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Reminders
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Generalities
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Network
Network: 

set of nodes (e.g., hosts, routers) exchanging information 
and interconnected with links 

Communication rules in a network are specified by a set of 
protocols (e.g., IEEE 802.3, IP, OSPF, BGP) 

Example of networks: 

Telephone System 

Mobile network 

Television, radio 

Internet, LAN
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Bus 

!

!

Tree  

!

Full-Mesh 

Star 

!

!

Ring

Network topologies
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Transmission modes
Unicast (Point-to-Point) 

one sender 

one receiver 

example: telephone 

the variant where the receiver is taken in a set 
of possible receivers is called anycast 

anycast helps scalability 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Transmission modes 
(cont.)

Multicast (Point-to-Multipoint) 

one sender 

a group of receivers 

every member of the group receives the same 
information 

example: videoconference 

when the information is sent to every node, the 
term broadcast is used (e.g., Terrestrial 
television)
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Digital networking 
communications modes

Circuit switching 

before transmitting information, a dedicated circuit 
is established from the source to the destination 
nodes 

the information is transmitted through its dedicated 
circuit that guarantees the bandwidth during the 
whole communication 

each intermediate node knows how to forward 
information received on circuits crossing itself 

example: 19th century telephone system
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Circuit switching 
example
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Digital networking 
communications modes (cont.)

Packet switching 

data is divided in packets of information containing 

a piece of data 

the address of the source node 

the address of the destination node 

packets are transmitted on the network independently of 
each others 

each intermediate node knows how to forward information 
to each destination 

example: IP, Internet
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Packet switching 
example
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Layered model
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Network systems are complex 

dividing the functionality helps 
reasoning on them 

Divide network functionalities into layers 

Layer i provides services to layer i+1 

Layer i relies on services provided by 
layer i-1



Layers
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Application

Transport

Network

Datalink

Physical

Physical    transmission medium (e.g., UTP)

Exchange of useful information (Service Data Unit) between 
applications relying on the transport layer hiding the network 
complexity (e.g., HTTP)

Provide a service to (reliably) exchange data between hosts 
with segments (e.g., TCP, UDP)

Provide a service to exchange packets of information between 
hosts that can be arbitrarily distant (e.g., IP)

Provide a service to exchange structured group of bits called 
frames (e.g., Ethernet)

Transmit bits between two physically connected devices (e.g., 
Manchester)



Physical

Layer of networking 
devices
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Middleboxes
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The original TCP/IP architecture is only 
composed of hosts and routers 

Modern networks contain devices that 

process (e.g., proxies) 

analyze (e.g., firewall) 

modify (e.g., NAT) 

Middleboxes can work at any layer or even 
be cross layer



[HNR+11] Honda et al., Is it Still Possible to Extend TCP?	


[SHC+12] Sherry et al. 2012. Making middleboxes someone else's problem: network processing as a cloud service

Middleboxes are 
everywhere

In enterprise networks [SHC+12] 

!

!

!

!

In ISP networks [HRN+11] 

very likely that your packet will be touched by a middlebox 
before reaching its destination 

Middleboxes limit deployment of new protocols in the Internet 

Middleboxes can be used against user interests
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Naming and 
addressing
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Name and addresses 
in the Internet
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DNS Names identify hosts 

IP addresses uniquely identify host interfaces 
nslookup example.com  
Server:     138.96.0.10 
Address:    138.96.0.10#53 
 
Non-authoritative answer:  
Name:        example.com  
Address:    192.0.43.10 

Ethernet address identifies network adapters in a collision domain 
arp -na  
? (138.96.192.3) at 0:50:56:88:0:0 on en1 ifscope [ethernet] 
? (138.96.192.250) at 0:1e:4a:e0:9e:0 on en1 ifscope [ethernet] 
? (138.96.193.164) at 0:23:df:aa:cc:4c on en1 ifscope 
[ethernet]  
... 

Names and addresses are hierarchically organized



Hierarchical naming/ 
addressing

Objectives: ensure uniqueness of names/addresses 
and provide naming/addressing scalability 

Flat: probe all the other naming/addressing 
authorities before choosing a name/address 

doesn’t scale 

not robust to network partition 

Hierarchy: carve up set of possible names/address 
(i.e., the name/address space) into mutually 
exclusive portions
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Addressing in Ethernet
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Objective: determine the origin and destination of 
a frame within a collision domain 

Every Ethernet network adapter is assigned a 
unique datalink layer address encoded on 48 bits 

Every frame is transmitted to all network 
adapters of the collision domain 

but only the network adapter with the address 
corresponding to the destination address of the 
frame accepts it



Addressing in IP
Objective: determine the origin and destination of a packet in the 
Internet 

Every host interface has its own IP address 

routers have multiple interfaces, each with its own IP address 

the IP address determines the topological position of the interface 

Current version of IP is version 4 (IPv4) 

addresses are encoded on 32 bits, fixed length 

4 billions addresses were a lot... in 1981, but today it becomes too 
short for 1 billion hosts [ISC] 

IP version 6 (IPv6) starts to be deployed 

addresses are encoded on 128 bits, fixed length*

���24 [ISC] http://www.isc.org/solutions/survey



IP address structure
Addresses are separated in two parts 

network number: identifies the network the address 
belongs to 

local address: identifies the interface of the host in the 
network 

all bits = 0: network address 

all bits = 1: broadcast address 

Addresses are aggregated according to the network number 

routing and packet forwarding are based on the network 
number only, the local address is ignored
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Classless InterDomain 
Routing (CIDR)

No predetermined separation position between network number 
and local address with CIDR 

number of bits allocated for the network number may vary 
from 0 to 32 bits 

the address contains no information about the separation 
position 

Routers determine the network number by using longest-
prefix matching 

Notation a.b.c.d/n 

a.b.c.d is the address 

n is the number of bits assigned to the network number
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CIDR (cont.)
An address matches a route if both share the same 
prefix 

0.0.0.0/0 is the default route matched by every 
addresses 

With CIDR, an address can match several routes 

192.0.2.1 matches 128.0.0.0/1, but also 192.0.2.0/24 
or 0.0.0.0/0 

Longest prefix matching is used to determine the route 
that has the longest prefix in common with the address 

Typically implemented with a trie
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Longest prefix 
matching with a trie
Routes are inserted in a trie, route prefixes being node keys 

The key of a node is a prefix of the key of all of its children, 
recursively; 

siblings cannot be prefixes 

The binary tree is descended, starting from the root, 
following the children with the key that is a prefix of the 
address to match 

The descend ends when no children has a key prefixing the 
address to match 

the route corresponding to the node where the descent 
stopped it the best matching route
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Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11000000 00000000 00000010 00000001	


(192.0.2.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)

11000000 00000000 00000010 00000001	


(192.0.2.1)  

 
 

