Asymptotic Reasoning in Coq

Reynald Affeldt ¹ Cyril Cohen ² Damien Rouhling ²

¹ National Institute of Advanced Industrial Science and Technology, Japan

² Université Côte d'Azur, Inria, France

September 3, 2018

Credits: several slides are inspired/adapted/stolen from different talks by Cyril Cohen

Motivation

 \Rightarrow

• Asymptotic reasoning involves a lot of $\varepsilon/\delta\text{-reasoning}.$

$$\begin{cases} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{cases}, \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon. \end{cases}$$

Motivation

- Asymptotic reasoning involves a lot of $\varepsilon/\delta\text{-reasoning}.$
- In the mathematical (informal) practice, asymptotic hand-waving often gives a more convenient framework to write proofs.

$$o_{x \to 0}(x^{n}) + o_{x \to 0}(x^{n}) = o_{x \to 0}(x^{n})$$
$$o_{x \to 0}(x^{n}) + O_{x \to 0}(x^{n}) = O_{x \to 0}(x^{n})$$

. . .

- Asymptotic reasoning involves a lot of ε/δ -reasoning.
- In the mathematical (informal) practice, asymptotic hand-waving often gives a more convenient framework to write proofs.
- We want the best of both informal and formal reasoning.
 - 1. Simplicity and ease of use.
 - 2. Strong guarantees on the correctness of the proof.

- Formal proofs for robotics.
 - Kinematic chains.
 - Various aspects of robot motion and control.
- Undergraduate classic textbook analysis.
- \bullet Catch up with $\rm Isabelle/HOL$ and $\rm Lean.$

- Formalization in Coq + SSReflect.
- We take inspiration from well-established methodologies:
 - ► We follow MATHEMATICAL COMPONENTS's design principle: small-scale tactics, fewer definitions, more combiners and lemmas that hide the most technical parts.
 - ► We use filters for local reasoning, an abstraction that proved to be efficient in COQUELICOT and ISABELLE/HOL's analysis library.

- Formalization in Coq + SSReflect.
- We take inspiration from well-established methodologies:
 - ► We follow MATHEMATICAL COMPONENTS's design principle: small-scale tactics, fewer definitions, more combiners and lemmas that hide the most technical parts.
 - ► We use filters for local reasoning, an abstraction that proved to be efficient in COQUELICOT and ISABELLE/HOL's analysis library.

One crucial difference with COQUELICOT: we use additional axioms.

Contributions

Techniques to do asymptotic hand-waving

- 1. in a rigorous (formal) way,
- 2. with robust small-scale proofs,
- 3. concisely,
- in the form of
 - 1. a set of tactics and notations that make local reasoning smoother,
 - 2. a small theory of little-*o* and big-*O* based on Bachmann-Landau notations.
- Yet another analysis library, MATHEMATICAL COMPONENTS ANALYSIS¹, compatible with MATHEMATICAL COMPONENTS and that integrates these techniques.

¹https://github.com/math-comp/analysis, joint work with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

Contributions

Techniques to do asymptotic hand-waving

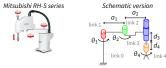
- 1. in a rigorous (formal) way,
- 2. with robust small-scale proofs,
- 3. concisely,
- in the form of
 - 1. a set of tactics and notations that make local reasoning smoother,
 - 2. a small theory of little-o and big-O based on Bachmann-Landau notations.
- Yet another analysis library, MATHEMATICAL COMPONENTS ANALYSIS¹, compatible with MATHEMATICAL COMPONENTS and that integrates these techniques.

¹https://github.com/math-comp/analysis, joint work with Reynald Affeldt, Cyril Cohen, Assia Mahboubi and Pierre-Yves Strub.

Use cases

What is a Robot Manipulator?

· E.g., SCARA (Selective Compliance Assembly Robot Arm)



- Robot manipulator ^{def} Links connected by joints
 - Revolute joint \leftrightarrow rotation
 - Prismatic joint \leftrightarrow translation

https://github.com/affeldt-aist/coq-robot

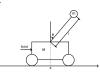
Inita - Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23, 2018

Use cases

The inverted pendulum

https://github.com/drouhling/LaSalle/tree/mathcomp-analysis

The inverted pendulum is a standard example for testing control techniques.

