
Is the future of
network software?

Damien Saucez
Inria

March 2015

Agenda

Software Defined Networking (SDN)

The network as a blackbox

Trade routing for efficiency

SDN changes the networking ecosystem

2

Networking reached an
industrial level

3
[http://wonderfulengineering.com/inside-the-data-center-where-google-stores-all-its-data-pictures/]

Networks are complex…
Enterprise and datacenter networks are complex entities
because of

their scale (tens of thousands of devices, millions of virtual
machines, spread around the globe);

their feature set (e.g., security, traffic optimisation…);

seamless mobility (e.g., smartphones, virtual machines…);

management policies (e.g., users must see the same
network wherever they are connected, run where
electricity is the cheapest).

4

Networking technology is at
the middle age of CS

Networks are managed by configuration but

each protocol has its own configuration set,

each constructor has its own configuration
language,

it is hard to construct configurations that support
all the possible cases.

5

Networking technology is at
the middle age of CS

No abstraction is used so the operator needs

to know the very details of the topology (e.g., link
capacity, IP addresses…),

to understand how protocols interact.

6

Networking technology is at
the middle age of CS

No abstraction is used so the operator needs

to know the very details of the topology (e.g., link
capacity, IP addresses…),

to understand how protocols interact.

6

Yes, as if you implemented everything in assembly
language!

Software Defined
Networking (SDN)

7

Concept of SDN

SDN conceives the network as a program.

Operators do not configure the network, they
program it.

Operators do not interact directly with devices.

Network logic is implemented by humans but
network elements are never touched by humans.

8

Concept of SDN

SDN conceives the network as a program.

Operators do not configure the network, they
program it.

Operators do not interact directly with devices.

Network logic is implemented by humans but
network elements are never touched by humans.

8

OpenFlow as an instance of SDN

Roles separation
Programmability of network is reach by decoupling
control plane from data plane:

network elements are elementary switches,

the intelligence is implemented by a logically
centralised controller

• that manages the switches (i.e., install
forwarding rules).

9

Traditional approach  
 
 
 
 
 
 
 
 

 OpenFlow approach

Roles separation

10

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Data-plane Data-plane

Data-plane Data-plane

Control-plane

Cost reduction with COTS
Data-plane devices only perform forwarding:

simple memory structures,

simple instruction set,

easy virtualisation.

The control plane runs on x86.

No vendor lock-in.

11

An API to program the
network

12

Southbound interface

Ap
pl

ic
at

io
n

pl
an

e
C

on
tro

l p
la

ne

D
at

a
pl

an
e

Northbound interface

Southbound interface with
OpenFlow

13

AliceBob

Controller

Southbound interface with
OpenFlow

13

AliceBob

to Bob

Controller

Southbound interface with
OpenFlow

13

AliceBob

to Bob

Controller

Southbound interface with
OpenFlow

13

AliceBob

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

Controller

Southbound interface with
OpenFlow

13

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

Controller

Southbound interface with
OpenFlow

13

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

rules: {predicate: ,  
 action: go West}

to Bob

Controller

rules: {predicate: ,  
 action: go South-West}

to Bob

Southbound interface with
OpenFlow

13

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

AliceBob

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

rules: {predicate: ,  
 action: go West}

to Bob

Controller

rules: {predicate: ,  
 action: go South-West}

to Bob

The network as a
blackbox

14

SDN brings abstraction

The network is a black box [NST+14, NSB+15] and
the operator

only specifies its endpoint policy, no routing
policy anymore (i.e., where not how),

sees it as a system with infinite resources (like a
computer for an application).

15

[NST+14] Optimizing rules placement in OpenFlow networks: trading routing for better efficiency, X. N. Nguyen, D. Saucez, T. Turletti,
and C. Barakat, in Proc. ACM SIGCOMM HotSDN workshop, August 2014. !

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, X.N. Nguyen,
D. Saucez, C. Barakat and T. Turletti, to appear in IEEE INFOCOM 2015, April 2015.

SDN brings abstraction

The network is a black box [NST+14, NSB+15] and
the operator

only specifies its endpoint policy, no routing
policy anymore (i.e., where not how),

sees it as a system with infinite resources (like a
computer for an application).

15

[NST+14] Optimizing rules placement in OpenFlow networks: trading routing for better efficiency, X. N. Nguyen, D. Saucez, T. Turletti,
and C. Barakat, in Proc. ACM SIGCOMM HotSDN workshop, August 2014. !

[NSB+15] OFFICER: A general Optimization Framework for OpenFlow Rule Allocation and Endpoint Policy Enforcement, X.N. Nguyen,
D. Saucez, C. Barakat and T. Turletti, to appear in IEEE INFOCOM 2015, April 2015.

Networks do not have infinite resources

Anatomy of a flow table
A flow table is a partially ordered set of rules

A rule is a tuple composed of

a predicate to define equivalence classes (i.e.,
flows)

an action to be applied on every packet of the
same class

16

Predicate Action Priority
IP.destination = bob ^ tcp.destination_port = HTTP forward to West 10

TRUE forward to South 0

Flow tables are too small

Rule space is large, ,

because of the flexibility offered by OpenFlow.

Flow table size on COTS is small, ,

because TCAM is expensive and power hungry.

17

O(109)

O(104)

How to deal with small flow
tables?

Eviction (e.g., LRU) [VPMB14]

remove the least interesting rule when a new rule
must be added.

Compression [CMT+11,IMS13]

build rules so to minimise their number.

Split and distribute [KHK12,NST+14]

distribute the rules in network.

18

Trade routing for
efficiency

19

Two policies

Endpoint policy

specifies where packets must be eventually
delivered.

Routing policy

specifies the paths that the packets must follow
to be eventually delivered.

20

Two policies

Endpoint policy

specifies where packets must be eventually
delivered.

Routing policy

specifies the paths that the packets must follow
to be eventually delivered.

20

Routing is an artefact that can be ignored

Let the network auto(-magically) construct flow
tables so to satisfy endpoint policy under resource
constraints.

Our objective

21

Objective

Find the binary allocation matrix stating
whether or not flow must be transported over
link

that maximises the network utility function ,

according to the endpoint policy that
specifies the set of egress points where a given
flow can be delivered.

22

|F |⇥ |L| A
f 2 F

l 2 L

F(A, · · ·)

E(f)

f

Policies: packets must exit the network at one valid
egress point.

Bandwidth: do not exceed link capacity.

Memory: do not saturate switches flow table.

Loops: avoid loops.

Realism: the solution must be implementable and
deployable in real networks.

Constraints to respect

23

NP-hardness

The rule allocation problem defined to maximise
network utility satisfaction is NP-hard [NSB+15].

0-1 Knapsack problem

24

NP-hardness

The rule allocation problem defined to maximise
network utility satisfaction is NP-hard [NSB+15].

0-1 Knapsack problem

24

Trying to find the optimal does invalidate the realism
constraint

Leverage default path

25

A B

default path

Leverage default path

25

A B

default
default path

Leverage default path

25

A B

default
default path

No knowledge about B needed

Leverage default path

25

A B

default
default path

No knowledge about B needed

No knowledge
about A needed

OFFICER greedy
heuristic

Following the default path induces no signalling/
memory cost.

Follow as much as possible the default path but
eventually deflect packets to one of their egress
points [NSB+15].

26

O (n log n)

Deflection point strategies
!

CF: closest first.

CE: close to egress.

FF: farthest first.

27

OFFICER greedy
heuristic

28

O (n log n)

Fig. 2: Deflection techniques illustrated with 3 deflection
strategies.