!
Best match 192.0.2.0/24



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11011111 00000000 00000000 00000001	


(223.0.0.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11011111 00000000 00000000 00000001	


(223.0.0.1)

11011111 00000000 00000000 00000001	


(223.0.0.1)



Longest prefix matching 
with a trie (examples)
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* 
(0.0.0.0/0)

00001010	


(10.0.0.0/8)

11000000 00000000 00000010	


(192.0.2.0/24)

1 
(128.0.0.0/1)

10001010 01100000 110010	


(138.96.200.0/22)

11011111 00000000 00000000 00000001	


(223.0.0.1)

11011111 00000000 00000000 00000001	


(223.0.0.1)

11011111 00000000 00000000 00000001	


(223.0.0.1)  

Best match 128.0.0.0/1



IP to Ethernet Address
To put an IP packet over an Ethernet 
frame, its IP addresses must be resolved 
into Ethernet addresses 

Protocol used: 

Address Resolution Protocol (ARP) in 
IPv4 

Neighbor Discovery Protocol (NDP) in 
IPv6
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ARP
ARP is used to get datalink layer address of a machine on the local subnet 

Broadcast an ARP request frame on the local subnet for the IP address to resolve 

destination address: FF:FF:FF:FF:FF:FF (broadcast) 

source address: Ethernet address of the network adapter that issued the ARP request 

The host (or a proxy) that owns the address replies with an ARP response frame 

destination address: Ethernet address of the requester’s network adapter 

source address: Ethernet address of the address’s owner’s (or proxy) network adapter 

Every network device is required to listen for ARP requests and replies on its network adapters 

Optimizations 

replies are stored in an ARP cache to avoid that every single packet results in ARP request/
response 

cached for a limited duration as host can change their IP address 

ARP request message contains the IP address of the origin of the frame 

destination (or any hosts in the local subnet) can learn the IP/Ethernet mapping for free
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ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b



ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3



ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3?      (I am 192.0.2.2)



ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3?      (I am 192.0.2.2)

I am 192.0.2.3



ARP example
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.3 
Ethernet: c

IP: 192.0.2.4 
Ethernet: d

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 192.0.2.3

who-has 192.0.2.3?      (I am 192.0.2.2)

I am 192.0.2.3

Ethernet source: b Ethernet destination:c IP source: 192.0.2.2 IP destination: 192.0.2.3



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP: 203.0.113.1 
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



ARP example (router)
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IP: 192.0.2.5 
Ethernet: a

IP: 192.0.2.1 
Ethernet: f

IP: 203.0.113.2 
Ethernet: e

IP: 192.0.2.2 
Ethernet: b

IP source: 192.0.2.2 IP destination: 203.0.113.2

IP: 203.0.113.1 
Ethernet: d

who-has 192.0.2.1? (I am 192.0.2.2)

I am 192.0.2.1

Ethernet source: b Ethernet destination:f IP source: 192.0.2.2 IP destination: 203.0.113.2

who-has 203.0.113.2? (I am 203.0.113.1)

I am 203.0.113.2

Ethernet source: d Ethernet destination:e IP source: 192.0.2.2 IP destination: 203.0.113.2

gateway: 192.0.2.1/24 gateway: 203.0.113.1/24



Dynamic address 
configuration

���34

Allow a set of hosts to share a pool of IP address 

Two approaches 

stateless auto-configuration 

no infrastructure necessary 

Dynamic Host Configuration Protocol (DHCP) 

hosts query a DHCP server to obtain their configuration 

Advantages 

less address wastage: a host can use the address of another 
hosts when it is not connected 

improves flexibility and reduces the risk of configuration error as 
no manual operation is necessary



Stateless auto-
configuration

When a host connects to the network: 

1. The host choses an address randomly in 169.254/16 (not globally 
routable) 

2. Sends an ARP request for the chosen address 

3. If an ARP reply is received (another host already uses the address 

restart from point 1 

4. Otherwise, the address the address is not used by another host and 
the host can use it safely 

Auto-configuration is used only for communications within the same 
network 

In IPv6, hosts can auto-configure their globally routable addresses 
and discover network services (e.g., routers, DNS...)
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Dynamic Host Configuration 
Protocol (DHCP)

When a host connects to the network, it broadcasts a DHCP discovery 
datagram 

Any DHCP server that receives such a message replies with a DHCP 
offer datagram that contains an offer of IP address 

The host picks one offer and broadcasts a DHCP request message to 
announce the offers it selected 

The selected DHCP server assigns the address to the host and sends 
it back a DHCP acknowledgment that confirms the lease of the 
address and give additional parameters such as the lease time, the IP 
address of the default gateway, or the IP address of the DNS servers 

when the lease time is elapsed, the address is released and made 
available for other hosts 

The other DHCP servers withdraw their offers
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Naming
Objective: provide a mean for human to easily identify (and 
remember) hosts 

Hosts receive textual names easy to remember but long and of 
variable size (e.g., goo.gl, www.example.org, 
3.14159265358979323846264338327950288419716939937510582
0974944592.com...) 

wastes space to carry them in packet headers 

hard to parse 

Address are shorter and easy to process by hosts 

Indirection 

multiple names may point to the same address 

upon address change, only the resolution table has to be updated
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Simplifies distributed naming/addressing 

level i deals only with level i+1 

Global uniqueness is guaranteed 

level i ensures uniqueness at level i+1 

Scales arbitrarily 

level i+1 does  
not influence 
level i-1

Hierarchical naming

���38

Highest authority

Doe Kenedy Deere

John Jane Fitzgerald John

9R Series

Level 0

Level 1

Level 2

Level 3John



Iterative resolution
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.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail

ac

ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com 
192.0.2.1

www.example.com 
192.0.2.50

Internet

resolver

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server



Iterative resolution
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.

.edu .com .net .gov .mil .be .fr .us

example sun

javawww

fbi whitehouse

wwwwww mail
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ucl ulg

france inria

www

france

www wwwezp

ezp.inria.fr 
193.51.193.149

www.example.com 
192.0.2.1

www.example.com 
192.0.2.50

Internet

resolver

The resolver learns the hierarchy 

responses can be cached to avoid 
querying twice the same server

Query: ezp.inria.fr
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Transport of data 
between hosts

Transport layer provides an end-to-end 
communication service 

applications just deal with stream of 
bytes 

Most popular protocols: 

UDP: connection-less, non reliable 

TCP: connection-full, reliable
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sent 1000 to 1499
sequence number=1000

ACK, ackn
owledgment number=1500sent 1500 to 1999

sequence number=1500

sent 2000 to 2499
sequence number=2000

ACK, ackn
owledgment number=2000

ACK, ackn
owledgment number=2500

window size = 1500B

sent 2500 to …
sequence number=2500
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ready to receive data 
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1000 and 2499

ready to receive data 
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1500 to 2999

ready to receive data 
sequenced between 
2500 to 3999

ready to receive data 
sequenced between 
2000 to 3499

…
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Why does it work?

