
Dependently typed lambda calculus with a lifting operator

Internship report

Damien Rouhling

May - August 2014

Abstract

This report is about my internship in the computer science department of Chalmers
University of Technology in Gothenburg, Sweden, for the validation of my �rst year of
masters in computer science. It deals with the de�nition of a lifting operator for a cumula-
tive hierarchy of universes in a dependent type theory and a proof of (weak) normalization
for the resulting calculus. We use normalization by evaluation (NbE) and prove its com-
pleteness and soundness respectively with a partial equivalence relation (PER) model and
Kripke logical relations.

Contents

Introduction 2

1 Context 2

1.1 Motivations . 2
1.2 System . 3
1.3 Contributions . 5

2 Normalization by evaluation 5

2.1 Principle . 5
2.2 In presence of the lifting operator . 5

3 Completeness and soundness of NbE 7

3.1 PER model and completeness of NbE . 7
3.2 Kripke relations and soundness of NbE . 10

4 Implementation 11

4.1 Bidirectional type-checking . 11
4.2 Adaptation and integration of the calculus 12

5 Further and related work 13

Conclusion 14

A Rules of the calculus 15

B Evaluation and read-back 17

References 19

1

Internship report

Introduction

In the context of my �rst year of masters' internship I worked on dependent type
theory under the supervision of Thierry Coquand in the computer science department of
Chalmers in Gothenburg, Sweden.

Types were introduced to avoid Russell's paradox. This paradox implies that there
is no set of all sets. One can de�ne a universe type to express inside the system what
it means to be a type. It is a type which contains every well-formed (or �small�) type,
introduced by Per Martin-Löf ([ML72], [ML84]). However, one has to be careful with the
terminology: the universe is a type in the sense that it can be used in a typing judgment
(I can �nd a term of type the universe) but it is not its own type. It is inconsistent to
have a universe type whose type is itself (see Jean-Yves Girard's paradox [Gir72]). A
solution to give a type to the universe is to introduce an in�nite hierarchy of universes,
each having the next one as type ([Pal98]).

Dependent types are types constructed from type families. They extend the corre-
spondence between lambda calculus and logic, also known as the Curry-Howard corre-
spondence. Dependent types correspond to quanti�ers. Dependent function types can
be seen as types for functions with a codomain depending on the term to which they
are applied. They correspond to the universal quanti�er of predicate calculus. For the
existential quanti�er, there are the dependent pairs: the type of the second element of the
pair depends on the �rst element.

The goal of my internship was to show that it is possible to de�ne a constructor for
terms allowing to lift them from one universe to the next in a system with dependent
types1. The next section gives the ideas behind this constructor and the chosen system.
In particular, the calculus had to be proven normalizing.

For this purpose, we used normalization by evaluation, a method which is now well
established ([CD97], [AAD07], [Abe13]). We needed to adapt it to our system, the lifting
operator introducing some subtleties. The next step was to prove this normalization sound
and complete. We also have a prototype implementation of such a system.

1 Context

This work is motivated by the wish for combining cumulativity and universe polymor-
phism in a proof assistant and results from a proposition of Conor McBride ([McB11]).
We �rst detail his proposition and then explain our choices to achieve the de�nition of
the lifting operator suggested by McBride.

1.1 Motivations

Combining cumulativity and universe polymorphism is an active subject of research.
Cumulativity expresses the inclusion of universes in the higher ones, but can be extended
by the use of a subtyping rule:

Γ ` t : T Γ ` T ≤ T ′

Γ ` t : T ′

Several versions of subtyping exist but the one we will consider here is the following (see
Appendix A, Figure 6 for details): each universe is a subtype of the next one (which gives
cumulativity by transitivity) and we have a subtyping rule for function types, contravari-
ant in the domain and covariant in the codomain.

1Only dependent functions were considered.