Algorithm 1 OFFICER
INPUT: flow weights collection W : F ⇥ E ! R+, set of
network switches S, set of links L+, set of default path per flow
DefaultPath, a default path is a set of switches, annotated
with a rank, on the path towards the controller.
OUTPUT: A, a |F |-by-|L+| binary matrix

1: A [0]F.L+

2: M sort(W,descending)
3: for all (f, e) 2M do
4: sequence sort(DefaultPath(f), ascending)
5: for all s 2 sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

path to the egress point. The rank associated to each switch on
a default path is computed according to a user-defined strategy.
Three possible strategies are:

• Closest first (CF): as close as possible of the ingress link
of the flow.

• Farthest first (FF): as close as possible of the controller.
• Closest to edge first (CE): as close as possible of the

egress link.
In CF (resp. FF) the weight of a switch on the path is then

the number of hops between the ingress link (resp. controller)
and the switch. On the contrary, the weight of a switch with CE
is the number of hops separating it from the egress point. The
deflection techniques and the three strategies are summarized
in Fig. 2.

2) Greedy algorithm: Algorithm 1 gives the pseudo-code
of our heuristic, called OFFICER, constructed around the
deflection technique described in Sec. III-C1. The algorithm is
built upon the objective function in (11) that aims at maximizing
the overall weight of flows eventually leaving the network at
their preferred egress point. The algorithm is greedy in the
sense that it tries to install flows with the highest weight first
and fill the remaining resources with less valuable flows. The
rationale being that the flows with the highest weight account
the most for the total reward of the network according to
Eq. (11).

Line 2 constructs an order between the flows and their
associated egress points according to their weights such that
the greedy placement starts with the most valuable flow-egress
option. Line 4 determines the sequence of switches along the

default path that the algorithm will follow to greedily determine
from which switch the flow is diverted from the default path
to eventually reach the selected egress point.

The canAllocate(A, f, e, s) function determines whether
or not flow f can be deflected to egress point e at switch s

according to memory, links, and routing constraints. Thanks
to constraint (8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the
allocate(A, f, e, s) function installs rules on the switches
towards the egress point by setting af,l = 1 for all l on the
shortest path from the deflection point to the egress point. If
there are many possible shortest paths, the allocate function
selects the path with minimum average load over all links on
that path.

When the number of flows is very large w.r.t. the number
of switches and the number of links, which is the common
case, the asymptotic time complexity3 of the greedy algorithm
is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortu-
nately, even with the polynomial time heuristic, computing an
allocation matrix may be challenging, since this matrix is the
direct product of the number of flows and links. For example,
in data-center networks both the number of links and flows can
be very large ([11]). With thousands of servers, if flows are
defined by their TCP/IP 4-tuple, the matrix can be composed
of tens of millions of entries. A way to reduce the size of the
allocation matrix is to ignore the small flows that, even if they
are numerous, do not account for a large amount of traffic and
can hence be threaded by the controller.

IV. EVALUATION

In this section, we evaluate our model and heuristic for the
particular case of memory constrained networks as defined in
Sec. III, for Internet Service Provider (ISP) and Data Center
(DC) networks. We selected these two particular deployment
scenarios of OpenFlow for their antagonism. On the one hand,
ISP networks tend to be built organically and follow the
evolution of their customers [12]. On the other hand, DC
networks are methodically structured and often present a high
degree of symmetry [13]. Moreover, while workload in both
cases is heavy-tailed with a few flows accounting for most of
the traffic, DCs exhibit more locality dependency in their traffic
with most of communications remaining confined between hosts
of the same rack [11].

A. Methodology
We use numerical simulations to evaluate the costs and

benefits of relaxing the routing policy in a memory constrained
OpenFlow network. There are four main factors that can influ-
ence the allocation matrix: the topology, the traffic workload,
the controller placement, and the allocation algorithm.

1) Topologies: For both ISP and DC cases we consider
two topologies, a small one and a large one. As an example
of small topology for ISP we use the Abilene [14] network
(labeled Abilene in the remaining of the paper) with 100

3It is worth to notice that we assume that the algorithm to construct the
DefaultPath input is O(|F |) when the number of flows is large.

OFFICER greedy
heuristic

28

O (n log n)

Fig. 2: Deflection techniques illustrated with 3 deflection
strategies.

Algorithm 1 OFFICER
INPUT: flow weights collection W : F ⇥ E ! R+, set of
network switches S, set of links L+, set of default path per flow
DefaultPath, a default path is a set of switches, annotated
with a rank, on the path towards the controller.
OUTPUT: A, a |F |-by-|L+| binary matrix

1: A [0]F.L+

2: M sort(W,descending)
3: for all (f, e) 2M do
4: sequence sort(DefaultPath(f), ascending)
5: for all s 2 sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

path to the egress point. The rank associated to each switch on
a default path is computed according to a user-defined strategy.
Three possible strategies are:

• Closest first (CF): as close as possible of the ingress link
of the flow.

• Farthest first (FF): as close as possible of the controller.
• Closest to edge first (CE): as close as possible of the

egress link.
In CF (resp. FF) the weight of a switch on the path is then

the number of hops between the ingress link (resp. controller)
and the switch. On the contrary, the weight of a switch with CE
is the number of hops separating it from the egress point. The
deflection techniques and the three strategies are summarized
in Fig. 2.

2) Greedy algorithm: Algorithm 1 gives the pseudo-code
of our heuristic, called OFFICER, constructed around the
deflection technique described in Sec. III-C1. The algorithm is
built upon the objective function in (11) that aims at maximizing
the overall weight of flows eventually leaving the network at
their preferred egress point. The algorithm is greedy in the
sense that it tries to install flows with the highest weight first
and fill the remaining resources with less valuable flows. The
rationale being that the flows with the highest weight account
the most for the total reward of the network according to
Eq. (11).

Line 2 constructs an order between the flows and their
associated egress points according to their weights such that
the greedy placement starts with the most valuable flow-egress
option. Line 4 determines the sequence of switches along the

default path that the algorithm will follow to greedily determine
from which switch the flow is diverted from the default path
to eventually reach the selected egress point.

The canAllocate(A, f, e, s) function determines whether
or not flow f can be deflected to egress point e at switch s

according to memory, links, and routing constraints. Thanks
to constraint (8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the
allocate(A, f, e, s) function installs rules on the switches
towards the egress point by setting af,l = 1 for all l on the
shortest path from the deflection point to the egress point. If
there are many possible shortest paths, the allocate function
selects the path with minimum average load over all links on
that path.

When the number of flows is very large w.r.t. the number
of switches and the number of links, which is the common
case, the asymptotic time complexity3 of the greedy algorithm
is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortu-
nately, even with the polynomial time heuristic, computing an
allocation matrix may be challenging, since this matrix is the
direct product of the number of flows and links. For example,
in data-center networks both the number of links and flows can
be very large ([11]). With thousands of servers, if flows are
defined by their TCP/IP 4-tuple, the matrix can be composed
of tens of millions of entries. A way to reduce the size of the
allocation matrix is to ignore the small flows that, even if they
are numerous, do not account for a large amount of traffic and
can hence be threaded by the controller.