Conceptual vulnerability 

using non-requested information as 
ground truth is dangerous 

using non-authenticated information is 
dangerous
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Why does it work?
Birthday paradox 

probability that n elements uniformly picked 
from the finite set T is 

!

!

!

Relying solely on transaction ID is dangerous 

particularly when IDs are small (16 bits in DNS)
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YouTube Hijacking 

BBC Breaking news: A router problem made YouTube 
inaccessible for many 

RIPE NIS: “On Sunday, 24 February 2008, Pakistan 
Telecom (AS17557) started an unauthorised 
announcement of the prefix 208.65.153.0/24. One of 
Pakistan Telecom's upstream providers, PCCW Global 
(AS3491) forwarded this announcement to the rest of 
the Internet, which resulted in the hijacking of YouTube 
traffic on a global scale”
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts 
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement. 
Routers around the world receive the announcement, and YouTube traffic is redirected to 
Pakistan.
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts 
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement. 
Routers around the world receive the announcement, and YouTube traffic is redirected to 
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom) 
continues to attract some of YouTube's traffic.
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts 
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement. 
Routers around the world receive the announcement, and YouTube traffic is redirected to 
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom) 
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every 
router that receives these announcements will send the traffic to YouTube.

���51
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study



YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts 
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement. 
Routers around the world receive the announcement, and YouTube traffic is redirected to 
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom) 
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every 
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the 
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW 
Global), are seen prepended by another 17557. The longer AS path means that more 
routers prefer the announcement originated by YouTube.
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YouTube Hijacking 
(contd.)

Before, during and after Sunday, 24 February 2008: AS36561 (YouTube) announces 
208.65.152.0/22.

Sunday, 24 February 2008, 18:47 (UTC): AS17557 (Pakistan Telecom) starts 
announcing 208.65.153.0/24. AS3491 (PCCW Global) propagates the announcement. 
Routers around the world receive the announcement, and YouTube traffic is redirected to 
Pakistan.

Sunday, 24 February 2008, 20:07 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.0/24. [...] BGP decision process means that AS17557 (Pakistan Telecom) 
continues to attract some of YouTube's traffic.

Sunday, 24 February 2008, 20:18 (UTC): AS36561 (YouTube) starts announcing 
208.65.153.128/25 and 208.65.153.0/25. Because of the longest prefix match rule, every 
router that receives these announcements will send the traffic to YouTube.

Sunday, 24 February 2008, 20:51 (UTC): All prefix announcements, including the 
hijacked /24 which was originated by AS17557 (Pakistan Telecom) via AS3491 (PCCW 
Global), are seen prepended by another 17557. The longer AS path means that more 
routers prefer the announcement originated by YouTube.

Sunday, 24 February 2008, 21:01 (UTC): AS3491 (PCCW Global) withdraws all 
prefixes originated by AS17557 (Pakistan Telecom), thus stopping the hijack of 
208.65.153.0/24. Note that AS17557 was not completely disconnected by AS3491. 
Prefixes originated by other Pakistani ASs were still announced by AS17557 through 
AS3491. ���51
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Why does it work?
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Any AS can claim to be the originator of a 
prefix (i.e., she hijacks the prefix) 

To protect against that, only the import 
filters can be used 

rely on databases that are not so 
accurate 

A not secure global routing system is a 
major threat against freedom



TCP session hijacking

���53

Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www” 

ACK, ackn
owledgment number=1024

window size = 1500B

ACK, acknowledgment number=7599



TCP session hijacking
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Client Telnet server
sent 1000 to 1023

sequence number=1000, data=“ls”

sequence number=7568, data=“www” 

ACK, ackn
owledgment number=1024

window size = 1500B

sequence number=1024, 
data=“rm -rf /”

ACK, acknowledgment number=7599
sequence number=7600, data=“” 

ACK, ackn
owledgment number=1096



Why does it work?
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Why does it work?

If the attacker can 

guess the initial sequence number 

guess actions from the sender 

then easy to guess a sequence number 
that will be accepted by the receiver
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The basics of security

���55



Security threats
Intrusion 

an attacker gains remote access to some resources that are 
normally denied to her 

e.g., steal processing power, botnets 

Eavesdropping 

an attacker collects traffic of a target in order to gain access to 
restricted sensitive information 

e.g., steal passwords by sniffing wireless traffic 

Denial of Service (DoS) 

an attacker disrupts a specific targeted service 

e.g., block the youtube website
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The attackers
Hackers 

look for challenge, notoriety, and fun 

e.g., hackers, script kiddies, students :-D 

Spies 

look for political/business gains 

e.g., intelligence, police, industrial spies 

Criminals 

look for financial gains, religious/political visibility, or just 
to break something 

e.g., criminals, terrorists, vandals
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Definitions
Key 

input of cryptographic functions to determine its output 

Authentication 

proof that the message is coming from the one claiming to be at the origin of the message 

Integrity 

proof that the message has not been altered since its creation 

Non-repudiation of origin 

an entity that generated a message cannot deny have generated the message 

Encryption 

action of encoding of a message such that an eavesdropper can’t read the message but legitimate 
destination can 

Decryption 

action of decoding an encrypted message 

Signature 

a mathematically constructed proof of authenticity of a message
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Hall of fame
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Alice and Bob 

are legitimate users, Alice and Bob exchange messages 

Chuck 

is a malicious user that is not between Alice and Bob 

Eve 

is a malicious user that can eavesdrop 

Trudy 

is a malicious user that can perform (wo)man-in-the-middle 
attacks 

Trent 

is a legitimate user that plays the role of a trusted arbitrator



Why is good security 
level so hard to obtain?

The security level of a system equals the 
security level of the weakest part of the system 

e.g., encrypting your HDD to avoid 
information leak if the laptop is stollen is 
useless if  the password is written on a post-
it attached on the laptop 

Digital system are complexes 

interactions with many components, 
distribution, easily bugged...
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Security is a tradeoff
Compare cost and probability of an attack and cost of securing the system 
against this attack 

e.g., is that necessary to make data unbreakable for 20 years if they are 
outdated after 1 hour? 

Explain the security systems and their reasons 

if a user does not understand why he must follow a procedure, he will 
not follow it 

e.g., how many of you already give their password to someone else? 

Never “over-secure” a system 

if the system is too hard to use, people will find countermeasure 

e.g., too hard to use corporate mails? Then use gmail to send 
corporate mails...
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Security is a tradeoff 
(contd.)

