
Constraint systems for proof-search modulo a theory

Damien Rouhling

ENS Lyon

Joint work with M. Farooque, S. Graham-Lengrand, A. Mahboubi and
J.-M. Notin

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 1 / 19

Context

Context

Automated proof-search

Modulo theories

PSYCHE

Quanti�ers handling

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 2 / 19

Context

Sequent calculus modulo a theory

A theory as parameter

Some predicate/function symbols are interpreted by the axioms of the
theory
∃x . (P (x + 1)⇒ P (2))

Focused sequent calculus for polarised logic, without quanti�ers:

Γlit |=T p

Γ `P,p [p]

Γlit |=T
Γ `P

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 3 / 19

Context

PSYCHE

Proof Search factorY for Collaborative HEuristics

Modular platform: kernel-plugins-decision procedures interaction

The theory is implemented as a decision procedure checking the
consistency of a set of literals, used at the leaves of the proof-tree

Produces proof objects

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 4 / 19

Context

PSYCHE

Proof Search factorY for Collaborative HEuristics

Modular platform: kernel-plugins-decision procedures interaction

The theory is implemented as a decision procedure checking the
consistency of a set of literals, used at the leaves of the proof-tree

Produces proof objects

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 4 / 19

Context

Outline

1 First order proof-search
Delaying the instantiation of variables
How to close branches

2 Constraint systems
Constraint-producing system
Constraint-re�ning system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 5 / 19

First order proof-search

Outline

1 First order proof-search
Delaying the instantiation of variables
How to close branches

2 Constraint systems
Constraint-producing system
Constraint-re�ning system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 6 / 19

First order proof-search Delaying the instantiation of variables

First order rules

Γ ` A
x /∈ FV (Γ)

Γ ` ∀x .A
Γ ` A [t/x]

Γ ` ∃x .A

Eigen- and meta-variables:

Γ `ln+1 A [x := en+1]

Γ `ln ∀x .A
Γ `n::l

n A
[
x :=?|l |+1

]
Γ `ln ∃x .A

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 7 / 19

First order proof-search Delaying the instantiation of variables

First order rules

Γ ` A
x /∈ FV (Γ)

Γ ` ∀x .A
Γ ` A [t/x]

Γ ` ∃x .A

Eigen- and meta-variables:

Γ `ln+1 A [x := en+1]

Γ `ln ∀x .A
Γ `n::l

n A
[
x :=?|l |+1

]
Γ `ln ∃x .A

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 7 / 19

First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

`[]
0 ∃x .P (x)⇒ ∀y .P (y)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 / 19

First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

`[0]
0 P (?1)⇒ ∀y .P (y)

`[]
0 ∃x .P (x)⇒ ∀y .P (y)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 / 19

First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

P (?1) `[0]
0 ∀y .P (y)

`[0]
0 P (?1)⇒ ∀y .P (y)

`[]
0 ∃x .P (x)⇒ ∀y .P (y)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 / 19

First order proof-search Delaying the instantiation of variables

Example: the drinker paradox

P (?1) `[0]
1 P (e1)

P (?1) `[0]
0 ∀y .P (y)

`[0]
0 P (?1)⇒ ∀y .P (y)

`[]
0 ∃x .P (x)⇒ ∀y .P (y)

The instantiation ?1 := e1 is forbidden: ?1 may not depend on any
eigenvariable

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 8 / 19

First order proof-search How to close branches

Pure �rst order: closing branches with uni�cation constraints

Idea: use uni�cation to �nd an adapted instantiation of the meta-variables

P (?2) `[1,1]
1 P (f (?1))

`[1,1]
1 P (?2)⇒ P (f (?1))

P (f (e1)) `[1,1]
1 P (?1)

`[1,1]
1 P (f (e1))⇒ P (?1)

`[1,1]
1 (P (?2)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1))

`[1]
1 ∃y . ((P (y)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1)))

`[]
1 ∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (e1))⇒ P (x)))

`[]
0 ∀z .∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (z))⇒ P (x)))

σ = [?1 7→ f (e1) , ?2 7→ f (f (e1))] closes the branches

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 9 / 19

First order proof-search How to close branches

Pure �rst order: closing branches with uni�cation constraints

Idea: use uni�cation to �nd an adapted instantiation of the meta-variables

P (?2) `[1,1]
1 P (f (?1))