ENS Lyon 2 Damien Rouhling

Internship report

Name 3 c
Exp 3 r, s, t ::= c | vi | λ.t | r s | Un | Π R S | t+ | tσ

ExpSub 3 σ, δ ::= �| id | 〈〉 | (σ, t) | σδ
Nf 3 v, w ::= u | Π V (λ.W) | λ.v | Un

Ne 3 u ::= cn | vi | u v
Ctx 3 Γ ::= � | Γ.T
Def 3 l ::= � | l.c : T | l.c = t : T

Figure 1: Grammar of terms, substitutions, normal forms, contexts and de�nitions

In his blog post ([McB11]), McBride recalls that Coq ([Coq]) supports cumulativity,
but not Adga ([Agd]). On the other side, Agda supports universe polymorphism, and not
Coq. Universe polymorphism allows you to declare terms which are usable at di�erent
levels. An example is the case of the identity type, which should exist at every level.

The need for universe polymorphism is real: for his research, Vladimir Voevodsky had
to duplicate code in an implementation in Coq2. He had two versions of the same �le
with di�erent universe levels, which could be avoided by �a better universe management�.
Note that on the other branch of his project3 Voevodsky removes the universe consistency
checking by a �type in type patch�, which is an even worse solution.

Robert Pollack and Robert Harper were the �rst to try to deal with universe poly-
morphism for the Calculus of Constructions ([HP91]). Their system has been re�ned by
Hugo Herbelin ([Her05]). An extension of Coq based on these ideas has recently been
implemented by Matthieu Sozeau and Nicolas Tabareau ([ST14]). However, the system
is complicated because it deals with constraints solving for universe variables.

The suggestion of McBride is a simpler system in which the user has to specify the
levels. His idea is the introduction of an operator t 7→ tn which adds n to every level
appearing in t. Using rules which are invariant under uniform increment of levels, this
permits to emulate universe polymorphism (e.g. if t is derivable of type Um, then t

n will
be derivable of type Un+m).

Let us consider the example of the polymorphic identity function. We have a term id
of type Π (X : U0) (X → X), which means that id X is a (non-dependent) function of
type X → X. The type of id1 is then Π (X : U1) (X → X), which is the type of the
polymorphic identity function at level 1. Thus, to get the identity function at level n, it
is su�cient to provide the identity function at level 0 and to apply this lifting operator.

1.2 System

During my internship, I have designed a system in which the lifting operator suggested
by McBride is a term constructor. Keeping in mind the practical applications, we want
to allow the user of a proof assistant to declare a term at some level, and then to give
explicitely the level at which he or she wants the term to be lifted each time it is used.
We write t+ for t lifted and we use the following notation: t0 := t and tn+1 := (tn)

+
.

The introduction of the lifting operator in the syntax brings some subtleties in the
de�nition of a reduction. The constructor .+ should commute with every other constructor
except that U+

n reduces to Un+1 and that variables are unchanged by this operation,
because the context is also lifted (if x is of type T , in the lifted context x will be of type
T+ so that we don't need to lift x).

The most signi�cant point is the case of β-reduction: how do we de�ne t+ [x := u]?

2See https://github.com/vladimirias/Foundations/tree/before_implicit
3https://github.com/vladimirias/Foundations/tree/master

ENS Lyon 3 Damien Rouhling

https://github.com/vladimirias/Foundations/tree/before_implicit
https://github.com/vladimirias/Foundations/tree/master

Internship report

We cannot replace directly x by u in t+ as it is shown by the following example. If we
give the type U0 → U0 to t := λx.x, then t+ is of type U1 → U1 and t+ U0 should be
of type U1. Since t reduces to λx.x+ (and then also to t!) we might need to compute
x+ [x := U0]. By directly replacing x by U0, the term will reduce to U1, which is of type
U2, not U1 (recall Girard's paradox).

To solve this problem, we introduce explicit substitutions (tδ is a term if t is a term
and δ is a substitution). The grammar is given in Figure 1. � is a weakening substitution.
It is introduced because we use De Bruijn's indices for variables (vi � reduces to vi+1).
The reductions rules for lifting with substitutions are the following: to reduce t+δ one
has �rst to reduce t+ and (tδ)

+
reduces to t+δ+, where δ+ is de�ned as follows: �+:=�,

id+ := id, 〈〉+ := 〈〉, (σ, t)
+

:= (σ+, t+) and σδ+ := σ+δ+.
Lifting on contexts is de�ned the obvious way: �+ := � and (Γ.T)

+
:= Γ+.T+. We

use the same notations δn and Γn as for terms.
We also introduce environments of global de�nitions. In these environments, constants

are de�ned to be of a certain type, and one can give a term to which it should correspond.
In this case, the constant plays the role of a name for the term. The de�nitions being
global, only closed terms and types are used in them. Note that if the reduction eliminates
the lifting constructor on variables, it cannot be the case for constants.