Protection system 

lifetime = 10 years 

cost = 10,000 EUR 

Attack 

yearly probability = 10% 

cost of restoring the system = 1,000 EUR 

Do I invest?
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Procedures!
Protection will never be perfect 

Prepare procedures 

what to do BEFORE an attack? 

what to do to limit the risk (e.g., passwords) of attack 
and to be ready if an attack happens (e.g., backup) 

what to do DURING an attack? 

the attack is on going, how to stop it 

what to do AFTER an attack? 

the attack succeeded, how to recover from it
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Securing 
communications
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Objective
Construct a communication mechanism 
where Alice and Bob can exchange 
messages such that 

only Alice and Bob can generate 
messages 

nobody else than Alice or Bob can read  
messages 

nobody can alter messages
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Steps

fill me 

fill me 

fill me
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Hash function
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Validate that a message has not been altered on its way between Alice and Bob 

Hash functions map arbitrary large numbers of variable length to fixed-length numbers 

h = H(m), h is called hash or digest 

e.g., MD5, SHA-1, SHA-256 

Good hash functions for cryptography must be such that 

H(m) is not complex to compute 

but finding a m2 such that H(m2) = H(m) is complex, 

H(m) is deterministic, 

H output must be evenly distributed over the output set 

Example 

SHA-1 maps messages its input space on a 160-bits output 

SHA-1(Message to validate) = 5e06ee754bda0d33cf65ec305ffc779404e66029 

SHA-1(Message tO validate) = b1c306f8cb792fa14d4d1fdcf6f37d86c2fe6bb9



Is that enough?
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Alice Bob
msg 

d = H(msg)

Trudy
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Alice Bob
msg 

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2 
d2 = H(msg2) msg2, d2

msg3, d3
msg3 

d3 = H(msg3)



Is that enough?
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Alice Bob
msg 

d = H(msg)
msg, d

Trudy

valid as d = H(msg)

msg2 
d2 = H(msg2) msg2, d2

msg3, d3
msg3 

d3 = H(msg3) valid as d3 = H(msg3)



Hash function with salt
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Hash functions are deterministic 

Add a salt such that the output of the hash 
function is a function of the message and 
the salt 

h = H(m, K) where s is the salt or key of 
the hash function 

As long as Trudy does not know the salt, 
she can’t forge a valid digest



Hash function with salt 
(contd.)
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Alice Bob
msg 

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2 
d2 = H(msg2, K) msg2, d2

K K
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Alice Bob
msg 

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2 
d2 = H(msg2, K) msg2, d2

msg3 
d3 = H(msg3)

K K



Hash function with salt 
(contd.)
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Alice Bob
msg 

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2 
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3 

d3 = H(msg3)

K K



Hash function with salt 
(contd.)
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Alice Bob
msg 

d = H(msg, K)
msg, d

Trudy

valid as d = H(msg, K)

msg2 
d2 = H(msg2, K) msg2, d2

msg3, d3
msg3 

d3 = H(msg3) invalid as d3 ≠ H(msg3, K)

K K



Problem solved?
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fill me 

fill me 

fill me



Problem solved?

���71

fill me 

fill me 

fill me

How can Alice and Bob agree on K?



Diffie-Hellman key 
exchange

How can Alice and Bob agree on a 
secret number and be sure that Eve will 
not discover it? 

Principle 

do not exchange the secret number 
but other numbers that are use to 
build up the secret
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Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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exchange (contd.)

���73

Alice Bob

a, g, m

A    ga mod m
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Eve
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Working on finite group and positive integers
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exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

b

Eve

⌘



Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B    gb mod m

b

Eve

⌘

⌘



Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B    gb mod m

b

K    Ab mod m

Eve

⌘

⌘

⌘



Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B

B    gb mod m

b

K    Ab mod m

Eve

⌘

⌘

⌘



Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B

B    gb mod m

b

K    Ab mod mK    Ba mod m

Eve

⌘

⌘

⌘

⌘



Working on finite group and positive integers

Diffie-Hellman key 
exchange (contd.)
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Alice Bob

a, g, m

A    ga mod m
A, g, m

B

B    gb mod m

b

K    Ab mod mK    Ba mod m

K    Ab mod m    (ga mod m)b mod m    gba mod m    (gb mod m)a mod m    Ba mod m    K

Eve

⌘

⌘

⌘

⌘

⌘⌘⌘⌘⌘⌘



Why  can’t Eve guess K if she knows A, B, g, and m? 

discrete exponentiation is linear with the size of the 
argument 

easy to compute x    y
z
 mod p 

but for some discrete groups, no efficient algorithm is known 
to compute discrete logarithm 

hard to determine natural z that ensures x    y
z
 mod p 

Eve knows A, B, g, and m but can’t determine neither a nor b 
that are absolutely necessary to compute K 

K    A
b
 mod m    (g

a
 mod m)

b
 mod p    g

ba
 mod m 

       (g
b
 mod m)

a 
mod m    B

a
 mod m

Diffie-Hellman key 
exchange (contd.)
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⌘

⌘

⌘⌘⌘
⌘ ⌘



Trudy can break Diffie-Hellman

Diffie-Hellman key 
exchange (contd.)
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Alice Bob
a, g, m

A    ga mod m
A, g, m

Bt B    gtb mod mt

b

K‘    Atb mod mt

K    Bta mod m

Trudy

At, gt, mt

K‘    Bat mod mt

B

Bt    gbt mod m
bt

K    Abt mod m

at, gt, mt

At    gat mod mt

⌘

⌘

⌘

⌘
⌘

⌘
⌘
⌘



Diffie-Hellman key 
exchange (contd.)

How can we protect Diffie-Hellman from 
Trudy? 

Principle 

Alice and Bob sign the messages 
exchanged in Diffie-Hellman (?!)
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Asymmetric 
cryptography

In asymmetric cryptography (aka public-key cryptography), two keys are 
used 

public key 

publicly available to anybody (even attackers) 

used to encrypt a message 

private key 

known only by the legitimate owner of the public key 

used to decrypt a message 

e.g., RSA, PGP, Diffie-Hellman 

Public-key cryptography is 10 to 100 times slower than symmetric-key 
cryptography 

seldom (never?) used to encrypt communications
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Eve cannot determine the message

Asymmetric 
cryptography (contd.)
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Alice Bob

m 
c = crypt(m, PublicB)

Eve
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

decrypt(c, ???) = ?



Trudy can send a forged message

Asymmetric 
cryptography (contd.)

���79

Alice Bob

m 
c = crypt(m, PublicB)

Trudy
PublicB, PrivateBPublicB PublicB

c
decrypt(c, PrivateB) = m

c2

c3

m2 
c2 = crypt(m2, PublicB)

m3 
c3=crypt(m3, PublicB)

decrypt(c3, PrivateB)=m3



Eve can read the message

Asymmetric 
cryptography (contd.)
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Alice Bob

m 
s = sign(m, PrivateA)

Eve
PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA)



How to build sign and 
check?

s = sign(H(m), k) = crypt(H(m), k) 

check(m, s, K) = (H(m)==decrypt(s, K)) 

where k is the private key of the signer and K 
is the public key 

Asymmetric cryptography is slow and m can be 
large 

encrypting m would be too costly 

solution: consider the digest of m while signing
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How to safely obtain Bob’s public key?