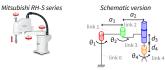


 Goal: stabilize the pendulum on its unstable equilibrium thanks to the control function fctrl.

Damien Rouhling	A Stability Proof for the Inverted Pendulum	January 8, 2018	3 / 20

What is a Robot Manipulator?

· E.g., SCARA (Selective Compliance Assembly Robot Arm)



- Robot manipulator ^{def} Links connected by joints
 - Revolute joint \leftrightarrow rotation
 - Prismatic joint \leftrightarrow translation

https://github.com/affeldt-aist/coq-robot

Conta - Formalized 3D Geometry for Robot Manipulators - EUTypes COST Meeting, Nijmegen, January 23, 2018

Asymptotic Reasoning in COQ

To prove

$$\lim_{a} f = l_{f} \wedge \lim_{a} g = l_{g} \Rightarrow \lim_{a} (f + g) = l_{f} + l_{g}$$

Typical ε/δ -reasoning:

$$\left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{array} \right.,$$

 $\left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon. \end{array} \right.$

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\left\{\begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \end{array}\right.,$$

$$\left\{ \begin{array}{l} \exists \delta > 0, \ \forall x, \ |x-a| < \delta \Rightarrow \ |f(x) + g(x) - (l_f + l_g)| < \varepsilon. \end{array}
ight.$$

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{cases} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ \delta_f > 0 \\ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \frac{\varepsilon}{2} \\ \delta_g > 0 \\ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \frac{\varepsilon}{2} \end{cases} ,$$

$$\{ \exists \delta > 0, \ \forall x, \ |x-a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon \}$$

4

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\begin{cases} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ \delta_f > 0 \\ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \frac{\varepsilon}{2} \\ \delta_g > 0 \\ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \frac{\varepsilon}{2} \end{cases}$$

 $\begin{cases} \forall x, \ |x-a| < \min(\delta_f, \delta_g) \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon. \\ \text{magical guess} \end{cases}$

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ -reasoning:

- The (human) prover has to provide existential witnesses.
- Witnesses are (usually) explicit.
- Witnesses are (usually) given way before they are used.

Why ε/δ definitions are not best for formal proofs

A few aspects of typical ε/δ -reasoning:

- The (human) prover has to provide existential witnesses.
- Witnesses are (usually) explicit.
- Witnesses are (usually) given way before they are used.

 \Rightarrow Proof scripts are hard to read and hard to maintain.

Why ε/δ definitions are not best for formal proofs

- A few aspects of typical ε/δ -reasoning:
 - The (human) prover has to provide existential witnesses.
 - Witnesses are (usually) explicit.
 - Witnesses are (usually) given way before they are used.
- \Rightarrow Proof scripts are hard to read and hard to maintain.
- \Rightarrow Use an abstraction like filters.

A quick introduction to filters

A set of sets F is a filter if

 $F \neq \emptyset \quad \forall A, B \in F, A \cap B \in F \quad \forall A \in F, \forall B \supseteq A, B \in F.$

Examples and notations:

• Neighbourhood filter of a point:

$$\operatorname{locally}(p) = \{A \mid \exists \varepsilon > 0, \operatorname{ball}_{\varepsilon}(p) \subseteq A\}.$$

• Neighbourhood filter of $+\infty$:

$$\operatorname{locally}(+\infty) = \{A \mid \exists M,]M; +\infty [\subseteq A\}.$$

• Image of a filter F by a function f:

$$f@F = \left\{A \mid f^{-1}(A) \in F\right\}.$$

• Reverse filter inclusion: $F \rightarrow G = G \subseteq F$.

Thanks to a set of canonical structures, we can equip types with a canonical filter function

```
locally : forall (U : Type) (T : filteredType U),
T -> set (set U),
```

and use notations where the occurrences of this function are inferred:

```
f @ x --> y, lim (f @ x), cvg (f @ +oo), u --> -oo.
```

To prove

$$\lim_{a} f = l_f \wedge \lim_{a} g = l_g \Rightarrow \lim_{a} (f + g) = l_f + l_g$$

Typical ε/δ -reasoning:

$$\left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta_f > 0, \ \forall x, \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \exists \delta_g > 0, \ \forall x, \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{array} \right.,$$

 $\left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon \end{array} \right..$

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$\operatorname{locally}(I_f) \subseteq f @a$$

 $\operatorname{locally}(I_g) \subseteq g @a$

 $\left\{ \operatorname{locally}(I_f + I_g) \subseteq (f + g) @a \right.$

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$\begin{cases} \text{ locally}(I_f) \subseteq f @a \\ \text{ locally}(I_g) \subseteq g @a \\ A \in \text{ locally}(I_f + I_g) \end{cases} ,$$

$$\{ A \in (f+g)$$
@a .