The judgments of our system are the following:

• l ok l is a well-formed environment of global de�nitions.

• Γ `l Γ is a well-formed context.

• Γ `l δ : ∆ δ is a well-formed substitution from context Γ to context ∆.

• Γ `l t : T t is a well-formed term of type T in context Γ.

• Γ `l T i� Γ `l T : Un for some n and Γ `l T = T ′ i� Γ `l T = T ′ : Un for some n.

• Γ `l R ≤ S R is a subtype of S in context Γ.

• Γ `l σ = δ : ∆ σ and δ are equal substitutions from context Γ to context ∆.

• Γ `l r = s : T r and s are equal terms of type T in context Γ.

The rule for lifted terms is the following:

Γ `l t : T

Γ+ `l t+ : T+

It corresponds to the idea of using rules which are invariant by uniform increment of
levels, mentioned in the previous subsection.

Remark 1 (Link with presheaf models of type theory). This rule also has a strong link
with the current work of Thierry Coquand on presheaf models of type theory.

He de�nes a system in which the typing judgment has the form Γ `I t : T where I
is an object of a particular category. Then, for any morphism f : I → J we have the
following rule:

Γ `I t : T

Γf `J tf : Tf

In our case, the category is the monoid (N,+). Later on (Section 2), our notion of
evaluation will also correspond to the one in presheaf models.

The rules for de�nitions, contexts, substitutions, typing and subtyping are given in
Figure 6. Equality for terms is speci�ed in Figure 7 and for substitutions in Figure 8. We
use the following notations:

• [t] := (id, t).

• (Γ.T) (0) := T � and (Γ.T) (i+ 1) := Γ (i) �.

ENS Lyon 4 Damien Rouhling

Internship report

D 3 a, f ::= (λ.t) ρ |↑A e | Un | Fun A F
Base 3 B ::= Un |↑Un E
Env 3 ρ ::= (n, τ, l)
τ ∈ Sub := N→ D
Dne 3 e ::= cn | xk | e d
Dnf 3 d ::= ↓A a

Figure 2: Semantic domain, environments and normal values

1.3 Contributions

I have achieved a proof of weak normalization for the system in Appendix A, going
through normalization by evaluation. I had �rst to learn the basics of normalization
by evaluation and then to adapt the method to our case4 (Section 2). It was neces-
sary to prove the normalization by evaluation sound and complete with respect to the
propositional equality of our system. Completeness is proven using a PER model (Sub-
section 3.1). Kripke logical relations were used to show the soundness (Subsection 3.2). I
have implemented a bidirectional type checker in Haskell ([Has]) corresponding to this sys-
tem (Section 4), with the help of Anders Mörtberg. Di�erent extensions were considered
(Section 5).

2 Normalization by evaluation

Normalization by evaluation is a well-developed method which has proven to be use-
ful ([ACP11], [FP13], [AC14]). We explain here the principle of this method and the
adaptation needed to use it in our framework.

2.1 Principle

Normalization by evaluation is achieved through two steps. First, the considered term
will be evaluated in an environment. The environment should correspond to the context
in which the term is typed because it gives a value to each (free) variable. The evaluation
function's codomain is a set of semantics values. A particular case for the semantic domain
is a partial applicative structure. It is a set equipped with an application function (see
next subsection for an example).

Then, values are rei�ed back to the set of terms, resulting in normal forms. Normal-
ization can be typed or untyped ([Abe13]). Typed normalization by evaluation is used to
obtain η-long β-normal forms. In this case, rei�cation is led by type annotations. Those
annotations can be introduced at the level of values ([Abe13]): we can use re�ection
(↑A e) to give the type of a neutral value, and rei�cation (↓A a) to give the type of a
value and get a normal value. A read-back function (Rnf. .) is then used to send normal
values to normal terms. It might call a particular read-back function for neutral values
(Rne. .). This idea of having a rei�cation in two phases (�rst η-expansion, then read-back)
has been introduced by Andreas Abel, Thierry Coquand and Miguel Pagano ([ACP11]).

