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Context

Sequent calculus modulo a theory

A theory as parameter

Some predicate/function symbols are interpreted by the axioms of the
theory
∃x . (P (x + 1)⇒ P (2))

Focused sequent calculus for polarised logic, without quanti�ers:

Γlit |=T p

Γ `P,p [p]

Γlit |=T
Γ `P
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Context

PSYCHE

Proof Search factorY for Collaborative HEuristics

Modular platform: kernel-plugins-decision procedures interaction

The theory is implemented as a decision procedure checking the
consistency of a set of literals, used at the leaves of the proof-tree

Produces proof objects
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First order proof-search Delaying the instantiation of variables

First order rules

Γ ` A
x /∈ FV (Γ)

Γ ` ∀x .A
Γ ` A [t/x ]

Γ ` ∃x .A

Eigen- and meta-variables:

Γ `ln+1 A [x := en+1]

Γ `ln ∀x .A
Γ `n::l

n A
[
x :=?|l |+1

]
Γ `ln ∃x .A
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First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

`[ ]
0 ∃x .P (x)⇒ ∀y .P (y)
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First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

P (?1) `[0]
1 P (e1)

P (?1) `[0]
0 ∀y .P (y)

`[0]
0 P (?1)⇒ ∀y .P (y)

`[ ]
0 ∃x .P (x)⇒ ∀y .P (y)

The instantiation ?1 := e1 is forbidden: ?1 may not depend on any
eigenvariable
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First order proof-search How to close branches

Pure �rst order: closing branches with uni�cation constraints

Idea: use uni�cation to �nd an adapted instantiation of the meta-variables

P (?2) `[1,1]
1 P (f (?1))

`[1,1]
1 P (?2)⇒ P (f (?1))

P (f (e1)) `[1,1]
1 P (?1)

`[1,1]
1 P (f (e1))⇒ P (?1)

`[1,1]
1 (P (?2)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1))

`[1]
1 ∃y . ((P (y)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1)))

`[ ]
1 ∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (e1))⇒ P (x)))

`[ ]
0 ∀z .∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (z))⇒ P (x)))

σ = [?1 7→ f (e1) , ?2 7→ f (f (e1))] closes the branches
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First order proof-search How to close branches

With a theory: closing branches with theory-speci�c

constraints

Re�nement: deal with theory-speci�c constraints in the mean time using an
abstract constraint structure

Constraints have a domain: they are local to a branch

A meta-variable can be shared by several branches

We want to propagate and combine constraints

Our goal: get a satis�able constraint at the root of the tree

A possibility: backtracking
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First order proof-search How to close branches

Abstract constraint structures

De�nition

A constraint structure is:

a family of sets (Ψl )l : the elements of Ψl are the constraints of
domain l (the meta-variables with their dependencies)

a family of projections from Ψn::l to Ψl , denoted by .↓

Example (pure �rst order):
Ψl is the set of maps of domain l assigning a term to each meta-variable
respecting the dependencies between the variables
Most general uni�ers allow to combine two constraints
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Constraint systems

Outline

1 First order proof-search
Delaying the instantiation of variables
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Constraint systems

Branching

Two possibilities:

Explore the two branches in parallel and combine the constraints they
produce
⇒ constraint-producing system

The constraint produced by a branch might direct the exploration of
the other one: sequentialize
⇒ constraint-re�ning system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 13 / 19



Constraint systems Constraint-producing system

Constraint producing system: meet constraint structures

The constraint structure is re�ned with a (family of) meet operator(s):
(σ, σ′) 7→ σ ∧ σ′ on Ψl

|=l Γlit � σ
`ln Γ � σ

`ln Γ,A � σ1 `ln Γ,B � σ2

`ln Γ,A ∧ B � σ1 ∧ σ2
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Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 `[0,0]

0 ?1 > 3 `[0,0]
0 ?1 < 6

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6)

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[ ]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))
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Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2
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0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6)

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[ ]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))

σ0 = (?2 ∈ ]−∞, 2?1[), σ1 = (?1 ∈ ]3,+∞[) and σ2 = (?1 ∈ ]−∞, 6[)
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Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6) � σ0 ∧ σ1 ∧ σ2 = σ

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[ ]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))

σ0 = (?2 ∈ ]−∞, 2?1[), σ1 = (?1 ∈ ]3,+∞[) and σ2 = (?1 ∈ ]−∞, 6[)
σ = (?1 ∈ {4, 5} , ?2 ∈ ]−∞, 2?1[)
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Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6) � σ0 ∧ σ1 ∧ σ2 = σ

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6)) � σ↓

`[ ]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6)) � (σ↓)↓

σ0 = (?2 ∈ ]−∞, 2?1[), σ1 = (?1 ∈ ]3,+∞[) and σ2 = (?1 ∈ ]−∞, 6[)
σ = (?1 ∈ {4, 5} , ?2 ∈ ]−∞, 2?1[)
σ↓ = (?1 ∈ {4, 5}) , (σ↓)↓ = ∅
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Constraint systems Constraint-re�ning system

Constraint-re�ning system: lift constraint structures

The constraint structure is re�ned with a (family of) lift operator(s):
σ 7→ σ↑ on Ψl

σ �|=l Γlit � σ′

σ �`ln Γ � σ′

σ �`ln Γ,Ai � σ0 σ0 �`ln Γ,A1−i � σ′
i ∈ {0, 1}

σ �`ln Γ,A0 ∧ A1 � σ′
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A word on satis�ability

We want to prove the soundness and completeness of the
constraint-producing (resp. re�ning) system w.r.t. the system without
delayed instantiation.

In particular, we want the minimal properties on the constraint structure
giving us these equivalences.

A tool: compatibility relations between instantiations and constraints.

Tn = {ground terms whose eigenvariables are below n}
It is extented to domains: an instantiation on domain l is an element
of Tl

Compatibility relation between ρ ∈ Tl and σ ∈ Ψl : ρεσ such that
I (t :: ρ) εσ ⇒ ρεσ↓
I ρεσ ∧ σ′ ⇔ ρεσ and ρεσ′

σ is satis�able if we can �nd ρ such that ρεσ
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Implementation

OCaml module for constraint structures in PSYCHE

A top constraint (always satis�able) is required to start the
proof-search

Backtracking implies the production of a stream at the leaves

Only the empty theory (pure �rst order) has been implemented in this
framework
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Conclusion

Conclusion

Constraint structures allow delayed instantiations

Su�cient (minimal) axiomatisation to prove soundness and
completeness

Backtracking and streams open the doors to subtle strategies in
proof-search

Still has to be tested
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