Constraint systems for proof-search modulo a theory J

Damien Rouhling

ENS Lyon

Joint work with M. Farooque, S. Graham-Lengrand, A. Mahboubi and
J.-M. Notin

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 1/19

Context

Automated proof-search
Modulo theories
PSYCHE

Quantifiers handling

Damien Rouhling (ENS Lyon) Constraint systems

LAC, November 21, 2014

2/ 19

Sequent calculus modulo a theory

@ A theory as parameter

@ Some predicate/function symbols are interpreted by the axioms of the
theory

Ix.(P(x+1)= P(2))
o Focused sequent calculus for polarised logic, without quantifiers:

7{_ P 0] Cie E7 P

r P Fie BT

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 3/19

PSYCHE

@ Proof Search factorY for Collaborative HEuristics

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 4/ 19

PSYCHE

Proof Search factorY for Collaborative HEuristics

Modular platform: kernel-plugins-decision procedures interaction

The theory is implemented as a decision procedure checking the
consistency of a set of literals, used at the leaves of the proof-tree

@ Produces proof objects

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 4/ 19

Outline

@ First order proof-search
@ Delaying the instantiation of variables
@ How to close branches

© Constraint systems
@ Constraint-producing system
o Constraint-refining system

Damien Rouhling (ENS Lyon) Constraint systems

LAC, November 21, 2014

5/ 19

Outline

@ First order proof-search

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 6 /19

First order proof-search Delaying the instantiation of variables
First order rules

A M= A[t/x]
FEvxA “FFv o M- ax.A

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 7/ 19

First order proof-search Delaying the instantiation of variables
First order rules

A M= A[t/x]
FEvxA “FFv o M- ax.A

Eigen- and meta-variables:

r I—L_H Alx = epy1] r I—Z”l A [x ::?MH}
M- vx.A rH 3x.A

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 7/ 19

Delaying the instantiation of variables
Example: the drinker paradox

F 3% P (x) = vy P (y)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 /19

Delaying the instantiation of variables
Example: the drinker paradox

FO P (21) = Wy P (y)
F 3% P (x) = vy P (y)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 /19

Delaying the instantiation of variables
Example: the drinker paradox

P (1) F vy P (y)
OV P (21) = vy P (y)
Fl 3x.P (x) = Wy.P (v)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 /19

Delaying the instantiation of variables
Example: the drinker paradox

P (1) H P (er)
P(71) 5 vy.P(y)
F P (71) = Wy P (y)
F 9% P (x) = vy.P(y)

The instantiation 71 := e is forbidden: ?; may not depend on any
eigenvariable

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 /19

First order proof-search How to close branches

Pure first order: closing branches with unification constraints

Idea: use unification to find an adapted instantiation of the meta-variables

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 9/ 19

First order proof-search How to close branches

Pure first order: closing branches with unification constraints

Idea: use unification to find an adapted instantiation of the meta-variables

P(72) F P (F (1) P(f(e) FI"Y P(7)
P s P(F() HP(f(e) = P(1)
HE (P (22) = P(F (7)) A (P (£ (1)) = P (%))
U3y ((P(y) = P(F (1)) A (P(f (e1) = P (%))
H3x 3y (P(y) = P(F () A (P(F (&) = P (x))
HI vz 3x3y. (P (y) = P(F () A (P(f (2)) = P (x)))

o= [?1—"f(e1),?2— f(f(e1))] closes the branches

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 9/ 19

First order proof-search How to close branches

With a theory: closing branches with theory-specific
constraints

Refinement: deal with theory-specific constraints in the mean time using an
abstract constraint structure

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 10 / 19

First order proof-search How to close branches

With a theory: closing branches with theory-specific
constraints

Refinement: deal with theory-specific constraints in the mean time using an
abstract constraint structure

Constraints have a domain: they are local to a branch
A meta-variable can be shared by several branches
We want to propagate and combine constraints

Our goal: get a satisfiable constraint at the root of the tree

e 6 6 o o

A possibility: backtracking

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 10 / 19

First order proof-search How to close branches

Abstract constraint structures

Definition
A constraint structure is:

o a family of sets (W,),: the elements of W, are the constraints of
domain / (the meta-variables with their dependencies)

o a family of projections from W,..; to W, denoted by .|

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 11/ 19

First order proof-search How to close branches

Abstract constraint structures

Definition
A constraint structure is:

o a family of sets (W,),: the elements of W, are the constraints of
domain / (the meta-variables with their dependencies)

o a family of projections from W,..; to V,, denoted by .|

Example (pure first order):