2.2 In presence of the lifting operator

We denote environments by ρ, and the evaluation of a term t in the environment ρ by
JtK (ρ).

4Because of the previous remark about substitution.

ENS Lyon 5 Damien Rouhling

Internship report

Recall our discussion about substitution on a lifted term (Subsection 1.2). The term
t+δ cannot be reduced until t+ is. We encounter the same di�culty when trying to de�ne
Jt+K (ρ).

Thierry Coquand has suggested introducing level annotations in environments: an
environment ρ is then equal to a pair (n, τ) where the integer n is a level annotation and
the substitution5 τ corresponds to the usual structure of environments.

How does evaluation work, then? Most of the rules stay unchanged, we just need to
pass the level annotation. However, three rules must draw our attention:

JviK (n, τ) := [i] (τ)
JUnK (m, τ) := Un+m

Jt+K (n, τ) := JtK (n+ 1, τ)

In the case of a variable, we only need to take the corresponding value in the substitu-
tion τ (denoted by [i] (τ) here). It should not be lifted in any way (see again our discussion
in Subsection 1.2). Universes are shifted, since it is the meaning of this operator. Finally,
the evaluation of a lifted term is the evaluation of this term in an environment with an
incremented level annotation. As for the typing rules, this last evaluation rule is justi�ed
by presheaf models of type theory (recall Remark 1).

For de�ned constants, we also add the environment of global de�nitions to the structure
of environments. Two cases appear:

JcK (n, τ, l) := JtK (n, τ, l) if c = t : T ∈ l
JcK (n, τ, l) := ↑JT K(n,τ,l) cn if c : T ∈ l

If the constant is a name for a given term, its evaluation will be the evaluation of the
term. If no term is given, it will be considered as a neutral value and we evaluate the
type of the constant to build a re�ection.

Since values are given only to free variables in the environments, evaluation is blocked
on lambda abstractions: we introduce closures (λ.t) ρ in our semantic domain. We can
evaluate under the abstraction when it is applied to a value. That is why we have an
applicative structure.

The grammar of our semantic domain is given in Figure 2. We denote by add (a, τ)
the substitution τ ′ such that: {

τ ′ (0) ≡ a
τ ′ (n+ 1) ≡ τ (n)

The complete set of rules for evaluation, application and read-back is given in Ap-
pendix B. Note that any substitution could be the evaluation of the empty explicit
substitution: we will never try to evaluate a variable with it. Base types (B) are used
later (Subsection 3.2).

To de�ne the normalization by evaluation function, we �rst need to introduce a canon-
ical substitution associated to a given context.

De�nition 1 (Normalization by evaluation). De�ne the n-lifted canonical substitution
by:

↑�,ln := i 7→ U0 and ↑Γ.T,ln := add
(
↑JT K(n,τ,l) x|Γ|, τ

)
where τ ≡↑Γ,ln

Then, NbETΓ,l (n, t) := Rnf|Γ| ↓
A
(
JtK
(
n, ↑Γ,ln , l

))
where A ≡ JT K

(
n, ↑Γ,ln , l

)
.

Write then ↑Γ,l for ↑Γ,l0 , and NbETΓ,l (t) for NbE
T
Γ,l (0, t).

For types, we will use NbEΓ,l (n, T) instead of NbEUi

Γ,l (n, T).

5Not to be mixed with explicit substitutions which are de�ned on terms. In environments, substitutions

are de�ned on values.

ENS Lyon 6 Damien Rouhling

Internship report

3 Completeness and soundness of NbE

Completeness of normalization by evaluation can be proven by a PER model. It is
motivated by the idea of realizability predicate. We then show soundness using Kripke
logical relations.

3.1 PER model and completeness of NbE

Realizability predicates (or computability predicates) have been introduced and used
by William Tait to model second order intuitionistic logic ([Tai75]). Catarina Coquand
used them to prove normalization for a dependent type theory ([Coq98]). This notion
has also been used by Pierre-Louis Curien ([Cur91]) and Thierry Coquand and Guilhem
Jaber ([CJ10]).

