = T * 1/m * log2(n) + T 
vs T * log2(n) without piece transfer vs n*T in client-server

���136

Parallel downloads
Download from several peers in parallel

Strategy

request one piece from every server with the
content

request another piece from the server as
soon as the requested piece has been
obtained

performance is optimal when servers are
always busy delivering a piece of data

���137

Parallel downloads
(contd.)

���138

P1 P2P

Parallel downloads
(contd.)

���138

P1 P2P

2
1

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1
3

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

3

3

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

3

3

4

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

5

3

3

4

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

5

3

3

4

4

Parallel downloads
(contd.)

���138

P1 P2P

2

2
1

1

5

3

3

4

4

Peers are not always fully utilised!

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

1

1

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

1

2
1

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

1
2

2
1

3

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

1
2

2
1

4
3

3

Pipelining

Keep enough requests pending

Send a new request before the
end of the transmission of the
piece being downloaded

need to roughly estimate the
RTT

���139

P1P

1
2

2
1

4
3

3
4

Termination idle time
In case of M servers, and P remaining pieces,

when P < M, M - P serving peers are idle

End-game mode

when P < M, request pending blocks to all
idle servers

speed of the fastest serving peers

some pieces are downloaded several
times

���140

Discussion
Previous models have idealised view of the system

perfect peer selection (peers always select an available
peer)

perfect piece selection (peers always select an available
piece)

no dynamics (peers do not enter or leave the network)

no selfish behaviour (peers always answer at their maximal
capacity)

a free rider is a peer that downloads without contributing

but to scale, each peer in a P2P system must act as a
client and a server!

���141

Peer selection
Ideal, the peer selection algorithm should

always find a peer to upload from

prevent free riders

converge to the best upload-download
match

peer selection should be based on
capacity only (i.e., independent of pieces
available)

���142

Choke algorithm
The peer selection of BitTorrent

Different algorithm in leecher and seed states

Peers are selected in the peer set (i.e., a subset of all peers)

Choke status

A chokes B if A decides to NOT upload to B

Interested status

A is interested in B if B has at least one piece A does not
have

All decision are performed locally

���143

Choke algorithm:
leecher state

Every 10 seconds:

the peer list is sorted by download rate

the 3 fastest and interested peers are unchoked

Every 30 seconds:

one interested peer selected at random is
unchoked (optimistic unchoke)

Maximum 4 interested unchoked peers at the
same time

���144

Choke algorithm: seed
state

Favor upload mode:

same as in leecher state but ordered by upload
speed

Round Robin mode:

Order peers in the list by their unchoked time,
every 10 seconds

for two consecutive periods, unchoke the first
3 peers and a forth at random

for the third period, unchoke the first 4 peers

���145

Choke algorithm
discussion

Leecher state is robust to free riders

must contribute to get good service

Seed state is not robust to free riders

favors peers that download the fastest

Tend to select the fastest peers, that it
automatically detects

���146

Piece selection
Random piece selection

each peers selects at random a piece to download

poor entropy

hard to get the last pieces

Global rarest first

select the globally rarest piece to download

piece replication is maximised

requires global knowledge

���147

Piece selection
(contd.)

Local rarest first

select the rarest piece to download within
the peer set

when peer selection is performed before
piece selection, the piece is selected
according to the availability on the selected
peers

good entropy when the set is large and
random enough

���148

Network coding

Encode pieces such that if

k is the number of original pieces

and n is the number of encoded
pieces,

any k among the k+n pieces are
enough to reconstruct the content

���149

Network coding
(contd.)

Content

Encode C as

!

Any linearly independent encodings  
can be combined to recover C

���150

Ei(Ai) =
X

ai,j2Ai

ai,j · xj

C = [x1 . . . xm]

Ei(Ai)

Network coding
(contd.)