IV. EVALUATION

In this section, we evaluate our model and heuristic for the
particular case of memory constrained networks as defined in
Sec. III, for Internet Service Provider (ISP) and Data Center
(DC) networks. We selected these two particular deployment
scenarios of OpenFlow for their antagonism. On the one hand,
ISP networks tend to be built organically and follow the
evolution of their customers [12]. On the other hand, DC
networks are methodically structured and often present a high
degree of symmetry [13]. Moreover, while workload in both
cases is heavy-tailed with a few flows accounting for most of
the traffic, DCs exhibit more locality dependency in their traffic
with most of communications remaining confined between hosts
of the same rack [11].

A. Methodology
We use numerical simulations to evaluate the costs and

benefits of relaxing the routing policy in a memory constrained
OpenFlow network. There are four main factors that can influ-
ence the allocation matrix: the topology, the traffic workload,
the controller placement, and the allocation algorithm.

1) Topologies: For both ISP and DC cases we consider
two topologies, a small one and a large one. As an example
of small topology for ISP we use the Abilene [14] network
(labeled Abilene in the remaining of the paper) with 100

3It is worth to notice that we assume that the algorithm to construct the
DefaultPath input is O(|F |) when the number of flows is large.

Try most promising flows first.

OFFICER greedy
heuristic

28

O (n log n)

Fig. 2: Deflection techniques illustrated with 3 deflection
strategies.

Algorithm 1 OFFICER
INPUT: flow weights collection W : F ⇥ E ! R+, set of
network switches S, set of links L+, set of default path per flow
DefaultPath, a default path is a set of switches, annotated
with a rank, on the path towards the controller.
OUTPUT: A, a |F |-by-|L+| binary matrix

1: A [0]F.L+

2: M sort(W,descending)
3: for all (f, e) 2M do
4: sequence sort(DefaultPath(f), ascending)
5: for all s 2 sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

path to the egress point. The rank associated to each switch on
a default path is computed according to a user-defined strategy.
Three possible strategies are:

• Closest first (CF): as close as possible of the ingress link
of the flow.

• Farthest first (FF): as close as possible of the controller.
• Closest to edge first (CE): as close as possible of the

egress link.
In CF (resp. FF) the weight of a switch on the path is then

the number of hops between the ingress link (resp. controller)
and the switch. On the contrary, the weight of a switch with CE
is the number of hops separating it from the egress point. The
deflection techniques and the three strategies are summarized
in Fig. 2.

2) Greedy algorithm: Algorithm 1 gives the pseudo-code
of our heuristic, called OFFICER, constructed around the
deflection technique described in Sec. III-C1. The algorithm is
built upon the objective function in (11) that aims at maximizing
the overall weight of flows eventually leaving the network at
their preferred egress point. The algorithm is greedy in the
sense that it tries to install flows with the highest weight first
and fill the remaining resources with less valuable flows. The
rationale being that the flows with the highest weight account
the most for the total reward of the network according to
Eq. (11).

Line 2 constructs an order between the flows and their
associated egress points according to their weights such that
the greedy placement starts with the most valuable flow-egress
option. Line 4 determines the sequence of switches along the

default path that the algorithm will follow to greedily determine
from which switch the flow is diverted from the default path
to eventually reach the selected egress point.

The canAllocate(A, f, e, s) function determines whether
or not flow f can be deflected to egress point e at switch s

according to memory, links, and routing constraints. Thanks
to constraint (8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the
allocate(A, f, e, s) function installs rules on the switches
towards the egress point by setting af,l = 1 for all l on the
shortest path from the deflection point to the egress point. If
there are many possible shortest paths, the allocate function
selects the path with minimum average load over all links on
that path.

When the number of flows is very large w.r.t. the number
of switches and the number of links, which is the common
case, the asymptotic time complexity3 of the greedy algorithm
is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortu-
nately, even with the polynomial time heuristic, computing an
allocation matrix may be challenging, since this matrix is the
direct product of the number of flows and links. For example,
in data-center networks both the number of links and flows can
be very large ([11]). With thousands of servers, if flows are
defined by their TCP/IP 4-tuple, the matrix can be composed
of tens of millions of entries. A way to reduce the size of the
allocation matrix is to ignore the small flows that, even if they
are numerous, do not account for a large amount of traffic and
can hence be threaded by the controller.

IV. EVALUATION

In this section, we evaluate our model and heuristic for the
particular case of memory constrained networks as defined in
Sec. III, for Internet Service Provider (ISP) and Data Center
(DC) networks. We selected these two particular deployment
scenarios of OpenFlow for their antagonism. On the one hand,
ISP networks tend to be built organically and follow the
evolution of their customers [12]. On the other hand, DC
networks are methodically structured and often present a high
degree of symmetry [13]. Moreover, while workload in both
cases is heavy-tailed with a few flows accounting for most of
the traffic, DCs exhibit more locality dependency in their traffic
with most of communications remaining confined between hosts
of the same rack [11].

A. Methodology
We use numerical simulations to evaluate the costs and

benefits of relaxing the routing policy in a memory constrained
OpenFlow network. There are four main factors that can influ-
ence the allocation matrix: the topology, the traffic workload,
the controller placement, and the allocation algorithm.

1) Topologies: For both ISP and DC cases we consider
two topologies, a small one and a large one. As an example
of small topology for ISP we use the Abilene [14] network
(labeled Abilene in the remaining of the paper) with 100

3It is worth to notice that we assume that the algorithm to construct the
DefaultPath input is O(|F |) when the number of flows is large.

Try most promising flows first.
Try most promising 
deflection point first.

Trading routing for better
efficiency

Trace based simulations on ISP and data-center
topologies show that the black box approach:

improves network resource utilisation

without severely altering performance (i.e.,
negligible path stretch).

Reaching optimality is expensive (i.e., small
marginal gain while increasing network resources).

29

Marginal gain of increasing memory
decreases with the total memory

30

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Marginal gain of increasing memory
decreases with the total memory

30

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

2x capacity, 20%

Pre-Conclusion
Software Defined Networking to conceive networks
as programs instead of set of devices to manually
configure.

We propose to make the network a black box.

Hiding the network to operators gives flexibility but
stresses the physical infrastructure.

Need to define algorithms to map the objective to
a realisation.

31

Pre-Conclusion
Software Defined Networking to conceive networks
as programs instead of set of devices to manually
configure.

We propose to make the network a black box.

Hiding the network to operators gives flexibility but
stresses the physical infrastructure.

Need to define algorithms to map the objective to
a realisation.

31

Techniques never decided anything in networking…

SDN changes the
networking ecosystem

32

[http://blogs.cisco.com/news/open-standards-open-source-open-loop]

Standardisation vs
Softwarisation

Standards Development Organization (SDO) (e.g.,
IETF, ITU-T) drive networking industry since 40
years.

Well established gouvernance.

Open Source Software (OSS) projects produce
softwares.

No gouvernance.

33

Time scales
2+ year to draft paper specifications in SDOs.

Consensus is hard to get,

validation is tedious.

1 year to think, design and implement a software in
OSS.

Focus on one technical objective.

34

The risks with SDOs
SDOs gouvernance provides

efficient integrated development and maintenance processes,

broad and long term vision of the problem

concentration of efforts.

SDOs are old gigantic institutions

averse to changes,

slow to react,

hard to enter for new actors.

35

The risks with OSS
OSS are agile and quickly respond to needs.

OSS lack of gouvernance causes

security flaws,

small fragmented communities (little funding,
dogmatic vision),

uncertainty of maintenance.

36

SDN pushes towards OSS
Without SDN:

network algorithm implementations are bound to the device supporting them,

hardware and software producers are the same companies.

Hard for new actors to enter the market.

With SDN:

network algorithm implementation are independent of the hardware,

hardware and software producers are different companies.