The basic idea (in our framework) is to use predicates Typei and V ali (T). Typei (T)
holds for �T is a good type at level i� and if Typei (T) is true, then V ali (T, t) holds for �t
is a good term of type T at level i�. These predicates can be de�ned inductive-recursively.

Cumulativity impose that if Typei (T) holds, then it is also the case for all j > i.
Thus, we can de�ne Type (T) as ∃i, Typei (T) and have a similar de�nition for V al (T, t).

One can then show that if Type (T) then T is normalizable (and a similar statement for
V al). Note that we can justify semantically the lifting operator by showing the following
statement: if Type (T) then for all n we have also Type (Tn) (and similarly for V al).

However, in presence of a rule for η-conversion, predicates are not su�cient ([AC05])
and we need to introduce partial equivalence relations (PER), which are su�cient to prove
the consistency of a system ([Abe10]) and further up the completeness of normalization
by evaluation ([ACP11]). A partial equivalence relation is a symmetric and transitive
binary relation.

Constants aside, there is no occurrence of the lifting constructor in the set of values
so that a standard PER model will be su�cient. We �rst de�ne PERs over neutral and
normal semantic values6. Two values are related if they will be read back to the same
normal form. Then, our goal will be to show that if we can derive two terms to be equal
in our system, then the rei�cations of their evaluations will be related by these PERs.

De�nition 2 (PERs over normal semantic values).

• d = d′ ∈ > i� ∀n∃v ∈ Nf,Rnfn d ≡ v ≡ Rnfn d′.

• e = e′ ∈ ⊥ i� ∀n∃u ∈ Ne,Rnen e ≡ u ≡ Rnen e
′.

One can use the introduction rules in Figure 3.

Now we are ready to de�ne the PERs corresponding to our idea of realizability predi-
cates.

De�nition 3. We de�ne the following PERs over semantic values using the rules in
Figure 4:

• Typei ∈ PER (D).

• V ali (A) ∈ PER (D) for A ∈ Typei.
• Type :=

⋃
i

Typei and V al :=
⋃
i

V ali.

We use the following notations:

• En :=
{
↑↑UnE1 e1 =↑↑UnE2 e2 | E1 = E2 = E ∈ ⊥ and e1 = e2 ∈ ⊥

}
.

• Π A F := {f = f ′ | ∀a = a′ ∈ A, f · a = f ′ · a′ ∈ F (a)}.

ENS Lyon 7 Damien Rouhling

Internship report

cn = cn ∈ ⊥ xk = xk ∈ ⊥
e = e′ ∈ ⊥ d = d′ ∈ >

e d = e′ d′ ∈ ⊥
e = e′ ∈ ⊥

↓B1↑B2 e =↓B′
1↑B′

2 e′ ∈ >

↓Uk Un =↓Uk Un ∈ >

∀e = e′ ∈ ⊥, ↓F ·↑Ae
(
f · ↑A e

)
=↓F ′·↑A′

e′
(
f ′· ↑A′

e′
)
∈ >

↓Fun A F f =↓Fun A′ F ′
f ′ ∈ >

↓Ui A =↓Ui A′ ∈ > ∀e = e′ ∈ ⊥, ↓Ui
(
F · ↑A e

)
=↓Ui

(
F ′· ↑A′

e′
)
∈ >

↓Ui Fun A F =↓Ui Fun A′ F ′ ∈ >

Figure 3: PERs > and ⊥

E = E′ ∈ ⊥ j 6 i

↑Uj E =↑Uj E′ ∈ Typei
(neut)

j < i

Uj = Uj ∈ Typei
(univ)

A = A′ ∈ Typei ∀a = a′ ∈ V ali (A) , F · a = F ′ · a′ ∈ Typei
Fun A F = Fun A′ F ′ ∈ Typei

(fun)

• If ↑Uj E =↑Uj E′ ∈ Typei by (neut), then V ali
(
↑Uj E

)
:= Ej .

• If Uj = Uj ∈ Typei by (univ), then V ali (Uj) := Typej .

• If Fun A F = Fun A′ F ′ ∈ Typei by (fun), then

V ali (Fun A F) := Π V ali (A) (a 7→ V ali (F · a)).