W, is the set of maps of domain / assigning a term to each meta-variable
respecting the dependencies between the variables

Most general unifiers allow to combine two constraints

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 11/ 19

Outline

© Constraint systems

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 12 / 19

Branching

Two possibilities:
@ Explore the two branches in parallel and combine the constraints they
produce
= constraint-producing system
@ The constraint produced by a branch might direct the exploration of
the other one: sequentialize
= constraint-refining system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 13 /19

(ot pre e e
Constraint producing system: meet constraint structures

The constraint structure is refined with a (family of) meet operator(s):
(0,0") = o Ao’ on V¥,

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 14 / 19

(ot pre e e
Constraint producing system: meet constraint structures

The constraint structure is refined with a (family of) meet operator(s):
(0,0") = o Ao’ on V¥,

——— ' Th-o
HT oo
n

I—LF,A—wfl I—LF,B—>02
I—f, NAAB = o1 ANop

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014

14 / 19

(ot pre e e
Example

Fo%2, <2 FDY7 >3 DY <6
HO (2 < 22x) A (2% > 3) A (7x < 6)
FOT 3y (v < 22x) A (2x > 3) A (7x < 6))
Fl 3x 3y (v < 2x) A (x> 3) A (x < 6))

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

(ot pre e e
Example

FOOlo, <97 w0 HFP2 5356, HP2 <60,
HO (2 < 22x) A (2% > 3) A (7x < 6)
FOT 3y (v < 27x) A (2x > 3) A (7x < 6))
F 3x 3y (v < 26) A (x> 3) A (x < 6))

00 = (72 €]-00,2%]), o1 = (?1 €]3, +00[) and o2 = (71 €] -0, 6[)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

(ot pre e e
Example

l_go,o] Py <22)A(Mx >3)A(x<6) oo No1Nop =0
I—([JO] Jy. ((y <22)A(Px >3) A (?x < 6))
I—g] IxTy. ((y <2x) A (x > 3) A (x < 6))

og = (?2 c]—00,2?1[), o1 = (?1 €]3,+OO[) and 0o = (?1 €]_00’6[)
g = (?1 € {4,5},?2 S]—0072?1[)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014

15 / 19

(ot pre e e
Example

FEJ07O]?2 <27 =0y FEO’O]?l >3 = o1 FE)Op]?l <6 - 02

FOO 2y < 22) A (x> 3) A (Px < 6) oo Ao Ao =0
I—BO] Jy. ((y <27x)A (x> 3) A (7x < 6)) >0y
F 3x 3y (v < 20) A (x> 3) A (x < 6)) = ()

1

o0 = (?2 €]_0072?1[)’ o1 = (?1 S]3,+OO[) and 09 = (71 [=]—00’6[)
o= (1€ {4,5},7 €]-00,27%1])
o] = (?1 = {4,5})) (ai)i =0

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

o s
Constraint-refining system: lift constraint structures

The constraint structure is refined with a (family of) lift operator(s):
ool on VY

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 16 / 19

o s
Constraint-refining system: lift constraint structures

The constraint structure is refined with a (family of) lift operator(s):

ool on VY

I /
——— 00 oo
U—>|—f,r—>a’

o-F T, A; = oo oo —=H T A i = o
o—FL T AgAAL — 0’

i€ {0,1}

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014

16 / 19

A word on satisfiability

We want to prove the soundness and completeness of the

constraint-producing (resp. refining) system w.r.t. the system without
delayed instantiation.

In particular, we want the minimal properties on the constraint structure
giving us these equivalences.

A tool: compatibility relations between instantiations and constraints.

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 17 / 19

.
A word on satisfiability

e T, = {ground terms whose eigenvariables are below n}
It is extented to domains: an instantiation on domain / is an element
of T/
o Compatibility relation between p € T; and o € V;: peo such that
» (t: p)eo = peoy
» peoc Ao’ & peo and peo’

@ o is satisfiable if we can find p such that peo

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 17 / 19

Implementation

@ OCaml module for constraint structures in PSYCHE

@ A top constraint (always satisfiable) is required to start the
proof-search

@ Backtracking implies the production of a stream at the leaves

@ Only the empty theory (pure first order) has been implemented in this
framework

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 18 / 19

Conclusion

o Constraint structures allow delayed instantiations

o Sufficient (minimal) axiomatisation to prove soundness and
completeness

@ Backtracking and streams open the doors to subtle strategies in
proof-search

o Still has to be tested

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 19 / 19

	First order proof-search
	Delaying the instantiation of variables
	How to close branches

	Constraint systems
	Constraint-producing system
	Constraint-refining system