No need for piece selection as any set of
linearly independent encoded pieces can
be used to recover the content

entropy is nearly optimal

Encoding computation is heavy

Integrity and security is easily broken as a
single piece corruption propagates to the
whole content

���151

BitTorrent
Get a .torrent file

describes the torrent (the unit of data)

content length in bytes

file name

piece length (256/512/1024/2048 KB)

all pieces signatures (SHA-1)

tracker address

creation date, commets…

torrents are independent (no link with the previous and current torrents)

Get a random peer set from a tracker

Retrieve the data

���152

Pieces and blocks
Contents are decomposed in pieces

Pieces are split in blocks of 16 KB to
allow pipelining

5 pending requests

���153

Piece 1 Piece 2 Piece i
m-1

Piece m-1 Piece m

Block 1 Block 2 Block k-1 Block k

Torrent download
(phase 1)

The peer sends

torrent info hash

its peer ID

the port it listens on

the number of peers it expects in the list
(default=50)

statistics

���154

Torrent download
(phase 2)

The tracker returns

periodic statistics interval

randomised list of peers for the torrent

<peer id, peer IP, peer port>

statistics

���155

Torrent download
(phase 3)

The peer connects to a subset of the peer list (40
outgoing sessions)

The peer set (neighbour set) is limited to 80
connections in total

Results in a graph with good properties for local
rarest first

dense well connected random graph

low diameter

robust to churn (i.e., entering and leaving peers)

���156

Tracker
Peers periodically send statistics to the tracker (every 30
minutes)

Peers request for new peers when peer list < 20

Peers informs the tracker when they leave

Tracker identify NATed peers and maintin te peer list up-
to-date

To start a torrent

create a .torrent file and upload it to a discovery site

start a P2P client using the torrent file and the content
to seed

���157

Piece selection
Strict priority

always request all the blocks of a piece before asking for other
pieces

if no block available, start downloading other pieces, but come
back to the pending blocks as soon as they are available

Random first piece

to avoid spending time waiting to be unchoked and downloading
hardly reachable piece, selects the first 4 pieces of a download
at random

Endgame mode

when all blocks have been requested, request all pending
blocks to all peers

���158

���159

���159

Cool, I am anonymous with P2P!

���159

Cool, I am anonymous with P2P!Are you sure?

Privacy

���160

Sharing secrets

Context

n student work on a top-secret project

They cannot trust each other

The project is in a digital safe

To open the digital safe, at least k out
of the n students must be present

���161

(k,n) threshold
scheme

D = [x1, …, xn] is a data composed of n
pieces

When at least k pieces xi of D are
known

D can be computed

otherwise D remains undetermined

���162

(k,n) threshold
scheme

D = [x1, …, xn] is a data composed of n
pieces

When at least k pieces xi of D are
known

D can be computed

otherwise D remains undetermined

���162

A polynomial of degree k-1 is uniquely identified with k points

Shamir’s (k,n)
Threshold Scheme
Let D be our secret (an integer), decomposed in n
pieces

Let p be a prime number p > max(D, n)

Generate k-1 random number ai

!

Define the polynomial of degree k-1  
 

Note that g(0) = D

���163

8i 2 [1; k � 1]|ai 2 [0; p[

g(x) = D + a1 · x1 + · · ·+ ak�1 · xk�1

Shamir’s (k,n) Threshold
Scheme (contd.)

Generate n fragments of the secret
D1 = g(1) mod p, D2 = g(2) mod p, … Dn = g(n) mod p

Distribute (xi, Di)

Recompute D from k fragments (xj,Dj)  
among n using Lagrange polynomial
interpolation

���164

g(0) =

kX

i=1

Di

0

@
kY

j=1,j 6=i

�xj

xi � xj

1

A

D ⌘ g(0) mod p

Example k=3, n=5
p = 997

Make 5 groups

group 1: (1, 547)

group 2: (2, 629)

group 3: (3, 394)

group 4: (4, 839)

group 5: (5, 967)

���165

Example k=3, n=5
p = 997

Make 5 groups

group 1: (1, 547)

group 2: (2, 629)

group 3: (3, 394)

group 4: (4, 839)

group 5: (5, 967)

���165

Collaborate with 2 other groups to compute the secret D

Example k=3, n =5
(contd.)

