Refining the ring tactic

Cyril Cohen \& Damien Rouhling

Université Côte d'Azur, Inria, France
January 6, 2017

Motivations

- Proof by reflection: use computation to automate and to shorten proofs.
- Issue: ad-hoc computation-oriented data-structures and problem-specific implementations make it hard to maintain and improve reflection-based tactics.
- Our contribution: a modular reflection methodology that uses generic tools to minimise the code specific to a given tactic.
- Our example case:
- The ring CoQ tactic: a reflection-based tactic to reason modulo ring axioms (and a bit more).
- Generic tools: the Mathematical Components library and CoqEAL refinement framework.
- Code specific to our prototype: around 200 lines.

Refinement

[Dénès, Mörtberg, Siles 2012]

Sequence of refinement steps

$$
P_{1} \rightarrow P_{2} \rightarrow \cdots \rightarrow P_{n}
$$

where:

In the literature

- P_{1} is an abstract version of the program,
- P_{n} is a concrete version of the program,

In CoqEAL

- P_{1} is an proof-oriented version of the program,
- P_{n} is a computation-oriented version of the program,
- Each P_{i} is correct w.r.t. P_{i-1}.

Refinement inference [Cohen, Dénès, Mörtberg 2013]

A type class for refinement:

```
Class refines P C (R : P -> C -> Type) (p : P) (c : C) :=
    refines_rel : R p c.
```

Program/term synthesis:
We solve by type class inference
?proof : refines ?relation input ?output.

Back and forth translation:
Lemma refines_spec R p c : refines R p c $->$ p $=$ spec c.

The coqeal_simpl tactic

Lemma refines_spec R p c : refines R p c -> p = spec c.

The coqeal_simpl tactic

Lemma refines_spec R p c : refines R p c -> p = spec c.

Reflection

Reflection on rings

[Grégoire, Mahboubi 2005]

Metaification:

Symbolic arithmetic expressions in a ring (using,,$+- *$ and.$^{\wedge}$) can be represented as multivariate polynomials over integers, together with a variable map.
$\mathrm{a}+\mathrm{b}-(1 * \mathrm{~b}) \longrightarrow \mathrm{X}+\mathrm{Y}-(1 * \mathrm{Y})$ with variable map [a; b].

Computation:

The goal of the computation step is to normalise the obtained polynomials.
$\mathrm{X}+\mathrm{Y}-(1 * \mathrm{Y}) \longrightarrow \mathrm{X}$.

Reflection:

The polynomials in normal form are evaluated on the variable map to get back ring expressions.
$\mathrm{X}[\mathrm{a} ; \mathrm{b}] \longrightarrow \mathrm{a}$.

The coqeal_ring tactic

The coqeal_ring tactic

The ring tactic

[Grégoire, Mahboubi 2005]

Comparison

Further work

- Catch up with ring: operations such as the power function, ring of coefficients as parameter, non-commutative rings, semi-rings...
- Make coqeal_ring efficient: refinement of nested data-structures, improved depolyfication.
- Implement new features: morphisms, Gröbner bases, other reduction strategies, user-defined operations...
- Generalise to other decision procedures: field? lra???

Conclusion

- A more modular reflection methodology.
- Refinement makes the reduction step easier to prove.
- Semantic vs syntactic translation.
- A prototype still in its early conception phase.

Conclusion

- A more modular reflection methodology.
- Refinement makes the reduction step easier to prove.
- Semantic vs syntactic translation.
- A prototype still in its early conception phase.

Thank you!

Logic programming for refinement

Rules to decompose expressions, such as

```
Instance refines_apply
A B (R : A \(\rightarrow\) B \(\rightarrow\) Type) A' B' ( \(\mathrm{R}^{\prime}\) : A' -> B' -> Type) :
    forall (f : A -> A') (g : B -> B'),
    refines ( \(\mathrm{R}==>\mathrm{R}\) ) f g ->
    forall (a : A) (b : B), refines R a b ->
        refines R' (f a) (g b).
Lemma refines_trans A B C (rAB : A -> B -> Type)
(rBC : B \(\rightarrow\) C \(\rightarrow\) Type) (rAC : A \(\rightarrow\) C \(\rightarrow\) Type)
(a : A) (b : B) (c : C) :
    composable rAB rBC rAC \(\rightarrow\)
    refines rAB a b -> refines rBC b c ->
    refines rAC a c.
```


Example

Global goal:

refines ?R (X + Y - (1 * Y)) ?P.
Current goal(s):
refines ?R (X + Y - (1 * Y)) ?P.