To prove

$$f @a
ightarrow l_f \Rightarrow g @a
ightarrow l_g \Rightarrow (f + g) @a
ightarrow (l_f + l_g)$$

Filter reasoning:

$$\begin{cases} \operatorname{locally}(I_f) \subseteq f @a \\ \operatorname{locally}(I_g) \subseteq g @a \\ \varepsilon > 0 \\ \operatorname{ball}_{\varepsilon}(I_f + I_g) \subseteq A \quad \text{unfolding} \end{cases},$$

$$\left\{ egin{array}{l} A\in (f+g)@a\ (ext{i.e.}\ (f+g)^{-1}(A)\in ext{locally}(a)) \end{array}
ight.$$

.

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Filter reasoning:

$$\begin{array}{l} \left(\begin{array}{c} \operatorname{locally}(l_f) \subseteq f @a \\ \operatorname{locally}(l_g) \subseteq g @a \\ \varepsilon > 0 \\ \operatorname{ball}_{\varepsilon}(l_f + l_g) \subseteq A \\ B := (f + g)(f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(l_f)) \cap g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(l_g))) \end{array} \right) \\ \end{array}$$

closure by extension

$$\left\{\begin{array}{l} B \in (f+g)@a\\ B \subseteq A\end{array}\right.$$

•

,

To prove

$$f @a \rightarrow l_f \Rightarrow g @a \rightarrow l_g \Rightarrow (f + g) @a \rightarrow (l_f + l_g)$$

Filter reasoning:

$$\begin{cases} \operatorname{locally}(I_f) \subseteq f @a \\ \operatorname{locally}(I_g) \subseteq g @a \\ \varepsilon > 0 \\ \operatorname{ball}_{\varepsilon}(I_f + I_g) \subseteq A \\ B := (f + g)(f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_f)) \cap g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_g))) \end{cases},$$

$$\begin{array}{l} \forall C, \ f(f^{-1}(C)) \subseteq C \subseteq f^{-1}(f(C)) \\ \left\{ \begin{array}{l} f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(l_f)) \cap g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(l_g)) \in \operatorname{locally}(a) \\ \operatorname{ball}_{\frac{\varepsilon}{2}}(l_f) + \operatorname{ball}_{\frac{\varepsilon}{2}}(l_g) \subseteq \operatorname{ball}_{\varepsilon}(l_f + l_g) \end{array} \right. \end{array}$$

Damien Rouhling

Asymptotic Reasoning in COQ

.

To prove

$$f @a \rightarrow l_f \Rightarrow g @a \rightarrow l_g \Rightarrow (f + g) @a \rightarrow (l_f + l_g)$$

Filter reasoning:

$$\begin{cases} \operatorname{locally}(I_f) \subseteq f @a \\ \operatorname{locally}(I_g) \subseteq g @a \\ \varepsilon > 0 \\ \operatorname{ball}_{\varepsilon}(I_f + I_g) \subseteq A \\ B := (f + g)(f^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_f)) \cap g^{-1}(\operatorname{ball}_{\frac{\varepsilon}{2}}(I_g))) \end{cases}$$

closure by intersection

$$egin{aligned} & f^{-1}(\operatorname{ball}_{rac{arepsilon}{2}}(I_f))\in\operatorname{locally}(a) \ & g^{-1}(\operatorname{ball}_{rac{arepsilon}{2}}(I_g))\in\operatorname{locally}(a) \end{aligned}$$

.

,

The pros and cons of filter reasoning

The situation is improved:

- The explicit existential witnesses are removed.
- Parts of the arithmetic is hidden thanks to the abstraction.