!

Group 1, 3, 4

���166

Example for (k=3,n=5)

�We give to each user a fragment among
� (1,547), (2,629), (3,394), (4,839), (5,967)

�Assume users with fragments 1,3,4 want to
reconstruct the secret
� They compute g(0)
𝑔 0 = 547 −3

1 − 3
−4
1 − 4 + 394 −1

3 − 1
−4
3 − 4 + 839 −1

4 − 1
−3
4 − 3

𝑔 0 = 547 ∗ 2 − 394 ∗ 2 + 839 = 1145
𝑔 0 𝑚𝑜𝑑 997 = 148

Arnaud Legout © 2006-2012
371

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Example for (k=3,n=5)

�The secret is D=148
�Let’s take

� p=997 (prime), a1=59 (random), a2=340(random)
� g(x)=148 + 59x + 340x2

�We compute 5 fragments
� D1 = g(1) mod 997= 547
� D2 = g(2) mod 997 = 1626 mod 997 = 629
� D3 = g(3) mod 997 = 3385 mod 997 = 394
� D4 = g(4) mod 997 = 5824 mod 997 = 839
� D5 = g(5) mod 997 = 8943 mod 997 = 967

Arnaud Legout © 2006-2012
370

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Example k=3, n =5
(contd.)

To compute it, we took D = 148, p = 997
a prime number, and the polynomial 
 

Such that

���167

Example for (k=3,n=5)

�The secret is D=148
�Let’s take

� p=997 (prime), a1=59 (random), a2=340(random)
� g(x)=148 + 59x + 340x2

�We compute 5 fragments
� D1 = g(1) mod 997= 547
� D2 = g(2) mod 997 = 1626 mod 997 = 629
� D3 = g(3) mod 997 = 3385 mod 997 = 394
� D4 = g(4) mod 997 = 5824 mod 997 = 839
� D5 = g(5) mod 997 = 8943 mod 997 = 967

Arnaud Legout © 2006-2012
370

ce
l-0

05
44

13
2,

 v
er

si
on

 2
 -

6
Ja

n
20

12

Shamir’s (k,n) Threshold
Scheme (contd.)

The size of each fragment does not exceeds the size of
the secret

as long as p is chosen of the same order as the
secret

Possible to generate new fragments at any time,
without altering the others

Possible to construct hierarchies by attributing more or
less fragments

the boss has k fragments, the subaltern has k/2, …

No assumption as apposed to cryptographic functions

���168

Anonymity
Alice wants to send a message to Bob

Communications are unsecured

Nobody can know who is the sender
(not even Bob)

Nobody can know who is the receiver

Nobody else Bob can retrieve the
message

���169

Mix
Objectives of a mix

Hide correspondences between
incoming and outgoing messages

Not possible to map a source and an
outgoing message (apart for the mix)

No possible to map a receiver and an
incoming message (apart for the mix)

���170

Mix (contd.)

If the mix cannot be fully trusted, use a
cascade of mixes

It works as long as untrusted mixes do
not collaborate all together

���171

Chaum-net
Allow to send a sealed message via a
cascade of mixes

In an overlay, each participant has a
private/public key pair

Alice randomly choses a few of them (e.g.,
3) to be mixes

Alice recursively encrypt the message with
the public key of each mixes she selected

���172

Chaum-net example

���173

Alice Bob

M

Chaum-net example

���173

Alice BobA B

M

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

KB(Bob, R1, KBob(R0, M))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

KB(Bob, R1, KBob(R0, M))

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

KBob(R0, M)

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

KBob(R0, M)

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

M

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

MCool, I am anonymous!

Chaum-net example

���173

Alice BobA B

M

KBob(R0, M)

KB(Bob, R1, KBob(R0, M))

Ka(B, R2, KB(Bob, R1, KBob(R0, M)))

MCool, I am anonymous!Are you sure?