Any innovative actor can enter the market easily.

➡ Costs reduction.

37

SDN pushes towards OSS
Without SDN:

network algorithm implementations are bound to the device supporting them,

hardware and software producers are the same companies.

Hard for new actors to enter the market.

With SDN:

network algorithm implementation are independent of the hardware,

hardware and software producers are different companies.

Any innovative actor can enter the market easily.

➡ Costs reduction.

37

SDOs and OSS must form a collaborative loop

Is the future of
network software?

Damien Saucez
Inria

March 2015

References

39

VI. RELATED WORK

Rule allocation in OpenFlow has been largely covered over
the last years. Part of the related work proceeds by local
optimization on switches to increase their efficiency in handling
the installed rules. The other part, which is more relevant to
our work, solves the problem network-wide and produces a
set of compressed rules together with their placement. Our
present research builds upon this rich research area and presents
an original model, together with its solution, for the rule
allocation problem where the routing can be relaxed for the
only objective of placing as many as rules as possible that
respect the predefined endpoint policy.

For the first part, several mechanisms based on wildcard rules
have been proposed to minimize the rule space consumption
on switches as well as to limit the signaling overhead between
switches and controller. DevoFlow [18] uses wildcard rules
to handle short flows locally on switches. DomainFlow [19]
divides the network into one domain using wildcard rules and
another domain using exact matching rules. SwitchReduce [20]
proposes to compress all rules that have the same actions into
a wildcard rule with the exception of the first hop switch.

To reduce further memory usage, latest versions of OpenFlow
support pipelining and multi-level flow tables [21]. Conse-
quently, the large forwarding table is split in a hierarchy
of smaller tables that can be combined to build complex
forwarding rules with less entries However, even though these
techniques improve memory usage, they do not remove the
exponential growth of state with the number of flows and nodes
in the network.

As for the second part, some works suggest to use special
devices to perform rule placement. DIFANE [22] places the
most important rules at some additional devices, called authority
switches. Then, ingress switches redirect unmatching packets
towards these specific devices, which enables reducing load
on the controller and, at the same time, decreasing the number
of rules required to be stored on ingress switches. vCRIB [23]
installs rules on both hypervisors and switches to increase
performance while limiting resource usage. Other works
optimize rule allocation on switches themselves. Palette [10]
and OneBigSwitch [1] produce the aggregated rule sets that
satisfy the endpoint policy and place them on switches while
respecting the routing policy and minimizing the resources.
However both Palette and OneBigSwitch cannot be used in
scenarios where resources are missing to satisfy the endpoint
policy. In [24], the rule allocation is modeled as a constrained
optimization problem focusing on the minimization of the
overall energy consumption of switches. Finally, the authors
in [7] propose a network-wide optimization to place as many
rule as possible under memory and link capacity constraints.

While the related works presented above focus on particular
aspects of the rule allocation problem in OpenFlow, with
OFFICER we are the first to propose a general solution that
is able to cope with endpoint and routing policies, network
constraints, and high-level operational objectives.

VII. CONCLUSION

We presented in this work a new algorithm called OFFICER
for rule allocation in OpenFlow. Starting from a set of endpoint
policies to satisfy, OFFICER respects as many of these policies
as possible within the limit of available network resources
both on switches and links. The originality of OFFICER is in
its capacity to relax the routing policy inside the network
for the objective of obtaining the maximum in terms of
endpoint policies. OFFICER is based on an integer linear
optimization model and a set of heuristics to approximate the
optimal allocation in polynomial time. The gain from OFFICER
was shown by numerical simulations over realistic network
topologies and traffic traces.

REFERENCES

[1] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ’One Big
Switch’ Abstraction in Software-Defined Networks,” in ACM CoNEXT,
Dec. 2013.

[2] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics,
vol. 16, pp. 87–90, 1958.

[3] M. Thorup and U. Zwick, “Compact routing schemes,” in SPAA, 2001.
[4] S. e. a. Jain, “B4: Experience with a globally-deployed software defined

WAN,” in ACM SIGCOMM, 2013.
[5] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,

“Fastpass: A Centralized Zero-Queue Datacenter Network,” in ACM
SIGCOMM, August 2014.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, Mar. 2008.

[7] X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing Rules
Placement in OpenFlow Networks: Trading Routing for Better Efficiency,”
in ACM HotSDN, Apr. 2014.

[8] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last longer
with viaggre,” in USENIX NSDI, Berkeley, CA, USA, 2009, pp. 453–466.

[9] X. Jin, H. Liu, R. Gandhi, and S. Kandula, “Dynamic Scheduling of
Network Updates,” in ACM SIGCOMM, 2014.

[10] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, Apr. 2013, pp. 545–549.

[11] T. Benson, A. Akella, and D. a. Maltz, “Network traffic characteristics
of data centers in the wild,” IMC, 2010.

[12] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” SIGCOMM CCR, vol. 32, no. 4, pp. 133–145, 2002.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM, 2008.

[14] “Abilene,” http://http://sndlib.zib.de.
[15] L. Saino, C. Cocora, and G. Pavlou, “A Toolchain for Simplifying

Network Simulation Setup,” in SIMUTOOLS, 2013.
[16] P. Wette, A. Schwabe, F. Wallaschek, M. H. Zahraee, and H. Karl,

“MaxiNet: Distributed Emulation of Software-Defined Networks,” in
IFIP Networking Conference, 2014.

[17] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in ACM HotSDN, 2012, pp. 7–12.

[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: scaling flow management for high-performance
networks,” SIGCOMM CCR, vol. 41, no. 4, pp. 254–265, Aug. 2011.

[19] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi, O. Shiraki, and
T. Shimizu, “Domainflow: Practical flow management method using
multiple flow tables in commodity switches,” in ACM CoNEXT, 2013.

[20] A. Iyer, V. Mann, and N. Samineni, “Switchreduce: Reducing switch state
and controller involvement in openflow networks,” in IFIP Networking
Conference, 2013.

[21] “OpenFlow Switch Specification,” http://www.opennetworking.org/.
[22] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with DIFANE,” SIGCOMM CCR, 2010.
[23] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “Vcrib: Virtualized

rule management in the cloud,” in USENIX HotCloud, 2012.
[24] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing Rule Placement

in Software-Defined Networks for Energy-aware Routing,” in IEEE
GLOBECOM, 2014.

VI. RELATED WORK

Rule allocation in OpenFlow has been largely covered over
the last years. Part of the related work proceeds by local
optimization on switches to increase their efficiency in handling
the installed rules. The other part, which is more relevant to
our work, solves the problem network-wide and produces a
set of compressed rules together with their placement. Our
present research builds upon this rich research area and presents
an original model, together with its solution, for the rule
allocation problem where the routing can be relaxed for the
only objective of placing as many as rules as possible that
respect the predefined endpoint policy.

For the first part, several mechanisms based on wildcard rules
have been proposed to minimize the rule space consumption
on switches as well as to limit the signaling overhead between
switches and controller. DevoFlow [18] uses wildcard rules
to handle short flows locally on switches. DomainFlow [19]
divides the network into one domain using wildcard rules and
another domain using exact matching rules. SwitchReduce [20]
proposes to compress all rules that have the same actions into
a wildcard rule with the exception of the first hop switch.

To reduce further memory usage, latest versions of OpenFlow
support pipelining and multi-level flow tables [21]. Conse-
quently, the large forwarding table is split in a hierarchy
of smaller tables that can be combined to build complex
forwarding rules with less entries However, even though these
techniques improve memory usage, they do not remove the
exponential growth of state with the number of flows and nodes
in the network.