But:

- There is still a magical guess: we have to know beforehand how we want to split the epsilons.
- We manipulate sets while (I think) it is more intuitive to reason about points.

The pros and cons of filter reasoning

The situation is improved:

- The explicit existential witnesses are removed.
- Parts of the arithmetic is hidden thanks to the abstraction.

But:

- There is still a magical guess: we have to know beforehand how we want to split the epsilons.
- We manipulate sets while (I think) it is more intuitive to reason about points.

 \Rightarrow Reintroduce points without breaking the abstraction and use existential variables.

• A lemma to reintroduce points and use existential variables.

Lemma <u>filter_near_of</u> F (P : in_filter F) Q : Filter F -> (forall x, prop_of P x -> Q x) -> F Q.

- A notation $\forall x \operatorname{near} F$, Q x, standing for $Q \in F$, to invite the user to reason about points.
- The fact that filters are closed by intersection, to accumulate properties.

To prove

$$f @a
ightarrow l_f \ \Rightarrow \ g @a
ightarrow l_g \ \Rightarrow \ (f+g) @a
ightarrow (l_f+l_g)$$

Filter reasoning:

$$\left\{ \begin{array}{ll} f@a \rightarrow \mathit{I_f} \\ g@a \rightarrow \mathit{I_g} \end{array} \right. ,$$

$$\left\{ (f+g)@a \rightarrow (l_f+l_g) \right\}$$
.

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Improved filter reasoning:

$$\begin{cases} \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |g(x) - l_g| < \varepsilon \end{cases},$$

 $\left\{ \begin{array}{l} \forall \varepsilon > 0, \ \forall x \ \text{near} \ a, \ |f(x) + g(x) - (l_f + l_g)| < \varepsilon \end{array} \right..$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Improved filter reasoning:

$$\begin{cases} \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \quad \text{regular intro} \end{cases},$$

$$\{ \forall x \text{ near } a, \ |f(x) + g(x) - (l_f + l_g)| < \varepsilon$$

To prove

$$f@a \rightarrow l_f \Rightarrow g@a \rightarrow l_g \Rightarrow (f+g)@a \rightarrow (l_f+l_g)$$

Improved filter reasoning:

$$\left\{ \begin{array}{l} \forall \varepsilon > 0, \; \forall x \operatorname{near} a, \; |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \; \forall x \operatorname{near} a, \; |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ x \operatorname{near} a, \; \underline{\operatorname{near}} \; \operatorname{intro} \end{array} \right.,$$

$$\left\{ \begin{array}{l} |(f(x)-l_f)+(g(x)-l_g)|$$

To prove

$$f@a
ightarrow l_f \Rightarrow g@a
ightarrow l_g \Rightarrow (f+g)@a
ightarrow (l_f+l_g)$$

Improved filter reasoning:

$$\left\{ \begin{array}{l} \forall \varepsilon > 0, \; \forall x \operatorname{near} a, \; |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \; \forall x \operatorname{near} a, \; |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \\ x \operatorname{near} a, \end{array} \right.,$$

$$\begin{cases} |f(x) - l_f| < \frac{\varepsilon}{2} \\ |g(x) - l_g| < \frac{\varepsilon}{2} \end{cases}$$

.

Damien Rouhling

To prove

$$f @a \rightarrow l_f \Rightarrow g @a \rightarrow l_g \Rightarrow (f + g) @a \rightarrow (l_f + l_g)$$

Improved filter reasoning:

$$\begin{cases} \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0, \ \forall x \text{ near } a, \ |g(x) - l_g| < \varepsilon \\ \varepsilon > 0 \end{cases},$$

$$\underbrace{\text{near revert}}_{\substack{f \in \mathcal{I} \\ \forall x \text{ near } a, |f(x) - l_f| < \frac{\varepsilon}{2}}_{\substack{f \in \mathcal{I} \\ \forall x \text{ near } a, |g(x) - l_g| < \frac{\varepsilon}{2}}}$$

.

Near tactics

• near=> x

Introduces a near variable quantified by forall x hear F.

o near: x

Reverts a near variable to forall x hear F.

Near tactics

• near=> x

Introduces a <u>near</u> variable quantified by forall x F. Should be integrated to regular intro patterns (Coq PR #7962).

o near: x

Reverts a <u>near</u> variable to \forall x \near F. Should be integrated to regular discharge patterns (CoQ Issue #8007).