Figure 4: PERs Typei and V ali (A)

ENS Lyon 8 Damien Rouhling

Internship report

We also need to model subtyping. We use the de�nition given by Daniel Fridlender
and Miguel Pagano ([FP13]).

De�nition 4 (Semantic subtyping). We de�ne a relation 4⊆ Type× Type
1. If E = E′ ∈ ⊥, then ↑Un E 4↑Un E′ for any n.

2. If j 6 i, then Uj 4 Ui.

3. If A′ 4 A and ∀a = a′ ∈ V al (A′) , F · a 4 F ′ · a′, then Fun A F 4 Fun A′ F ′.

Finally, we can model our judgments. We �rst de�ne what it means to be a good
substitution for a given context (which will be supposed valid) and then de�ne the validity
of judgments. Note that we need to quantify over n in the de�nition of validity and we
don't get it as a consequence because the lifting is a rule of our system.

De�nition 5.

1. τ = τ ′ ∈ Subst (�, l) for all τ, τ ′.
2. If τ = τ ′ ∈ Subst (Γ, l) and a = a′ ∈ V al (JT K (0, τ, l)), then add (a, τ) = add (a′, τ ′) ∈

Subst (Γ.T, l).

De�nition 6 (Validity).

1. De�nitions: � |=, if � |=l t : T and c /∈ l then l.c = t : T |= and if � |=l T and c /∈ l
then l.c : T |=.

2. Contexts: if l |= then � |=l and if Γ |=l T , then Γ.T |=l.

3. Types: Γ |=l T if Γ |=l T = T .

4. Type equalities: Γ |=l T = T ′ if Γ |=l and ∀n, τ = τ ′ ∈ Subst (Γn, l) , JT K (n, τ, l) =
JT ′K (n, τ ′, l) ∈ Type.

5. Subtyping: Γ |=l T ≤ T ′ if Γ |=l T , Γ |=l T ′ and ∀n, τ = τ ′ ∈ Subst (Γn, l) , JT K (n, τ, l) 4
JT ′K (n, τ ′, l).

6. Terms: Γ |=l t : T if Γ |=l t = t : T .

7. Term equalities: Γ |=l t = t′ : T if Γ |=l T and ∀n, τ = τ ′ ∈ Subst (Γn, l) , JtK (n, τ, l) =
Jt′K (n, τ ′, l) ∈ V al (JT K (n, τ, l)).

8. Substitutions: Γ |=l δ : ∆ if Γ |=l δ = δ : ∆.

9. Substitution equalities: Γ |=l δ = δ′ : ∆ if Γ |=l, ∆ |=l and ∀n, τ = τ ′ ∈
Subst (Γn, l) , JδK (n, τ, l) = Jδ′K (n, τ ′, l) ∈ Subst (∆n, l).

Proving completeness of NbE is done in a few simple steps:

• Relate Type and V al to > and ⊥ through re�ection and rei�cation (Lemma 1).

• Prove that if Γ `l J then Γ |=l J .

• Conclude, using the fact that ↑Γ,ln ∈ Subst (Γn, l) (Theorem 1 and Corollary 1).

Lemma 1. Suppose A = A′ ∈ Type
1. ↓Ui A =↓Ui A′ ∈ >.
2. If e = e′ ∈ ⊥ then ↑A e =↑A′

e′ ∈ V al (A).

3. If a = a′ ∈ V al (A) then ↓A a =↓A′
a′ ∈ >.

Theorem 1.

• If Γ `l T = T ′ then NbEΓ,l (n, T) ≡ NbEΓ,l (n, T
′).

• If Γ `l t = t′ : T , then NbETΓ,l (n, t) ≡ NbETΓ,l (n, t
′).

Corollary 1 (Completeness of NbE).

• If Γ `l T = T ′ then NbEΓ,l (T) ≡ NbEΓ,l (T
′).

• If Γ `l t = t′ : T , then NbETΓ,l (t) ≡ NbETΓ,l (t
′).

6This is where constants will be added.

ENS Lyon 9 Damien Rouhling

Internship report

3.2 Kripke relations and soundness of NbE

Kripke logical relations are often used to build models in intuitionistic logic and in
type theory. I won't give a complete overview of logical relations but I will try to make
understandable their use in our framework. I had to learn about them and did so by
reading articles ([ACD08], [ACP11], [AS12], [FP13]) and an internship report ([Sch11]),
and through discussions with Andreas Abel.