As for the second part, some works suggest to use special
devices to perform rule placement. DIFANE [22] places the
most important rules at some additional devices, called authority
switches. Then, ingress switches redirect unmatching packets
towards these specific devices, which enables reducing load
on the controller and, at the same time, decreasing the number
of rules required to be stored on ingress switches. vCRIB [23]
installs rules on both hypervisors and switches to increase
performance while limiting resource usage. Other works
optimize rule allocation on switches themselves. Palette [10]
and OneBigSwitch [1] produce the aggregated rule sets that
satisfy the endpoint policy and place them on switches while
respecting the routing policy and minimizing the resources.
However both Palette and OneBigSwitch cannot be used in
scenarios where resources are missing to satisfy the endpoint
policy. In [24], the rule allocation is modeled as a constrained
optimization problem focusing on the minimization of the
overall energy consumption of switches. Finally, the authors
in [7] propose a network-wide optimization to place as many
rule as possible under memory and link capacity constraints.

While the related works presented above focus on particular
aspects of the rule allocation problem in OpenFlow, with
OFFICER we are the first to propose a general solution that
is able to cope with endpoint and routing policies, network
constraints, and high-level operational objectives.

VII. CONCLUSION

We presented in this work a new algorithm called OFFICER
for rule allocation in OpenFlow. Starting from a set of endpoint
policies to satisfy, OFFICER respects as many of these policies
as possible within the limit of available network resources
both on switches and links. The originality of OFFICER is in
its capacity to relax the routing policy inside the network
for the objective of obtaining the maximum in terms of
endpoint policies. OFFICER is based on an integer linear
optimization model and a set of heuristics to approximate the
optimal allocation in polynomial time. The gain from OFFICER
was shown by numerical simulations over realistic network
topologies and traffic traces.

REFERENCES

[1] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ’One Big
Switch’ Abstraction in Software-Defined Networks,” in ACM CoNEXT,
Dec. 2013.

[2] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics,
vol. 16, pp. 87–90, 1958.

[3] M. Thorup and U. Zwick, “Compact routing schemes,” in SPAA, 2001.
[4] S. e. a. Jain, “B4: Experience with a globally-deployed software defined

WAN,” in ACM SIGCOMM, 2013.
[5] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,

“Fastpass: A Centralized Zero-Queue Datacenter Network,” in ACM
SIGCOMM, August 2014.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, Mar. 2008.

[7] X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing Rules
Placement in OpenFlow Networks: Trading Routing for Better Efficiency,”
in ACM HotSDN, Apr. 2014.

[8] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last longer
with viaggre,” in USENIX NSDI, Berkeley, CA, USA, 2009, pp. 453–466.

[9] X. Jin, H. Liu, R. Gandhi, and S. Kandula, “Dynamic Scheduling of
Network Updates,” in ACM SIGCOMM, 2014.

[10] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, Apr. 2013, pp. 545–549.

[11] T. Benson, A. Akella, and D. a. Maltz, “Network traffic characteristics
of data centers in the wild,” IMC, 2010.

[12] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” SIGCOMM CCR, vol. 32, no. 4, pp. 133–145, 2002.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM, 2008.

[14] “Abilene,” http://http://sndlib.zib.de.
[15] L. Saino, C. Cocora, and G. Pavlou, “A Toolchain for Simplifying

Network Simulation Setup,” in SIMUTOOLS, 2013.
[16] P. Wette, A. Schwabe, F. Wallaschek, M. H. Zahraee, and H. Karl,

“MaxiNet: Distributed Emulation of Software-Defined Networks,” in
IFIP Networking Conference, 2014.

[17] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in ACM HotSDN, 2012, pp. 7–12.

[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: scaling flow management for high-performance
networks,” SIGCOMM CCR, vol. 41, no. 4, pp. 254–265, Aug. 2011.

[19] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi, O. Shiraki, and
T. Shimizu, “Domainflow: Practical flow management method using
multiple flow tables in commodity switches,” in ACM CoNEXT, 2013.

[20] A. Iyer, V. Mann, and N. Samineni, “Switchreduce: Reducing switch state
and controller involvement in openflow networks,” in IFIP Networking
Conference, 2013.

[21] “OpenFlow Switch Specification,” http://www.opennetworking.org/.
[22] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with DIFANE,” SIGCOMM CCR, 2010.
[23] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “Vcrib: Virtualized

rule management in the cloud,” in USENIX HotCloud, 2012.
[24] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing Rule Placement

in Software-Defined Networks for Energy-aware Routing,” in IEEE
GLOBECOM, 2014.

Backup

40

• Bandwidth: do not exceed link capacity

!

• Memory: do not saturate switches flow table

• naive compression: no cost when the action is
the same as the default rule

Resource constraints

41

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

• Packets must exit the network at one valid egress
point.

• If it is not possible, they have to be taken care of by
the controller.

Endpoint policy constraints

42

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

Path length constraint

43

Sec. III-A (i.e., the ideal situation). For a fair comparison with
OFFICER, we also aggregate rules with the default path for
these reference points. It is worth noting that the squares are
on the right of the circles confirming so that by relaxing the
routing policy, it is possible to deliver all the flows with less
memory.

Fig. 3 evaluates the proportion of the traffic that can get
their endpoint policy satisfied (i.e., leaving the network at the
preferred egress link) as a function of the switch memory
capacity. In all situations, OFFICER is able to satisfy 100%
of the traffic with less capacity than with a strict shortest path
routing policy. In addition, when the optimal can be computed,
we notice that OFFICER is nearly optimal and is even able to
satisfy almost 100% of the traffic with the minimum switch
capacity. On the contrary, the random allocation behaves poorly
in all situations and requires up to 150% more memory than
OFFICER to cover the same traffic proportion. Also, with only
50% of the minimal memory capacity required to satisfy 100%
of the traffic, OFFICER can already satisfy from 75% to 95%
of the traffic. The marginal gain of increasing the memory is
thus limited.

Relaxing routing policy permits to deliver more traffic as
path diversity is increased but comes at the cost of longer
paths. Fig. 4 depicts the average path stretch (compared to
shortest path in case of infinite memory) as a function of the
capacity. Fig. 4 shows that the path stretch induced by the
optimal placement is negligible in all type of topologies and
is kept small for OFFICER using the CE strategy (i.e., less
than 5%). On the contrary, the random placement significantly
increases path length. In DC topologies, the average path stretch
is virtually equal to 1 (Fig. 4(c) and Fig 4(d)). The reason is
that in DC networks there is a high diversity of shortest path
between node pairs, so it is more likely to find a shortest path
satisfying all constraints than in ISPs topologies. It also worth
noting that in DCs, there are many in-rack communications that
consume less overall memory than out-rack communications,
thus the risk of overloading memory of inter-rack switches is
reduced. Interestingly, even though there is a path stretch, the
overall memory consumption is reduced indicating that it is
compensated by the aggregation with the default rule.

For ISP networks, when the optimal allocation is computed
or approximated with OFFICER, there is a high correlation
(i.e., over 0.9) between the memory required on a switch and
its topological location (e.g., betweeness centrality and node
degree). On the contrary, no significant correlation is observed
in DCs where there are much more in-racks communication
than out-racks communication [16]. This suggests to put
switches with the highest memory capacity at the most central
locations in ISPs and within racks in DCs.