Near tactics

• near=> x

Introduces a <u>near</u> variable quantified by forall x F. Should be integrated to regular intro patterns (Coq PR #7962).

o near: x

Reverts a <u>near</u> variable to \forall x \near F. Should be integrated to regular discharge patterns (CoQ Issue #8007).

• near F => x

Gives an element near F.

end_near

Does garbage collection of unused evars. Should ultimately be transparent for the user (CoQ Issue #8006).

Comparison with Procrastination

Both mechanisms are a generalization of big_enough.

"Matching" tactics:

Procrastination	Near	
begin defer assuming x	near F => x	
defer/deferred	near: x	
end defer	end_near	
exploit deferred tac	×	
×	near=> x	

Main differences:

	Procrastination	Near
Accumulated predicates	Proven to be valid	Proven to belong to the filter
	at the end	when accumulated
Witnesses	Parameter of the predicates	What makes the predicate belong to the filter
	Global to the group	One for each predicate
Mechanism	Lots of Ltac	Few $Ltac + canonical structures$

Selected applications

 Intermediate Value Theorem: 128 loc in CoQ → 57 loc.

```
 \begin{array}{l} \mbox{Lemma } \underline{IVT} \; (f:R -> R) \; (a \; b \; v:R): a <= b \; -> \\ \{ \mbox{in } '[a, b], \; \mbox{continuous } f \} \; -> \; \mbox{minr} \; (f \; a) \; (f \; b) <= v <= \; \mbox{maxr} \; (f \; a) \; (f \; b) \; -> \\ \mbox{exists2 } c, \; c \; \mbox{in } '[a, b] \; \& \; f \; c \; = v. \end{array}
```

- Double limit theorems: 48 loc in COQUELICOT \rightarrow 12 loc. Lemma flim_switch_1 {U : uniformType} F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2} (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) (1 : U) : f @ F1 --> g => (forall x1, f x1 @ F2 --> h x1) -> h @ F1 --> 1 -> g @ F2 --> 1.
- Cauchy completeness of function space: 34 loc in COQUELICOT \rightarrow 10 loc.

DEMO

Selected applications

TEASER

Differential chain rule:

76 loc in $\mathrm{Coquelicot},$ 56 loc in $\mathrm{Lean} \to 11$ loc

Asymptotic comparison

Mathematical (ε/δ) definition, specialized at a neighborhood of 0:

$$f \text{ is a little-} o \text{ of } e \Leftrightarrow$$

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x| < \delta \Rightarrow |f(x)| \le \varepsilon |e(x)|,$$

$$f \text{ is a big-} \mathcal{O} \text{ of } e \Leftrightarrow$$

 $\exists k > 0, \ \exists \delta > 0, \ \forall x, \ |x| < \delta \Rightarrow |f(x)| \le k |e(x)|.$

Asymptotic comparison

Mathematical (ε/δ) definition, specialized at a neighborhood of 0:

$$\begin{array}{l} f \ \underline{\text{is a}} \ |\text{ittle-o of } e \Leftrightarrow \\ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ |x| < \delta \Rightarrow |f(x)| \le \varepsilon |e(x)|, \end{array}$$

$$f \ \underline{\text{is a}} \ \underline{\text{big-}} \mathcal{O} \ \text{of } e \Leftrightarrow \\ \exists k > 0, \ \exists \delta > 0, \ \forall x, \ |x| < \delta \Rightarrow |f(x)| \le k |e(x)|. \end{array}$$

 Coq definition:

Context {T : Type} {K : absRingType} {V W : normedModType K}.

```
 \begin{array}{l} \texttt{Definition } \underline{\texttt{big0}} \ (\texttt{F}:\texttt{set} \ (\texttt{set} \ \texttt{T})) \ (\texttt{f}:\texttt{T} \to \texttt{V}) \ (\texttt{e}:\texttt{T} \to \texttt{W}) := \\ \\ \texttt{forall } \texttt{k} \ \texttt{near} \ +\texttt{oo}, \ \texttt{forall} \ \texttt{x} \ \texttt{near} \ \texttt{F}, \ \texttt{'}|[\texttt{f} \ \texttt{x}]| < = \texttt{k} \ast \ \texttt{'}|[\texttt{e} \ \texttt{x}]|. \end{array}
```

Mathematical practice and Bachmann-Landau notations

In practice, we consider the little-o and big-O predicates as equalities.