To show the soundness of NbE, we need to prove that for any well-typed term t we can
derive its equality with the result of its normalization by evaluation. For this purpose, we
relate terms to values (using a logical relation) and then show that if a term is related to
a value, we can derive the equality of the term with a proper rei�cation of the value. The
last step is to show that if a term is well-typed then it is related to its evaluation.

As mentioned by Gabriel Scherer in his presentation of logical relations ([Sch11], Ap-
pendix A), negative occurrences of the relation (that is, on the left of an implication) have
to be closed under weakening of contexts.

De�nition 7 (Context weakening). ∆ ≤li Γ i� ∆ `l�i: Γ where �0:= id and �i+1:=�i�.

Notation 1. ↓AΓ a := Rnf|Γ| ↓
A a.

For types: ↓Γ A is used instead of ↓Un

Γ A.

Two logical relations are de�ned below:

• Γ `l T r A relates a type T to a value A.

• Γ `l t : T r a ∈ A relates a term t to a value a at a type T , which should be related
to the value A.

Two cases occur: either the value is a base type or it is a function type. The former is
fairly easy to handle but the latter introduces negative occurrences of the relations, hence
the need for context weakening closure.

De�nition 8 (Logical relations on types and terms). Γ `l T r A and Γ `l t : T r a ∈ A
are de�ned by induction on A ∈ Typek:
• Γ `l T r B i� ∀∆ ≤li Γ,∆ `l T �i=↓∆ B.

• Γ `l T : S r A ∈ Ui i� Γ `l S = Ui and Γ `l T r A.

• Γ `l t : T r a ∈ B for B 6≡ Ui i� ∀∆ ≤li Γ,∆ `l t �i=↓B∆ a : T �i.
• Γ `l T r Fun A F i� Γ `l T = Π R (λ.S), Γ `l R r A and ∀∆ ≤li Γ,∆ `l r : R �i

r a ∈ A⇒ ∆ `l S (�i, r) r F · a for some R,S.

• Γ `l t : T r f ∈ Fun A F i� Γ `l T = Π R (λ.S), Γ `l R r A and ∀∆ ≤li Γ,∆ `l
r : R �i r a ∈ A⇒ ∆ `l (t �i) r : S (�i, r) r f · a ∈ F ·A for some R,S.

The next theorem is the �rst essential point in the proof of soundness of NbE: we can
reify a value related to a term and then derive their equality.

Theorem 2. Suppose Γ `l T r A.

• Γ `l T =↓Γ A.
• If Γ `l t : T r a ∈ A then Γ `l t =↓AΓ a : T .

• If ∀∆ ≤li Γ,∆ `l t �i= Rne|∆|e : T �i then Γ `l t : T r ↑A e ∈ A.

To end the proof, one needs to show that a well-typed term is related to its evaluation
by the logical relation. It will be done by induction on the typing derivation. Because
of the rules for explicit substitutions, we �rst need to relate them to the substitutions
contained in the environments.

De�nition 9 (Logical relation on substitutions). We de�ne Γ `l δ : ∆ r τ by induction
on ∆:

ENS Lyon 10 Damien Rouhling

Internship report

• If Γ `l δ : � then Γ `l δ : � r τ for all τ .

• Γ `l σ : ∆.T r add (a, τ) i� Γ `l σ = (δ, t) : ∆.T , Γ `l δ : ∆ r τ , Γ `l
Tδ r JT K (0, τ, l) and Γ `l t : Tδ r a ∈ JT K (0, τ, l).

We can now show the �fundamental theorem of logical relations�. Knowing that Γ is
a well-formed context implies Γ `l id : Γ r ↑Γ,l, this theorem will complete the proof of
soundness of NbE. Note again the quanti�cation over n, which is a speci�c feature of our
system.

Theorem 3.

• If ∆ `l T then Γ `l δ : ∆n r τ ⇒ Γ `l Tnδ r JT K (n, τ, l).

• If ∆ `l R ≤ S then Γ `l δ : ∆n r τ ⇒ Γ `l Rnδ r JRK (n, τ, l) and Γ `l
Snδ r JSK (n, τ, l).