`[1,1]
1 P (?2)⇒ P (f (?1))

P (f (e1)) `[1,1]
1 P (?1)

`[1,1]
1 P (f (e1))⇒ P (?1)

`[1,1]
1 (P (?2)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1))

`[1]
1 ∃y . ((P (y)⇒ P (f (?1))) ∧ (P (f (e1))⇒ P (?1)))

`[]
1 ∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (e1))⇒ P (x)))

`[]
0 ∀z .∃x .∃y . ((P (y)⇒ P (f (x))) ∧ (P (f (z))⇒ P (x)))

σ = [?1 7→ f (e1) , ?2 7→ f (f (e1))] closes the branches

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 9 / 19

First order proof-search How to close branches

With a theory: closing branches with theory-speci�c

constraints

Re�nement: deal with theory-speci�c constraints in the mean time using an
abstract constraint structure

Constraints have a domain: they are local to a branch

A meta-variable can be shared by several branches

We want to propagate and combine constraints

Our goal: get a satis�able constraint at the root of the tree

A possibility: backtracking

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 10 / 19

First order proof-search How to close branches

With a theory: closing branches with theory-speci�c

constraints

Re�nement: deal with theory-speci�c constraints in the mean time using an
abstract constraint structure

Constraints have a domain: they are local to a branch

A meta-variable can be shared by several branches

We want to propagate and combine constraints

Our goal: get a satis�able constraint at the root of the tree

A possibility: backtracking

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 10 / 19

First order proof-search How to close branches

Abstract constraint structures

De�nition

A constraint structure is:

a family of sets (Ψl)l : the elements of Ψl are the constraints of
domain l (the meta-variables with their dependencies)

a family of projections from Ψn::l to Ψl , denoted by .↓

Example (pure �rst order):
Ψl is the set of maps of domain l assigning a term to each meta-variable
respecting the dependencies between the variables
Most general uni�ers allow to combine two constraints

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 11 / 19

First order proof-search How to close branches

Abstract constraint structures

De�nition

A constraint structure is:

a family of sets (Ψl)l : the elements of Ψl are the constraints of
domain l (the meta-variables with their dependencies)

a family of projections from Ψn::l to Ψl , denoted by .↓

Example (pure �rst order):
Ψl is the set of maps of domain l assigning a term to each meta-variable
respecting the dependencies between the variables
Most general uni�ers allow to combine two constraints

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 11 / 19

Constraint systems

Outline

1 First order proof-search
Delaying the instantiation of variables
How to close branches

2 Constraint systems
Constraint-producing system
Constraint-re�ning system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 12 / 19

Constraint systems

Branching

Two possibilities:

Explore the two branches in parallel and combine the constraints they
produce
⇒ constraint-producing system

The constraint produced by a branch might direct the exploration of
the other one: sequentialize
⇒ constraint-re�ning system

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 13 / 19

Constraint systems Constraint-producing system

Constraint producing system: meet constraint structures

The constraint structure is re�ned with a (family of) meet operator(s):
(σ, σ′) 7→ σ ∧ σ′ on Ψl

|=l Γlit � σ
`ln Γ � σ

`ln Γ,A � σ1 `ln Γ,B � σ2

`ln Γ,A ∧ B � σ1 ∧ σ2

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 14 / 19

Constraint systems Constraint-producing system

Constraint producing system: meet constraint structures

The constraint structure is re�ned with a (family of) meet operator(s):
(σ, σ′) 7→ σ ∧ σ′ on Ψl

|=l Γlit � σ
`ln Γ � σ

`ln Γ,A � σ1 `ln Γ,B � σ2

`ln Γ,A ∧ B � σ1 ∧ σ2

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 14 / 19

Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 `[0,0]

0 ?1 > 3 `[0,0]
0 ?1 < 6

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6)

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6)

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))

σ0 = (?2 ∈]−∞, 2?1[), σ1 = (?1 ∈]3,+∞[) and σ2 = (?1 ∈]−∞, 6[)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6) � σ0 ∧ σ1 ∧ σ2 = σ