• We want to write:

$$\begin{array}{ll} f = o(e) & \text{and} & f = \mathcal{O}(e) \\ f(x) = o(e(x)) & \text{and} & f(x) = \mathcal{O}(e(x)) \\ f = g + o(e) & \text{and} & f = g + \mathcal{O}(e) \\ f(x) = g(x) + o(e(x)) & \text{and} & f(x) = g(x) + \mathcal{O}(e(x)) \end{array}$$

• We want to do arithmetic on little-*o* and big-*O*:

 $-o(e) = o(e), \quad o(e)+o(e) = o(e), \quad o(e)+\mathcal{O}(e) = \mathcal{O}(e), \quad \dots$

• We want to substitute.

The trick

• Definition (little-*o* with explicit witness):

$$o(e)[h] := \begin{cases} h, & \text{if } h \text{ is a little-}o \text{ of } e \\ 0, & \text{otherwise} \end{cases}$$

• Parsing:

$$f = g + o(e)$$
 is parsed $f = g + o(e)[f - g]$

• Change of witness:

$$f = g + o(e)[f - g] \Leftrightarrow \exists h, f = g + o(e)[h]$$

• Display:

$$f = g + o(e)[h]$$
 is displayed $f = g + o(e)$

Damien Rouhling

Asymptotic Reasoning in Coq

Applications

• Equivalence:

Notation "f $_x g$ " := (f = g +o_x g)

• Differential:

$$\begin{array}{l} \texttt{Definition } \underline{\texttt{diff}} \ (\texttt{F}:\texttt{filter_on V}) \ (\texttt{f}:\texttt{V} \to \texttt{W}) := \\ (\texttt{get} \ (\texttt{fun} \ (\texttt{df}: \{\texttt{linear V} \to \texttt{W}\}) => \\ \texttt{continuous } \texttt{df} \ / \ \texttt{forall } \texttt{x}, \\ \texttt{f} \ \texttt{x} = \texttt{f} \ (\texttt{lim F}) + \texttt{df} \ (\texttt{x} - \texttt{lim F}) + \texttt{o}_(\texttt{x} \ \texttt{near F}) \ (\texttt{x} - \texttt{lim F}))). \end{array}$$

 $\begin{array}{l} \mbox{Lemma diff_locallyxP} (x:V) \ (f:V -> W): \\ \mbox{differentiable x } f <-> \mbox{continuous } ('d_x \ f) \ / \\ \mbox{forall } h, \ f \ (h + x) = f \ x + 'd_x \ f \ h \ +o_(h \ near \ 0) \ h. \end{array}$

Differential chain rule

Fact dcomp (U V W : normedModType R)
 (f : U -> V) (g : V -> W) x :
 differentiable x f -> differentiable (f x) g ->

forall h, g (f (h + x)) =
 g (f x) + ('d_(f x) g \o 'd_x f) h +o_(h \near 0) h.

Proof.

move=> df dg; apply: eqaddoEx => h.
rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).
rewrite diff_eq0 // ['d_x f : _ -> _]diff_eq0 //.
by rewrite {2}eqo0 add0x comp0o_eqox compo0_eqox addox.
Qed.

- Tools for stable local reasoning.
- Ease of use and similarity with pen and paper proofs.
- Tested in the MATHEMATICAL COMPONENTS ANALYSIS library and used on examples in robotics.
- Described in an article accepted for publication in the Journal of Formalized Reasoning².

²Preprint: https://hal.inria.fr/hal-01719918.

What's next:

- Manuel Eberl's multiseries for automated limits, little-o...
- Experiment with the little-*o* trick on lower/upper bounds, limits, derivatives, differentials...
- More analysis, more applications.

Improvements:

- Better integration of the near tactics with CoQ intro/discharge patterns.
- Why should we split the epsilons?