Even though the controller placement is important in
OFFICER as it leverages the default path, Fig. 3 and Fig. 4 do
not show a significant impact of the location of the controller.
Actually, there are so many operational factors that drive the
placement of the controller [17] making from the study of
these factors an interesting research by itself that we leave for
future work.

V. DISCUSSION

With this section we provide a broad discussion on the model
presented in Sec. II as well as the assumptions that drove it.

A. Routing policy

Loose routing policy allows better usage of the network
but comes with the expense of potential high path stretch.
Nevertheless, nothing prevents to add constraints in our model
to account for a particular routing policy. For example, the
constraint 8f 2 F :

P
l2L+ af,l  ↵(f) can be added to

control the maximum path length of each flow. This constraint
binds the path length to an arbitrary value pre-computed by
the operator, with ↵(f) : F ! R. For example, ↵(f) =
h · shortest path length(f) to authorize a maximum path
stretch h (e.g., h = 1.5 authorizes paths to be up to 50% longer
than the corresponding shortest paths).

B. Rule Aggregation

To aggregate two rules having the same forwarding action
into one single rule, a common matching pattern must be found
between the two rules. Constraints (5) and (6) provide a first
step towards rules aggregation: on a switch, if the forwarding
decision for a flow is the same as the default action, the rule
for the flow does not need to be installed. However, a problem
occurs when the common matching pattern also matches for
another rule that has a different action. The latter rule should
not be covered by the aggregating rule as that could create loop
events or incorrect forwarding. Consequently, the construction
of the minimal set of rules in a switch by using aggregation
requires the knowledge of the allocation matrix that, in turn,
will be affected by the aggregation. This risk of non-linearity
is a reason of our assumption that one forwarding rule is used
for at most one flow and explains why we limit aggregation
to the default rule only.

C. Multipath

The model presented in Sec. II assigns one forwarding path
per flow. As a result, all the packets of a flow follow the
same path to the egress link, which ensures that packet arrival
order is maintained. Nevertheless, our model does not prevent
multipath routing. To do so, the pattern matching of a flow to
be forwarded on several paths must be redefined from the one
used in case of one forwarding path. From a network point
of view, the flow will then be seen as multiple flows, one
per matching pattern. Consequently, the optimizer might give
different forwarding paths for packets initially belonging to
the same flow. For example, one can assign a label to packets
when they enter the network and then use labels to decide to
which rule the packet matches. This may increase significantly
the number of rules to be installed in the network and the gain
of having several such paths must be compared to the cost
of having them. In most situations, multipath routing at the
flow level might not be necessary as we are not enforcing any
routing policy in our model, which limits the risk of having
the traffic matching one rule to be enough to saturate one link.

• One can limit the maximum length of the path to the
egress if needed (then it is not really a black box…)

44

45

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

Avoid loop with the flow conservation constraint

!

!

Sanity checks

Network constraints

46

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

Bandwidth: do not exceed link capacity

!

Memory: do not saturate switches flow table

naive compression: no cost when the action is
the same as the default rule

Resource constraints

47

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

Packets must exit the network at one valid egress
point.

If it is not possible, they have to be taken care of by
the controller.

Endpoint policy constraints

48

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S [Se).
L Set of directed links, defined by (s, d) 2 S⇥S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) 2 Se ⇥ S.
The particular ingress link of a flow f 2 F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) 2 S⇥Se.

L+ Set of all directed links (i.e., L+ = L [I [E).
N!(s) ✓ S+ set of incoming neighboring nodes of switch s 2 S

(i.e., neighbors from which s can receive packets).
N (s) ✓ S+ Set of outgoing neighboring nodes of switch s 2 S

(i.e., neighbors towards which s can send packets).
E(f) ✓ E Set of valid egress links for flow f 2 F according to

the endpoint policy.
E⇤(f) ✓ E E⇤(f) = E(f) [⇤, where ⇤ denotes the set of

links attached to the controller.
def(s) 2 S+ Next hop toward the controller from switch s 2 S.
M Total switch memory limitation.
Cs Memory limitation of switch s 2 S.
Bl Capacity of link l 2 L+.
pf Packet rate of flow f 2 F .

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . .).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations
and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

8f 2 F, 8l 2 L

+ : af,l 2 {0, 1} (1)

8f 2 F, 8s 2 S :
X

v2N!(s)

af,(v,s) =
X

v2N (s)

af,(s,v) (2)

8f 2 F : af,l =

(
0 if l 2 I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .

Bandwidth Constraints:

8l 2 L

+ :
X

f2F

pfaf,l  Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.
Memory Constraints:

8s 2 S :
X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  Cs (5)

X

s2S

X

v2N (s)\{def(s)}

X

f2F

af,(s,v)  M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

8f 2 F, 8l 2 E \ E⇤(f) : af,l = 0 (7)

8f 2 F :
X

l2E⇤(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates with a particular use case.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Using OpenFlow may create of a very large set of forwarding
rules to be installed in the network [1], [7], [10]. With current
switch technologies, this large volume of rules poses a memory
scaling problem. Such problem can be approached in two
different ways: either the memory allocation of switches is not
known and the problem is then to minimize the overall memory

Path length constraint

49

Sec. III-A (i.e., the ideal situation). For a fair comparison with
OFFICER, we also aggregate rules with the default path for
these reference points. It is worth noting that the squares are
on the right of the circles confirming so that by relaxing the
routing policy, it is possible to deliver all the flows with less
memory.

Fig. 3 evaluates the proportion of the traffic that can get
their endpoint policy satisfied (i.e., leaving the network at the
preferred egress link) as a function of the switch memory
capacity. In all situations, OFFICER is able to satisfy 100%
of the traffic with less capacity than with a strict shortest path
routing policy. In addition, when the optimal can be computed,
we notice that OFFICER is nearly optimal and is even able to
satisfy almost 100% of the traffic with the minimum switch
capacity. On the contrary, the random allocation behaves poorly
in all situations and requires up to 150% more memory than
OFFICER to cover the same traffic proportion. Also, with only
50% of the minimal memory capacity required to satisfy 100%
of the traffic, OFFICER can already satisfy from 75% to 95%
of the traffic. The marginal gain of increasing the memory is
thus limited.

Relaxing routing policy permits to deliver more traffic as
path diversity is increased but comes at the cost of longer
paths. Fig. 4 depicts the average path stretch (compared to
shortest path in case of infinite memory) as a function of the
capacity. Fig. 4 shows that the path stretch induced by the
optimal placement is negligible in all type of topologies and
is kept small for OFFICER using the CE strategy (i.e., less
than 5%). On the contrary, the random placement significantly
increases path length. In DC topologies, the average path stretch
is virtually equal to 1 (Fig. 4(c) and Fig 4(d)). The reason is
that in DC networks there is a high diversity of shortest path
between node pairs, so it is more likely to find a shortest path
satisfying all constraints than in ISPs topologies. It also worth
noting that in DCs, there are many in-rack communications that
consume less overall memory than out-rack communications,
thus the risk of overloading memory of inter-rack switches is
reduced. Interestingly, even though there is a path stretch, the
overall memory consumption is reduced indicating that it is
compensated by the aggregation with the default rule.

For ISP networks, when the optimal allocation is computed
or approximated with OFFICER, there is a high correlation
(i.e., over 0.9) between the memory required on a switch and
its topological location (e.g., betweeness centrality and node
degree). On the contrary, no significant correlation is observed
in DCs where there are much more in-racks communication
than out-racks communication [16]. This suggests to put
switches with the highest memory capacity at the most central
locations in ISPs and within racks in DCs.