Public key 
infrastructure
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Alice BobTrudy
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What is your  public key?
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How to safely obtain Bob’s public key?

Public key 
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Alice BobTrudy
PublicB, PrivateB

PublicB

What is your  public key?

PublicB



Trudy can send a forged key

Public key 
infrastructure (contd.)
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Alice BobTrudy
PublicB, PrivateB

PublicT

What is your  public key?

PublicT

PublicT, PrivateT



Alice and Bob trust a third party (e.g., Trent) for authentication

Public key 
infrastructure (contd.)
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Alice TrentBob
PublicT, PrivateT

PublicB

Are you Bob?

S(Yes, PrivB), 
S(PubB, PrivT)

PublicT, 
PublicB,PrivateB, 

S(PubB, PrivT)

PublicT



Practically, Bob sends a certificate (e.g., X.509), not only its public 
key and signature 

A certificate provides many information to be able to correctly identify 
and authenticate its subject (e.g., Bob) 

the subject name and organization 

the subject public key (and type) 

the issuer name and organization 

the certificate validity time (valid not before and not after) 

the certificate signature and type, signature made by the issuer of 
the certificate 

...

Public key 
infrastructure (contd.)
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A certificate signed with the private key of the public key indicated into the 
certificate is said self-signed 

prove nothing except that the issuer knows the private key of the subject 

Certificates can be chained, the subject is certified by its issuer, the issuer 
itself is certified by its own issuer, and so on until the root of the certification 
is reach 

when a certificate is not self-signed, it indicates the chain of certificates 
used for its authentication 

The entity verifying the certificates backtracks the chain of certificate until is 
reaches the certificate of a certification authority (CA) he knows 

Trusted parties are installed separately (e.g., hardcoded, during OS 
updates) 

assumption: the trusted party is not compromised

Public key 
infrastructure (contd.)
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Public key 
infrastructure (contd.)
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Certificates are issued once and valid during a given time 
period, whatever the number of time it is used 

What if the subjects leaves its organization? The private key of 
the subject is stolen? The private key of the issuer is stolen? 

Keys are selected big enough to not be broken during validity 
time 

When a certified key is compromised, the certificate is revoked 

the issuer maintains the list of revoked certificates 

when a certificate is checked for validity, the verifying 
client should verify that the certificate is not in the 
revoked certificates list



Public key 
infrastructure (contd.)

“A public key infrastructure is a set of hardware, software, people, 
policies, and procedures needed to create, manage, distribute, 
use, store, and revoke digital certificates” [1] 

A certificate Cert1 issued by a CA can be used to certify any 
certificate Cert2 

Cert2 is authenticated if 
   check(Cert2, Cert2.signature, Cert2.issuer.public_key) & 
   check(Cert1, Cert1.signature, Cert1.issuer.public_key) & 
   Cert2 not in Cert2.issuer.revoke_list & 
   Cert1 not in Cert1.issuer.revoke_list 

where Cert2.issuer is identified with Cert1 and Cert1.issuer is 
identified by CA’s certificate 

assuming that the verifier knows CA’s certificate

���88 [1] http://en.wikipedia.org/wiki/Public-key_infrastructure
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infrastructure (contd.)
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Public key 
infrastructure (contd.)
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Trudy cannot perform her attack anymore

Diffie-Hellman key 
exchange (the return)
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Alice Bob

a, g, m

A    ga mod m 
sA=sign((A,g,m), PrivateA) A, g, m, sA

B, sB

B    gb mod m

check((A,g,m),sA,PublicA) 
b

K    Ab mod m 
sB=sign(B, PrivateB)check(B, sB, PublicB) 

K    Ba mod m

Trudy
PublicA, PublicB, PrivateBPublicA, PrivateA, PublicB PublicA PublicB

⌘
⌘

⌘

⌘



Problem solved?
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fill me 

fill me 

fill me



Problem solved?
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fill me 

fill me 

fill me

Replay attacks are still possible!



Trudy can replay a message

Nonce
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Alice BobTrudy
PublicAPublicA, PrivateA PublicA
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA
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m, s

remember (m, s)
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Alice BobTrudy

m = “open door” 
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PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is openremember (m, s)
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
s2 = sign(m2, PrivateA)

remember (m, s)
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
s2 = sign(m2, PrivateA) m2, s2

remember (m, s)
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
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check(m2, s2, PublicA) 
door is closed

remember (m, s)
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA) 
door is closed

m, s

remember (m, s)



Trudy can replay a message

Nonce
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Alice BobTrudy

m = “open door” 
s = sign(m, PrivateA)

PublicAPublicA, PrivateA PublicA

m, s
check(m, s, PublicA) 
door is open

m2 = “close door” 
s2 = sign(m2, PrivateA) m2, s2

check(m2, s2, PublicA) 
door is closed

m, s
check(m, s, PublicA) 
door is open !!

remember (m, s)



Nonce (contd.)
A nonce is a number used only once 

Three general methods to create nonces 

sequential number 

increment after each use 

keep it in non-volatile storage in case of reboot 

timestamp 

current time of the nonce generation 

be sure clock is not going backward (e.g., winter time) 

random number 

low collision probability if the pseudo random number generator is good and 
random number is big enough (e.g., more than 128 bits) 

Nonce alone is rarely enough to have a good protection 

not robust to eavesdropping or man-in-the-middle attack
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Nonce (contd.)
Each message is make unique thanks to the nonce
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���95

Alice BobTrudy

m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA
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remember (m, n, s)



Nonce (contd.)
Each message is make unique thanks to the nonce
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m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}remember (m, n, s)



Nonce (contd.)
Each message is make unique thanks to the nonce
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m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA)

remember (m, n, s)



Nonce (contd.)
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n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2

remember (m, n, s)



Nonce (contd.)
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n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA
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Nonce (contd.)
Each message is make unique thanks to the nonce
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m 
n = nonce 

s = sign((m, n), PrivateA)

PublicAPublicA, PrivateA PublicA

m, n, s
check((m, n), s, PublicA) 
nonces = {n}

m2 
n2 = nonce 

s2 = sign((m2,n2),PrivateA) m2, n2, s2
check((m2,n2),s2,PublicA) 
nonces = {n, n2}

m, n, s
check((m,n), s, PublicA) 
nonce already used: skip

remember (m, n, s)



TCP sequence number does not protect against 
segment injection attacks in TCP
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TCP sequence number does not protect against 
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TCP segment injection attack can be mitigated for short 
connections when there is not eavesdropping by 

setting the initial sequence number with a good nonce, but 
sequence number is short (32 bits) 

only allowing reception of segments that fit in the window 

keeping small enough window (attackers can try a lot of 
sequence numbers on 1Gbps links!) 