Axioms

From the standard library of COQ:

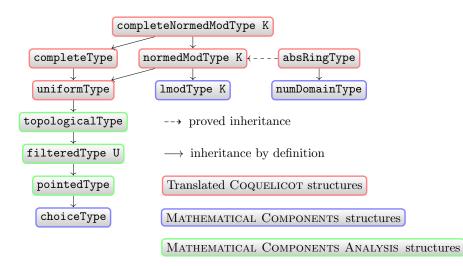
```
propositional_extensionality :
forall (P Q : Prop), P <-> Q -> P = Q.
functional_extensionality_dep :
forall (A : Type) (B : A -> Type) (f g : forall x : A, B x) :
  (forall x : A, f x = g x) -> f = g.
constructive_indefinite_description :
  forall (A : Type) (P : A -> Prop),
  (exists x : A, P x) -> {x : A | P x}.
```

We prove and use only:

propext : forall (P Q : Prop), (P <-> Q) -> (P = Q). funext : forall {T U : Type} (f g : T -> U), (forall x, f x = g x) -> f = g.

```
pselect : forall (P : Prop), {P} + {~P}.
gen_choiceMixin : forall {T : Type}, Choice.mixin_of T.
```

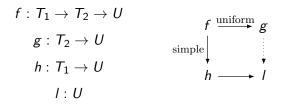
MATHEMATICAL COMPONENTS ANALYSIS hierarchy



Two structures:

- filteredType U: interface type for types whose elements represent filters on U.
- Filtered.source Y Z: structure that records types X such that there is a function mapping functions of type X -> Y to filters on Z. Allows to infer the canonical filter associated to a function by looking at its source type: in particular useful for filters, sequences and sets in a normed space.

Example: double limit theorem



Justification:

 $||I - g(x_2)|| \le ||I - h(x_1)|| + ||h(x_1) - f(x_1, x_2)|| + ||f(x_1, x_2) - g(x_2)||$

ISABELLE/HOL's proof

```
lemma swap uniform limit:
  assumes f: "\forall_F n in F. (f n \longrightarrow g n) (at x within S)"
  assumes q: "(q \longrightarrow l) F"
  assumes uc: "uniform limit S f h F"
  assumes "-trivial limit F"
  shows "(h \longrightarrow l) (at x within S)"
proof (rule tendstoI)
  fix e :: real
  define e' where "e' = e/3"
  assume "\theta < e"
  then have "0 < e'" by (simp add: e' def)
  from uniform limitD[OF uc \langle 0 < e' \rangle]
  have "\forall_F n in F. \forall x \in S. dist (h x) (f n x) < e'"
    by (simp add: dist commute)
  noreover
  from f
  have "\forall e n in F. \forall e x in at x within S. dist (g n) (f n x) < e'"
    by eventually elim (auto dest!: tendstoD[OF <0 < e'>] simp: dist commute)
  moreover
  from tendstoD[OF q < \theta < e'] have "\forall_F x in F. dist l (q x) < e'"
    by (simp add: dist commute)
  ultimately
  have "\forall_F in F. \forall_F x in at x within S. dist (h x) l < e"
  proof eventually_elim
    case (elim n)
    note fh = elim(1)
    note ql = elim(3)
    have "\forall_F x in at x within S, x \in S"
      by (auto simp: eventually at filter)
    with elim(2)
    show ?case
    proof eventually elim
      case (elim x)
      from fh(rule format. OF <x < S>1 elim(1)
      have "dist (h x) (q n) < e' + e'''
        by (rule dist triangle lt[OF add strict mono])
      from dist triangle lt[OF add strict mono, OF this gl]
      show ?case by (simp add: e' def)
    aed
  aed
  thus "∀<sub>F</sub> x in at x within S. dist (h x) l < e"
     using eventually happens by (metis (-trivial limit F))
aed
```