Even though the controller placement is important in
OFFICER as it leverages the default path, Fig. 3 and Fig. 4 do
not show a significant impact of the location of the controller.
Actually, there are so many operational factors that drive the
placement of the controller [17] making from the study of
these factors an interesting research by itself that we leave for
future work.

V. DISCUSSION

With this section we provide a broad discussion on the model
presented in Sec. II as well as the assumptions that drove it.

A. Routing policy

Loose routing policy allows better usage of the network
but comes with the expense of potential high path stretch.
Nevertheless, nothing prevents to add constraints in our model
to account for a particular routing policy. For example, the
constraint 8f 2 F :

P
l2L+ af,l  ↵(f) can be added to

control the maximum path length of each flow. This constraint
binds the path length to an arbitrary value pre-computed by
the operator, with ↵(f) : F ! R. For example, ↵(f) =
h · shortest path length(f) to authorize a maximum path
stretch h (e.g., h = 1.5 authorizes paths to be up to 50% longer
than the corresponding shortest paths).

B. Rule Aggregation

To aggregate two rules having the same forwarding action
into one single rule, a common matching pattern must be found
between the two rules. Constraints (5) and (6) provide a first
step towards rules aggregation: on a switch, if the forwarding
decision for a flow is the same as the default action, the rule
for the flow does not need to be installed. However, a problem
occurs when the common matching pattern also matches for
another rule that has a different action. The latter rule should
not be covered by the aggregating rule as that could create loop
events or incorrect forwarding. Consequently, the construction
of the minimal set of rules in a switch by using aggregation
requires the knowledge of the allocation matrix that, in turn,
will be affected by the aggregation. This risk of non-linearity
is a reason of our assumption that one forwarding rule is used
for at most one flow and explains why we limit aggregation
to the default rule only.

C. Multipath

The model presented in Sec. II assigns one forwarding path
per flow. As a result, all the packets of a flow follow the
same path to the egress link, which ensures that packet arrival
order is maintained. Nevertheless, our model does not prevent
multipath routing. To do so, the pattern matching of a flow to
be forwarded on several paths must be redefined from the one
used in case of one forwarding path. From a network point
of view, the flow will then be seen as multiple flows, one
per matching pattern. Consequently, the optimizer might give
different forwarding paths for packets initially belonging to
the same flow. For example, one can assign a label to packets
when they enter the network and then use labels to decide to
which rule the packet matches. This may increase significantly
the number of rules to be installed in the network and the gain
of having several such paths must be compared to the cost
of having them. In most situations, multipath routing at the
flow level might not be necessary as we are not enforcing any
routing policy in our model, which limits the risk of having
the traffic matching one rule to be enough to saturate one link.

One can limit the maximum length of the path to the
egress if needed (then it is not really a black box…)

Two policies

50

Endpoint policy

specifies where packets must be eventually
delivered.

Routing policy

specifies the paths that the packets must follow
to be eventually delivered.

OpenFlow to separate roles

Programmability of network is reached by
decoupling control plane from data plane:

network elements are elementary switches,

the intelligence is implemented by a logically
centralised controller

• that manages the switches (i.e., install/
remove forwarding rules).

51

OpenFlow with a picture
Traditional approach  
 
 
 
 
 
 
 
 

 OpenFlow approach

52

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Data-plane Data-plane

Data-plane Data-plane

Control-plane

OpenFlow workflow

53

Controller

AliceBob

OpenFlow workflow

53

Controller

AliceBob

to Bob

OpenFlow workflow

53

Controller

AliceBob

to Bob

OpenFlow workflow

53

Controller

W
ha

t a
cti

on f
or

 ?

to
 Bob

AliceBob

to Bob

OpenFlow workflow

53

Controller

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

AliceBob

to Bob

OpenFlow workflow

53

Controller

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

rule: <match: , action: go West>to Bob

AliceBob

to Bob
rules: <match: , action: go South-West>to Bob

OpenFlow workflow

53

Controller

Fo
r

 ,
go

 W
est

to
 BobFor

 ,
go South-West

to Bob

W
ha

t a
cti

on f
or

 ?

to
 Bob

rule: <match: , action: go West>to Bob

AliceBob

to Bob

rules: <match: , action: go South-West>to Bob

The OpenFlow Rules
Placement Problem

54

State of the art
DevoFlow [2], DomainFlow [11], SwitchReduce [5]:
aggressively use wildcard rules to minimise rule
space consumption

DIFANE [16], vCRIB [10]: cache important rules on
additional devices

Palette [8], OneBigSwitch [7]: network-wide
optimisation, predefine the paths based on routing
policy and place rules along these paths

55

State of the art
DevoFlow [2], DomainFlow [11], SwitchReduce [5]:
aggressively use wildcard rules to minimise rule
space consumption

DIFANE [16], vCRIB [10]: cache important rules on
additional devices

Palette [8], OneBigSwitch [7]: network-wide
optimisation, predefine the paths based on routing
policy and place rules along these paths

55

Isn’t that a bit too network’ish?

Assumptions

56

There exists one default point where packets can
always be sent

e.g., OpenFlow controller, default egress point.

Each switch knows how to reach this point

the path to the point is called the default path.

but all packets should be delivered to their
appropriate endpoint instead of the default point.

 greedy heuristic

57

Fig. 2: Deflection techniques illustrated with 3 deflection
strategies.

Algorithm 1 OFFICER
INPUT: flow weights collection W : F ⇥ E ! R+, set of
network switches S, set of links L+, set of default path per flow
DefaultPath, a default path is a set of switches, annotated
with a rank, on the path towards the controller.
OUTPUT: A, a |F |-by-|L+| binary matrix

1: A [0]F.L+

2: M sort(W,descending)
3: for all (f, e) 2M do
4: sequence sort(DefaultPath(f), ascending)
5: for all s 2 sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

path to the egress point. The rank associated to each switch on
a default path is computed according to a user-defined strategy.
Three possible strategies are:

• Closest first (CF): as close as possible of the ingress link
of the flow.

• Farthest first (FF): as close as possible of the controller.
• Closest to edge first (CE): as close as possible of the

egress link.
In CF (resp. FF) the weight of a switch on the path is then

the number of hops between the ingress link (resp. controller)
and the switch. On the contrary, the weight of a switch with CE
is the number of hops separating it from the egress point. The
deflection techniques and the three strategies are summarized
in Fig. 2.

2) Greedy algorithm: Algorithm 1 gives the pseudo-code
of our heuristic, called OFFICER, constructed around the
deflection technique described in Sec. III-C1. The algorithm is
built upon the objective function in (11) that aims at maximizing
the overall weight of flows eventually leaving the network at
their preferred egress point. The algorithm is greedy in the
sense that it tries to install flows with the highest weight first
and fill the remaining resources with less valuable flows. The
rationale being that the flows with the highest weight account
the most for the total reward of the network according to
Eq. (11).

Line 2 constructs an order between the flows and their
associated egress points according to their weights such that
the greedy placement starts with the most valuable flow-egress
option. Line 4 determines the sequence of switches along the

default path that the algorithm will follow to greedily determine
from which switch the flow is diverted from the default path
to eventually reach the selected egress point.

The canAllocate(A, f, e, s) function determines whether
or not flow f can be deflected to egress point e at switch s

according to memory, links, and routing constraints. Thanks
to constraint (8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the
allocate(A, f, e, s) function installs rules on the switches
towards the egress point by setting af,l = 1 for all l on the
shortest path from the deflection point to the egress point. If
there are many possible shortest paths, the allocate function
selects the path with minimum average load over all links on
that path.