In case of eavesdropping or long connections, segments should be 
authenticated 

TCP MD5 option [RFC2385] tags every segment with its MD5 
hash (without options and checksum) and a secret shared 
between Alice and Bob

Nonce (contd.)
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DoS attacks are still possible!



Denial of Services
Resources are always limited 

e.g., processor, memory, link capacity 

The easiest way of leading a DoS is to 
overwhelm CPUs, memory, or links of the target 

A more complicated way is to manage an 
intrusion and neutralize the target 

imagine you gain administrative access to 
border router of your network!
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Danger of state
Establishment and maintenance of session requires 
state 

often maintained in “tables” with predefined capacity 

An attacker can saturate state tables by initiating 
multiple sessions 

Principle 

require attacker to maintain state before maintaining 
state yourself 

in general it is too costly for an attacker to maintain 
state
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TCP relied on a state machine started upon reception of 
a SYN packet

Danger of state 
(contd.)
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TCP relied on a state machine started upon reception of 
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TCP relied on a state machine started upon reception of 
a SYN packet

Danger of state 
(contd.)

���101

Alice ChuckBob
(src=IPA:portA, 
dst=IPB:portB, 
SYN, 
seqA=x)

SYN.received: 
{src=IPA:portA, 

dst=IPB:portB, 
seqA=x, 
seqB=y}

SYN+ack, 
seqB=y

When to remove state?



Always create state at the end of session establishment 
(e.g., TCP SYN cookie)

Danger of state 
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Always create state at the end of session establishment 
(e.g., TCP SYN cookie)
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Always create state at the end of session establishment 
(e.g., TCP SYN cookie)

Danger of state 
(contd.)
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Cannot force state at Bob 
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Danger of complexity
Protection mechanism can be complex and can 
require important processing power 

An attacker can overwhelm her target CPU by 
triggering protection mechanisms 

Principle 

require attacker to perform more processing 
than yourself 

in general an attacker does not want to have 
to do heavy computation
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Danger of complexity 
(contd.)

Hard, if not impossible, to remove processing requirements but still possible to force the attacker 
to succeed some challenges to get access. This technique is usually called challenge-response 

time challenges 

when an attack is suspected, force the attacker to wait or slow down but the DoS 
protection can lead to a DoS 

e.g., rate limiting 

mathematical challenges 

ask the initiator to solve a mathematical challenge that is hard to compute but easy to 
check, this might negatively impact legitimate clients 

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N 
is a nonce and K sets the complexity of the puzzle, both parameters are decided by 
Bob [RFC5201] 

human processing challenge 

some services are reserved for users and don’t want to be accessed by bots 

ask Alice to succeed a challenge that is simple for a human but hard for a computer 

e.g., CAPTCHA
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to succeed some challenges to get access. This technique is usually called challenge-response 
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check, this might negatively impact legitimate clients 

e.g., Bob asks Alice to find a J such that the K lowest order bits of H((N,J)) are zeros. N 
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Bob [RFC5201] 

human processing challenge 

some services are reserved for users and don’t want to be accessed by bots 

ask Alice to succeed a challenge that is simple for a human but hard for a computer 

e.g., CAPTCHA
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Link overloading
Messages are sent to Bob by traversing links 

If an attacker can send packets at a high 
enough rate, she can saturate links toward Bob 
and make him unavailable 

Unfortunately, Bob cannot make anything to 
block packet before they reach him 

Principle 

tweak the network to not suffer too much of 
such attacks
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Example of Distributed Denial of 
Service (DDoS) attack

Link overloading 
(contd.)
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Link overloading 
(contd.)

A first parade is to filter illicit traffic before 
it can harm the target 

e.g., firewall, access lists 

A set of rules is specified a priori, if the 
traffic does not match the rules, it is 
discarded 

always block everything but what is 
acceptable
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Link overloading 
(contd.)

Filtering based on origin 

useful to avoid spoofing 

e.g., block any packet which source address does not belong 
to the customer cone of a BGP neighbor 

does not work so well as it depends on every network between 
the origin and the target 

Filtering based on traffic pattern 

analyze the traffic and if it deviates from what is normal, drop it 

e.g., drop malformed packets, rate limit a source if it sends 
too much SYN packets, ignore mails from well known SPAM 
servers, block any flow initiated by the outside if there is no 
server in the network
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Network Intrusion 
Detection System (NIDS)

An NIDS aims at discovering non-
legitimate operations 

The NIDS analyses the traffic to detect 
abnormal patters 

Upon anomaly detection, the NIDS 
triggers an alert with a report on the 
anomaly 

NOC follows procedures upon detection
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Network Intrusion 
Detection System (contd.)

Signature based detection 

a database of abnormal behavior is maintained to construct a signature 
for each attack 

if the traffic corresponds to a signature in the database, trigger an alarm 

risk of false negative (0-day attack) 

e.g., Snort, Bro, antivirus 

Outlier detection 

the anomaly detector learns what is the normal behavior of the network 

went an outlier is detected, an alarm is triggered 

risk of false positive and false negative 

e.g., cluster analysis, time series analysis, spectral analysis
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Attacks are often to random destinations or with 
random sources 

backscatter traffic to a sink-hole that can 
receive a lot of traffic attack without impacting 
the network

Link overloading 
(contd.)
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Use the sink-hole to attract bizarre 
packets

Link overloading 
(contd.)

���112

Alice Bob

ChuckChuck

IBGP: 
prefix: 0.0.0.0/0 
nexthop: sink-hole 
NO_EXPORT



Use the sink-hole to protect the target

Link overloading 
(contd.)
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Relay attacks are still possible!



Relay attack
In a relay attack, Chuck does not contact Alice directly but 
goes via Bob 

If the traffic from Bob to Alice is bigger than the traffic from 
Chuck to Bob, the attack is called amplification attack 

As for DoS, hard to protect correctly against relay attacks 

use filters (e.g., deactivate ICMP) 

authentication of the source 

but correct spoofing protection that doesn’t open a 
relay attack door is very hard to deploy in practice as it 
requires messages in both directions between parties
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What did we miss?
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What did we miss?

To terminate the session! 

with the same care as the opening of 
the session 

this is often neglected
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Perfect Forward 
Secrecy

With perfect forward secrecy (PFS), 
Eve cannot decrypt messages sent 
between Alice and Bob 

even if she captures every message 

even if she breaks into Alice and Bob 
after the communication to steal their 
secrets (e.g., private keys)
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Perfect Forward 
Secrecy (contd.)

PFS is provided using ephemeral keys 

the ephemeral key is generated and used 
only during the session 

the session key is not stored after the 
communication 

the session key is independent of stored 
information (e.g., good PRNG) 

for long sessions, change the session key 
regularly
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Perfect Forward 
Secrecy (contd.)