Example

Global goal:

refines ?R (X + Y - (1 * Y)) (?f ?P1).

Current goal(s):

$$
\begin{aligned}
& \text { refines (?S ==> ?R) (fun P => X + P) ?f, } \\
& \text { refines ?S (Y - (1 * Y)) ?P1. }
\end{aligned}
$$

Example

Global goal:

refines ?R (X + Y - (1 * Y)) (?g ?P2 ?P1).

Current goal(s):

```
refines (?T ==> ?S ==> ?R) + ?g,
refines ?T X ?P2,
refines ?S (Y - (1 * Y)) ?P1.
```


Example

Global goal:

```
    refines R (X + Y - (1 * Y)) (?P2 +' ?P1).
```

Assuming
refines ($R==>R==>R$) + +'.
Current goal(s):

```
refines R X ?P2,
refines R (Y - (1 * Y)) ?P1.
```


Example

Global goal:

$$
\text { refines } \mathrm{R}(\mathrm{X}+\mathrm{Y}-(1 * \mathrm{Y}))(\mathrm{X}, \quad+\quad \text { ?P1). }
$$

Assuming

$$
\begin{aligned}
& \text { refines (} \mathrm{R}==>\mathrm{R}==>\mathrm{R})++^{\prime} \text {, } \\
& \text { refines } \mathrm{R} \mathrm{X} \mathrm{X'.}
\end{aligned}
$$

Current goal(s):

```
refines R (Y - (1 * Y)) ?P1.
```


Example

Proven:

```
refines R (X + Y - (1 * Y)) (X' +' Y' -' (1' *' Y')).
```

Assuming

```
refines (R ==> R ==> R) + +',
refines (R ==> R ==> R) - -',
refines (R ==> R ==> R) * *',
refines R X X',
refines R Y Y',
refines R 1 1'.
```


The ring of coefficients

The ring of integers is a canonical choice since there is a canonical injection from integers to any ring: the ring of integers is an initial object of the category of rings.

However it may happen that another ring ($\mathbb{Z} / n \mathbb{Z}$, rational numbers...) is a better choice. For instance $\mathrm{a}+\mathrm{a}=0$ is provable in the ring of booleans, using the ring of booleans itself as the ring of coefficients.
$\mathrm{a}+\mathrm{a} \longrightarrow(\mathrm{X}+\mathrm{X})[\mathrm{a}] \longrightarrow((1+1) \mathrm{X})[\mathrm{a}] \rightarrow(0 \mathrm{X})[\mathrm{a}] \rightarrow 0$.

Soundness of polyfication

Lemma polyficationP (R : comRingType) (env: seq R) $N \mathrm{p}$: size env $==\mathrm{N}->$

```
    PExpr_to_Expr env p = Nhorner env (PExpr_to_poly N p).
```


Proof.

elim: $p=>[n|n| p$ IHp q IHq|p IHp q IHq|p IHp|p IHp $n] /=$.

- by rewrite NhornerE !rmorph_int.
- rewrite NhornerE; elim: N env $n=>[\mid N$ IHN] [|a env] [|n] //= senv. by rewrite map_polyX hornerX [RHS]NhornerRC. by rewrite map_polyC hornerC ! IHN.
- by move=> senv; rewrite (IHp senv) (IHq senv) ! NhornerE !rmorphD.
- by move=> senv; rewrite (IHp senv) (IHq senv) !NhornerE !rmorphM.
- by move $=>$ senv; rewrite (IHp senv) ! NhornerE ! rmorphN.
- by move=> senv; rewrite (IHp senv) !NhornerE ! rmorphX.

Qed.

Example of user-defined operation: factoring

Where $P[a]=0$.