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6))

`[]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6))

σ0 = (?2 ∈]−∞, 2?1[), σ1 = (?1 ∈]3,+∞[) and σ2 = (?1 ∈]−∞, 6[)
σ = (?1 ∈ {4, 5} , ?2 ∈]−∞, 2?1[)

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

Constraint systems Constraint-producing system

Example

`[0,0]
0 ?2 < 2?1 � σ0 `[0,0]

0 ?1 > 3 � σ1 `[0,0]
0 ?1 < 6 � σ2

`[0,0]
0 (?y < 2?x) ∧ (?x > 3) ∧ (?x < 6) � σ0 ∧ σ1 ∧ σ2 = σ

`[0]
0 ∃y . ((y < 2?x) ∧ (?x > 3) ∧ (?x < 6)) � σ↓

`[]
0 ∃x .∃y . ((y < 2x) ∧ (x > 3) ∧ (x < 6)) � (σ↓)↓

σ0 = (?2 ∈]−∞, 2?1[), σ1 = (?1 ∈]3,+∞[) and σ2 = (?1 ∈]−∞, 6[)
σ = (?1 ∈ {4, 5} , ?2 ∈]−∞, 2?1[)
σ↓ = (?1 ∈ {4, 5}) , (σ↓)↓ = ∅

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 15 / 19

Constraint systems Constraint-re�ning system

Constraint-re�ning system: lift constraint structures

The constraint structure is re�ned with a (family of) lift operator(s):
σ 7→ σ↑ on Ψl

σ �|=l Γlit � σ′

σ �`ln Γ � σ′

σ �`ln Γ,Ai � σ0 σ0 �`ln Γ,A1−i � σ′
i ∈ {0, 1}

σ �`ln Γ,A0 ∧ A1 � σ′

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 16 / 19

Constraint systems Constraint-re�ning system

Constraint-re�ning system: lift constraint structures

The constraint structure is re�ned with a (family of) lift operator(s):
σ 7→ σ↑ on Ψl

σ �|=l Γlit � σ′

σ �`ln Γ � σ′

σ �`ln Γ,Ai � σ0 σ0 �`ln Γ,A1−i � σ′
i ∈ {0, 1}

σ �`ln Γ,A0 ∧ A1 � σ′

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 16 / 19

A word on satis�ability

We want to prove the soundness and completeness of the
constraint-producing (resp. re�ning) system w.r.t. the system without
delayed instantiation.

In particular, we want the minimal properties on the constraint structure
giving us these equivalences.

A tool: compatibility relations between instantiations and constraints.

Tn = {ground terms whose eigenvariables are below n}
It is extented to domains: an instantiation on domain l is an element
of Tl

Compatibility relation between ρ ∈ Tl and σ ∈ Ψl : ρεσ such that
I (t :: ρ) εσ ⇒ ρεσ↓
I ρεσ ∧ σ′ ⇔ ρεσ and ρεσ′

σ is satis�able if we can �nd ρ such that ρεσ

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 17 / 19

A word on satis�ability

Tn = {ground terms whose eigenvariables are below n}
It is extented to domains: an instantiation on domain l is an element
of Tl

Compatibility relation between ρ ∈ Tl and σ ∈ Ψl : ρεσ such that
I (t :: ρ) εσ ⇒ ρεσ↓
I ρεσ ∧ σ′ ⇔ ρεσ and ρεσ′

σ is satis�able if we can �nd ρ such that ρεσ

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 17 / 19

Implementation

OCaml module for constraint structures in PSYCHE

A top constraint (always satis�able) is required to start the
proof-search

Backtracking implies the production of a stream at the leaves

Only the empty theory (pure �rst order) has been implemented in this
framework

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 18 / 19

Conclusion

Conclusion

Constraint structures allow delayed instantiations

Su�cient (minimal) axiomatisation to prove soundness and
completeness

Backtracking and streams open the doors to subtle strategies in
proof-search

Still has to be tested

Damien Rouhling (ENS Lyon) Constraint systems LAC, November 21, 2014 19 / 19

	First order proof-search
	Delaying the instantiation of variables
	How to close branches

	Constraint systems
	Constraint-producing system
	Constraint-refining system