COQUELICOT's proof (our benchmark)

```
Lemma filterlim switch 1 {U: UniformSpace}
 F1 (FF1 : ProperFilter F1) F2 (FF2 : Filter F2) (f : T1 -> T2 -> U) g h (1 : U) :
 filterlim f F1 (locally g) ->
 (forall x, filterlim (f x) F2 (locally (h x))) ->
 filterlim h F1 (locally 1) -> filterlim g F2 (locally 1).
Proof
 intros Hfg Hfh Hhl P.
 case: FF1 => HF1 FF1.
 apply filterlim locally.
 move => eps.
 have FF := (filter_prod_filter _ F1 F2 FF1 FF2).
  assert (filter_prod F1 F2 (fun x => ball (g (snd x)) (eps / 2 / 2) (f (fst x) (snd x)))).
   apply Filter_prod with (fun x : T1 => ball g (eps / 2 / 2) (f x)) (fun => True).
   move: (proj1 (@filterlim_locally _ F1 FF1 f g) Hfg (pos_div_2 (pos_div_2 eps))) => {Hfg} /= Hfg.
   by [].
   by apply FF2.
   simpl : intros.
   applv H.
 move: H => \{Hfg\} Hfg.
  assert (filter prod F1 F2 (fun x : T1 * T2 => ball 1 (eps / 2) (h (fst x)))).
   apply Filter_prod with (fun x : T1 => ball 1 (eps / 2) (h x)) (fun _ => True).
   move: (proj1 (@filterlim_locally _ F1 FF1 h 1) Hhl (pos_div_2 eps)) => {Hhl} /= Hhl.
                            (* next page *)
```

COQUELICOT' proof (page 2)

```
by [].
by apply FF2.
by [].
move: H => { Hh1 } Hh1.
case: (@filter_and ___ FF ___ Hh1 Hfg) => { Hh1 Hfg } /= ; intros.
move: (fun x => proj1 (@filterlim_locally __ F2 FF2 (f x) (h x)) (Hfh x) (pos_div_2 (pos_div_2 eps))) => { Hfh }
/= Hfh.
case: (HF1 Q f0) => x Hx.
move: (@filter_and ___ FF2 ___ (Hfh x) g0) => { Hfh }.
apply filter_imp => y Hy.
```

End of boilerplate, and now, the meaningful part.

```
rewrite (double_var eps).
apply ball_triangle with (h x).
apply (p x y).
by [].
by apply Hy.
rewrite (double_var (eps / 2)).
apply ball_triangle with (f x y).
by apply Hy.
apply ball_sym, p.
by [].
by apply Hy.
Qed.
```

Our proof

```
Lemma flim_switch_1 {U : uniformType}

F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}

(f : T1 \rightarrow T2 \rightarrow U) (g : T2 \rightarrow U) (h : T1 \rightarrow U) (l : U) :

f @ F1 --> g \rightarrow (forall x1, f x1 @ F2 --> h x1) -> h @ F1 --> l ->

g @ F2 --> l.

Proof.

move=> fg fh hl; apply/flim_ballPpos => e.

rewrite near_simpl; near F1 => x1; near=> x2.

apply: (@ball_split_(h x1)); first by near: x1; apply/hl/locally_ball.

apply: (@ball_split_(f x1 x2)); first by near: x2; apply/fh/locally_ball.

by move: (x2); near: x1; apply/(flim_ball fg).

Grab Existential Variables, all: end near. 0ed.
```

Comparison with COQUELICOT

```
Lemma flim_switch_1 {U : uniformType} F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
  (f:T1 -> T2 -> U) (g:T2 -> U) (h:T1 -> U) (1:U):
  f @ F1 --> g -> (forall x, f x @ F2 --> h x) -> h @ F1 --> l -> g @ F2 --> l.
Proof.
 (*...*)
                                                Proof.
 (*25 lines of boilerplate, then*)
                                               move=> fg fh hl; apply/flim_ballPpos => e.
                                               rewrite near simpl; near F1 => x1; near => x2.
 rewrite (double_var eps).
                                                (* 2 lines of boilerplate, then 3 lines of actual proof *)
 apply ball triangle with (h x).
 apply (p x v).
                                                apply: (@ball_split _ (h x1)); first by near: x1; apply/h1/
 by [].
                                                      locally ball.
 by apply Hy.
                                                apply: (@ball_splitl _ (f x1 x2)); first by near: x2; apply/fh/
 rewrite (double_var (eps / 2)).
                                                      locally_ball.
 apply ball_triangle with (f x y).
                                                by move: (x2): near: x1: apply/(flim ball fg).
 by apply Hy.
```

```
(* Finally: 1 line of boilerplate *)
Grab Existential Variables. all: end_near. Qed.
```

apply ball_sym, p.

by apply Hy. Qed.

by [].