1. Initiate the communication between Alice and Bob 

authenticity proven with public/private key pairs 

2. Alice and Bob agree on a secret K 

use Diffie-Hellman 

authenticate DH messages with public/private key pairs 

3. Encrypt/Decrypt messages with symmetric cryptography using K as 
the key 

no need to sign as it is encrypted 

be sure a nonce is used to avoid replay 

4. If session is too long, back to 2. 

5. Close the session correctly and be sure K is not stored anywhere
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Overlay networking
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Overlay network

Constructed on top of another network, 
called the underlay 

Nodes in the overlay appear 
to be connected 
independently of the overlay
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Definitions
Peer 

A node involved in forming the overlay (can 
be a computer, an end-user, an 
application…) 

Leecher 

A peer that is both client and server 

Seed 

A peer that is only server
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Definitions (contd.)
Peer-to-peer (P2P) application 

No general definition 

Specific to an application 

Every peer is client and server 

Peers form an overlay network 

In general, we define P2P application as 
overlay network formed by end-users
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P2P
P2P applications capitalize on any 
resource from anybody 

CPU 

Bandwidth 

Storage 

In this course, we focus on file sharing 
(mostly BitTorrent)
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P2P is still alive
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Why to study P2P
When designed properly, P2P-based 
file sharing applications can be very 
efficient and fast to distribute contents 

e.g., Twiter uses Murder to update 
their servers since 2010 

https://blog.twitter.com/2010/
murder-fast-datacenter-code-
deploys-using-bittorrent
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Before Murder
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With Murder
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Content replication
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Definitions
Service capacity 

Number of peers that can serve a content 

= 1 in client-server, constant with time 

Flash crowd of n 

Simultaneous request of n peers (e.g., soccer match, iOS 
update…) 

Piece/chunk/block 

Element of a partition of the content 

Each piece can be independently retrieved 

The union of pieces forms the content
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Interest of P2P to 
replicate contents

Service capacity grows up exponentially with 
time 

Average download time for a flash crowd n 
is then in log(n) 

Average download time decreases in 
          when the number of pieces increases  

if we ignore the overhead 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Content transfer 
model

Simple deterministic model 

Each peer serves only one peer at a time 

The unit of transfer is the content 

n-1 peers want the content, with n=2k 

T is the time to complete an upload 

T=s/b, s content size, b upload capacity 

Peer selection strategy with Binary tree 

global knowledge

���132



Capacity C of the 
service
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Capacity C of the 
service

t=0 => C = 20 peers 

t=T => C = 21 peers 

t=2*T => C = 22 peers 

… 

t=i*T => C = 2i peers 

➡ C = 2t/T peers
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Finish time
seed only at time t = 0 

20 peers finish at t = T 

21 peers finish at t=2T 

… 

2k-1 peers finish at t=k*T 

➡ content transferred to all 
peers at t = k*T = T * log2(n) 
vs n*T in client-server
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Can we speed up 
transfers?
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Piece transfer model
Same as before but the transfer unit is the 
piece instead of the content 

a content is divided into m equal size 
pieces 

m > k 

Piece downloaded in T/m 

➡content transferred to all peers at t = T * 1/m *  log2(n) + T 
vs T * log2(n) without piece transfer vs n*T in client-server
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Parallel downloads
Download from several peers in parallel 

Strategy 

request one piece from every server with the 
content 

request another piece from the server as 
soon as the requested piece has been 
obtained 

performance is optimal when servers are 
always busy delivering a piece of data
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Parallel downloads 
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Parallel downloads 
(contd.)
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Peers are not always fully utilised!



Pipelining

Keep enough requests pending 

Send a new request before the 
end of the transmission of the 
piece being downloaded 

need to roughly estimate the 
RTT
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Termination idle time
In case of M servers, and P remaining pieces, 

when P < M, M - P serving peers are idle 

End-game mode 

when P < M, request pending blocks to all 
idle servers 

speed of the fastest serving peers 

some pieces are downloaded several 
times
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Discussion
Previous models have idealised view of the system 

perfect peer selection (peers always select an available 
peer) 

perfect piece selection (peers always select an available 
piece) 

no dynamics (peers do not enter or leave the network) 

no selfish behaviour (peers always answer at their maximal 
capacity) 

a free rider is a peer that downloads without contributing 

but to scale, each peer in a P2P system must act as a 
client and a server!
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Peer selection
Ideal, the peer selection algorithm should 

always find a peer to upload from 

prevent free riders 

converge to the best upload-download 
match 

peer selection should be based on 
capacity only (i.e., independent of pieces 
available)
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Choke algorithm
The peer selection of BitTorrent 

Different algorithm in leecher and seed states 

Peers are selected in the peer set (i.e., a subset of all peers) 

Choke status 

A chokes B if A decides to NOT upload to B 

Interested status 

A is interested in B if B has at least one piece A does not 
have 

All decision are performed locally
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Choke algorithm: 
leecher state

Every 10 seconds: 

the peer list is sorted by download rate 

the 3 fastest and interested peers are unchoked 

Every 30 seconds: 

one interested peer selected at random is 
unchoked (optimistic unchoke) 

Maximum 4 interested unchoked peers at the 
same time
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Choke algorithm: seed 
state

Favor upload mode: 

same as in leecher state but ordered by upload 
speed 

Round Robin mode: 

Order peers in the list by their unchoked time, 
every 10 seconds 

for two consecutive periods, unchoke the first 
3 peers and a forth at random 

for the third period, unchoke the first 4 peers
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Choke algorithm 
discussion

Leecher state is robust to free riders 

must contribute to get good service 

Seed state is not robust to free riders 

favors peers that download the fastest 

Tend to select the fastest peers, that it 
automatically detects
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Piece selection
Random piece selection 

each peers selects at random a piece to download 

poor entropy 

hard to get the last pieces 

Global rarest first 

select the globally rarest piece to download 

piece replication is maximised 

requires global knowledge 
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Piece selection 
(contd.)

Local rarest first 

select the rarest piece to download within 
the peer set 

when peer selection is performed before 
piece selection, the piece is selected 
according to the availability on the selected 
peers 

good entropy when the set is large and 
random enough
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Network coding

Encode pieces such that if 

k is the number of original pieces 

and n is the number of encoded 
pieces, 

any k among the k+n pieces are 
enough to reconstruct the content
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Network coding 
(contd.)

Content 

Encode C as  

!

Any linearly independent encodings   
can be combined to recover C
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Ei(Ai) =
X

ai,j2Ai

ai,j · xj

C = [x1 . . . xm]

Ei(Ai)



Network coding 
(contd.)