When the number of flows is very large w.r.t. the number
of switches and the number of links, which is the common
case, the asymptotic time complexity3 of the greedy algorithm
is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortu-
nately, even with the polynomial time heuristic, computing an
allocation matrix may be challenging, since this matrix is the
direct product of the number of flows and links. For example,
in data-center networks both the number of links and flows can
be very large ([11]). With thousands of servers, if flows are
defined by their TCP/IP 4-tuple, the matrix can be composed
of tens of millions of entries. A way to reduce the size of the
allocation matrix is to ignore the small flows that, even if they
are numerous, do not account for a large amount of traffic and
can hence be threaded by the controller.

IV. EVALUATION

In this section, we evaluate our model and heuristic for the
particular case of memory constrained networks as defined in
Sec. III, for Internet Service Provider (ISP) and Data Center
(DC) networks. We selected these two particular deployment
scenarios of OpenFlow for their antagonism. On the one hand,
ISP networks tend to be built organically and follow the
evolution of their customers [12]. On the other hand, DC
networks are methodically structured and often present a high
degree of symmetry [13]. Moreover, while workload in both
cases is heavy-tailed with a few flows accounting for most of
the traffic, DCs exhibit more locality dependency in their traffic
with most of communications remaining confined between hosts
of the same rack [11].

A. Methodology
We use numerical simulations to evaluate the costs and

benefits of relaxing the routing policy in a memory constrained
OpenFlow network. There are four main factors that can influ-
ence the allocation matrix: the topology, the traffic workload,
the controller placement, and the allocation algorithm.

1) Topologies: For both ISP and DC cases we consider
two topologies, a small one and a large one. As an example
of small topology for ISP we use the Abilene [14] network
(labeled Abilene in the remaining of the paper) with 100

3It is worth to notice that we assume that the algorithm to construct the
DefaultPath input is O(|F |) when the number of flows is large.

O (|F | · log(|F |))

Try most promising flows first.
Try most promising 
deflection point first.

Evaluation setup
Numerical evaluation.

Scenario: Machine-to-machine communications.

Topologies:

ISP (Abilene with 12 nodes; scale free with 100 nodes).

Data center (8-fatTree with 80 nodes; 16-fatTree with 320 nodes).

Workloads: 24 hours workloads generated by traffic generators [15][16].

Focus on the impact of memory ()

uniform distribution of memory.

58

Bl = 1

Evaluation setup (contd.)
Evaluated 3 rule placement algorithms

Optimum (OP),

Heuristic (CE),

Random placement (RP);

and 2 controller placement techniques

Most centralised (MIN),

Least centralised (MAX).

59

Greedy algorithm is close to
optimal

60

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

Greedy algorithm is close to
optimal

60

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Controller location has an
impact

61

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

Controller location has an
impact

61

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

Marginal gain of increasing memory
decreases with the total memory

62

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Marginal gain of increasing memory
decreases with the total memory

62

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

2x capacity, 20%

Path stretch is reasonable

63

Abilene

Capacity = # of entries / # of flows

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

1.0

1.2

1.4

1.6

1.8

2.0
A

v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene

A
v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

(b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 4: Average path stretch of deflected flows

two allocation algorithms:
• Random Placement (RP): The placement is computed

with Algorithm 1. However, flow sets are randomly ranked
and deflection points are randomly selected.

• Optimum (OP): The allocation matrix is computed by
our optimization scheme on CPLEX. 4 Unfortunately, as
computing the optimum is NP-hard, it is impossible to
apply it to the large ISP and large DC topologies.

Because of room constraints, we only present results for
the CE strategy to choose the deflection point. After extensive
evaluation, we concluded that this strategy was outperforming
the two others by consuming less memory resources.

B. Results
We compare the rule allocation obtained with OFFICER

to the optimal allocation obtained with CPLEX and to the
trivial random allocation. We also study the impact of the
controller placement on the allocation. The benefit of OFFICER
is identified as the amount of traffic able to strictly respect the
endpoint policy while the drawback is expressed with the path

4http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

stretch. We also try to understand the link between memory
consumption and switch location in the topology.

In Fig. 3 and Fig. 4, the x-axis gives the normalized total
memory capacity computed as the ratio of the total number
of forwarding entries to install in the network divided by the
number of flows (e.g., a capacity of 2 means that on average
a flow can consume two forwarding entries). Thin curves
refer to results obtained with the controller placed at the most
centralized location (i.e., MIN) while the thick curves refer to
results for the least centralized location (i.e., MAX). The y-axis
indicates the average value and standard deviation over the 24
workloads for the metric of interest. Curves are labeled by the
concatenation of their allocation algorithm acronym (i.e., CE,
RP, and OP) and their controller location (i.e., MIN and MAX).
We further add reference points to indicate the value of the
metric of interest in two well identified situations. On the one
hand, the squares depict what would happen if all the traffic is
delivered to the preferred egress links by strictly following the
shortest path (i.e., the situation today). On the other hand, the
circles identify the situation where all the traffic is correctly
delivered and the memory usage is minimized, according to

Traffic satisfaction vs
memory

64

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

Trading routing reduces
memory consumption

65

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

Trading routing reduces
memory consumption

65

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

tr
a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

Abilene

Capacity = # of entries / # of flows

(a) Abilene (b) ScaleFree

(c) FatTree8 (d) FatTree16

Fig. 3: Proportion of traffic covered

hosts attached randomly to switches. For the large one we use a
synthetic scale-free topology (labeled ScaleFree) composed
of 100 switches with 1000 hosts attached randomly .

The topologies for DC consist of a synthetic fat tree (labeled
FatTree8) with 8 pods and 128 hosts for the small one, and
a synthetic fat tree (labeled FatTree16) with 16 pods and
1024 hosts for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 15 100 O(104)

ScaleFree Large ISP 100 146 1000 O(106)
FatTree8 Small DC 80 256 128 O(104)

FatTree16 Large DC 320 3.46 1024 O(106)

2) Workloads: For each topology, we randomly produce
24 traffic matrices using workload generators [15], [16]. Each
traffic matrix gives the volume of traffic exchanged between any
origin-destination pair of hosts in the topology, for a duration

of one hour. In this evaluation a flow encloses all the traffic
sent from an origin host to a destination host according to
the workload. The volume of the flow is used to define the
normalized value of the flow in the objective function (11) (i.e.,
8f 2 F, 8l 2 E(f) : wf,l = pf). The ingress link of a flow
f 2 F corresponds to its origin host flow and the preferred
egress link corresponds to its destination host.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following

use case 1: 
minimise memory
current case: 
shortest path routing

… and reluctant to changes
Middleboxes are everywhere [SHC+12]

!

!

!

!

very likely that your packet will be touched by a middlebox before
reaching its destination [HNR+11],

Middleboxes limit deployment of new protocols in the Internet [HNR+11].

Middleboxes can be used against user interests.

66 [HNR+11] Honda et al., Is it Still Possible to Extend TCP?
[SHC+12] Sherry et al. 2012. Making middleboxes someone else's problem: network processing as a cloud service

Methodology
Observe:

scrutinise for operational networking problems.

Generalisation:

what is the general problem hidden behind it? Find the root-cause of the problem.

Solve:

design a solution that is as efficient as possible and that can work in practice.

Validate:

experiment the solution with real deployment whenever possible.

Impact:

proof of concept in conferences/workshops followed by complete study in journals;
standardisation and industrial transfers when relevant.

67