No need for piece selection as any set of 
linearly independent encoded pieces can 
be used to recover the content 

entropy is nearly optimal 

Encoding computation is heavy 

Integrity and security is easily broken as a 
single piece corruption propagates to the 
whole content

���151



BitTorrent
Get a .torrent file 

describes the torrent (the unit of data) 

content length in bytes 

file name 

piece length (256/512/1024/2048 KB) 

all pieces signatures (SHA-1) 

tracker address 

creation date, commets…  

torrents are independent (no link with the previous and current torrents) 

Get a random peer set from a tracker 

Retrieve the data
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Pieces and blocks
Contents are decomposed in pieces 

Pieces are split in blocks of 16 KB to 
allow pipelining  

5 pending requests
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Piece 1 Piece 2 Piece i 
m-1

Piece m-1 Piece m

Block 1 Block 2 Block k-1 Block k



Torrent download 
(phase 1)

The peer sends 

torrent info hash 

its peer ID 

the port it listens on 

the number of peers it expects in the list 
(default=50) 

statistics
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Torrent download 
(phase 2)

The tracker returns 

periodic statistics interval 

randomised list of peers for the torrent 

<peer id, peer IP, peer port> 

statistics
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Torrent download 
(phase 3)

The peer connects to a subset of the peer list (40 
outgoing sessions) 

The peer set (neighbour set) is limited to 80 
connections in total 

Results in a graph with good properties for local 
rarest first 

dense well connected random graph 

low diameter 

robust to churn (i.e., entering and leaving peers)
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Tracker
Peers periodically send statistics to the tracker (every 30 
minutes) 

Peers request for new peers when peer list < 20 

Peers informs the tracker when they leave 

Tracker identify NATed peers and maintin te peer list up-
to-date 

To start a torrent 

create a .torrent file and upload it to a discovery site 

start a P2P client using the torrent file and the content 
to seed
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Piece selection
Strict priority 

always request all the blocks of a piece before asking for other 
pieces 

if no block available, start downloading other pieces, but come 
back to the pending blocks as soon as they are available 

Random first piece 

to avoid spending time waiting to be unchoked and downloading 
hardly reachable piece, selects the first 4 pieces of a download 
at random 

Endgame mode 

when all blocks have been requested, request all pending 
blocks to all peers
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Privacy
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Sharing secrets

Context 

n student work on a top-secret project 

They cannot trust each other 

The project is in a digital safe 

To open the digital safe, at least k out 
of the n students must be present
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(k,n) threshold 
scheme

D = [x1, …, xn] is a data composed of n 
pieces 

When at least k pieces xi of D are 
known 

D can be computed 

otherwise D remains undetermined
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���162

A polynomial of degree k-1 is uniquely identified with k points



Shamir’s (k,n) 
Threshold Scheme
Let D be our secret (an integer), decomposed in n 
pieces 

Let p be a prime number p > max(D, n) 

Generate k-1 random number ai 

!

Define the polynomial of degree k-1  
 

Note that g(0) = D
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8i 2 [1; k � 1]|ai 2 [0; p[

g(x) = D + a1 · x1 + · · ·+ ak�1 · xk�1



Shamir’s (k,n) Threshold 
Scheme (contd.)

Generate n fragments of the secret 
D1 = g(1) mod p, D2 = g(2) mod p, … Dn = g(n) mod p 

Distribute (xi, Di) 

Recompute D from k fragments (xj,Dj)  
among n using Lagrange polynomial 
interpolation
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g(0) =

kX

i=1

Di

0

@
kY

j=1,j 6=i

�xj

xi � xj

1

A

D ⌘ g(0) mod p



Example k=3, n=5
p = 997 

Make 5 groups 

group 1: (1, 547) 

group 2: (2, 629) 

group 3: (3, 394) 

group 4: (4, 839) 

group 5: (5, 967)
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group 5: (5, 967)
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Collaborate with 2 other groups to compute the secret D



Example k=3, n =5 
(contd.)

!

Group 1, 3, 4
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Example for (k=3,n=5) 

�We give to each user a fragment among 
� (1,547), (2,629), (3,394), (4,839), (5,967) 

�Assume users with fragments 1,3,4 want to 
reconstruct the secret 
� They compute g(0) 
𝑔 0 = 547 −3

1 − 3
−4
1 − 4 + 394 −1

3 − 1
−4
3 − 4 + 839 −1

4 − 1
−3
4 − 3  

𝑔 0 = 547 ∗ 2 − 394 ∗ 2 + 839 = 1145 
𝑔 0   𝑚𝑜𝑑  997 = 148 

Arnaud Legout © 2006-2012 
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Example for (k=3,n=5) 

�The secret is D=148 
�Let’s  take   

� p=997 (prime), a1=59 (random), a2=340(random) 
� g(x)=148 + 59x + 340x2 

�We compute 5 fragments 
� D1 = g(1) mod 997= 547 
� D2 = g(2) mod 997 = 1626 mod 997 = 629 
� D3 = g(3) mod 997 = 3385 mod 997 = 394 
� D4 = g(4) mod 997 = 5824 mod 997 = 839 
� D5 = g(5) mod 997 = 8943 mod 997 = 967 
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Example k=3, n =5 
(contd.)

To compute it, we took D = 148, p = 997 
a prime number, and the polynomial 
 

Such that
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�The secret is D=148 
�Let’s  take   

� p=997 (prime), a1=59 (random), a2=340(random) 
� g(x)=148 + 59x + 340x2 

�We compute 5 fragments 
� D1 = g(1) mod 997= 547 
� D2 = g(2) mod 997 = 1626 mod 997 = 629 
� D3 = g(3) mod 997 = 3385 mod 997 = 394 
� D4 = g(4) mod 997 = 5824 mod 997 = 839 
� D5 = g(5) mod 997 = 8943 mod 997 = 967 
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Shamir’s (k,n) Threshold 
Scheme (contd.)

The size of each fragment does not exceeds the size of 
the secret 

as long as p is chosen of the same order as the 
secret 

Possible to generate new fragments at any time, 
without altering the others 

Possible to construct hierarchies by attributing more or 
less fragments 

the boss has k fragments, the subaltern has k/2, … 

No assumption as apposed to cryptographic functions
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Anonymity
Alice wants to send a message to Bob 

Communications are unsecured 

Nobody can know who is the sender 
(not even Bob) 

Nobody can know who is the receiver 

Nobody else Bob can retrieve the 
message

���169



Mix
Objectives of a mix 

Hide correspondences between 
incoming and outgoing messages 

Not possible to map a source and an 
outgoing message (apart for the mix) 

No possible to map a receiver and an 
incoming message (apart for the mix)

���170



Mix (contd.)

If the mix cannot be fully trusted, use a 
cascade of mixes 

It works as long as untrusted mixes do 
not collaborate all together
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Chaum-net
Allow to send a sealed message via a 
cascade of mixes 

In an overlay, each participant has a 
private/public key pair 

Alice randomly choses a few of them (e.g., 
3) to be mixes 

Alice recursively encrypt the message with 
the public key of each mixes she selected

���172



Chaum-net example
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