• If ∆ `l t : T then Γ `l δ : ∆n r τ ⇒ Γ `l tnδ : Tnδ r JtK (n, τ, l) ∈ JT K (n, τ, l).

• If ∆ `l σ : Σ then Γ `l δ : ∆n r τ ⇒ Γ `l σnδ : Σn r JσK (n, τ, l).

Theorem 4 (Soundness of NbE).

• If Γ `l T then Γ `l T = NbEΓ,l (T).

• If Γ `l t : T then Γ `l t = NbETΓ,l (t) : T .

4 Implementation

This work having a practical goal, implementing the system was a natural step. We
explain here where we started from and give some details about the actual implementation.

4.1 Bidirectional type-checking

A system such as ours cannot be implemented as it is. To check the type of a term,
a computer needs either help from the user or rules it can use without having to guess
which one to apply.

For this purpose, bidirectional type systems �t well. These are systems in which two
kinds of judgments exist: type checking and type inference. For type checking, the user
give a term t and a type T and the computer checks that t is actually of type T . Type
inference only requires a term as input and outputs a type. This gives an algorithm which
is easy to implement on normal forms.

Here, we write Γ `l v ⇐ V for �v checks against the type V � and Γ `l u⇒ T for �u is
inferred of type T �7. The system is given in Figure 5. We use an algorithmic version of
subtyping, given below.

De�nition 10 (Algorithmic subtyping). Suppose Γ `l V and Γ `l V ′. We de�ne then
V P V ′ as follows:

• u P u′ i� u ≡ u′.
• Ui P Uj i� i 6 j.

• Π V (λ.W) P Π V ′ (λ.W ′) i� V ′ P V and W PW ′.

Theorem 5. Suppose Γ `l R and Γ `l S, then
Γ `l R ≤ S i� NbEΓ,l (R) P NbEΓ,l (S).

Note that the rules about de�nitions correspond to our initial goal: we can declare a
term at a certain type and later use it with any shift when it is needed.

7Recall v is for normal terms and u for neutral terms.

ENS Lyon 11 Damien Rouhling

Internship report

Γ `l V ⇐ Un Γ.V `l W ⇐ Un

Γ `l Π V (λ.W)⇐ Un

n < m

Γ `l Un ⇐ Um

Γ.V `l v ⇐W

Γ `l λ.v ⇐ Π V (λ.W)

Γ `l u⇒ T NbEΓ,l (T) P V

Γ `l u⇐ V Γ.Ti . . . T0 `l vi ⇒ Ti �i+1

Γ `l u⇒ T NbEΓ,l (T) ≡ Π V (λ.W) Γ `l v ⇐ V

Γ `l u v ⇒W [v]

c : T ∈ l
Γ `l cn ⇒ Tn

c = t : T ∈ l
Γ `l cn ⇒ Tn

Figure 5: Bidirectional type-checking system

One can show that this system is correct and complete with respect to our original sys-
tem. Completeness requires a result of compatibility with subtyping which itse� requires
the notion of subtyping of contexts. We refer again to the work of Daniel Fridlender and
Miguel Pagano ([FP13]).

De�nition 11 (Subtyping of contexts). Γ ≤l ∆ by induction on the contexts:

• � ≤l �.
• If Γ ≤l ∆, ∆ `l S and Γ `l R ≤ S then Γ.R ≤l ∆.S.

Theorem 6 (Correctness of bidirectional type-checking).

• If Γ `l V and Γ `l v ⇐ V then Γ `l v : V .

• If Γ `l and Γ `l u⇒ T then Γ `l u : T .

Theorem 7 (Completeness of bidirectional type-checking). If Γ `l v : T then Γ `l v ⇐
NbEΓ,l (T).

4.2 Adaptation and integration of the calculus

To implement this system, we started from a type-checker for Mini-TT ([CKNT09])
written in Haskell ([Has]). It can be found in the branch �cleantt� of the �cubical� project,
by Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mörtberg8.

The implementation is however quite di�erent from the bidirectional system in the
previous subsection. Indeed, types are evaluated and terms are checked against these
values. Thus, we also need to keep track of the environment for evaluations. Type checking
is then written ρ,Γ ` t⇐ A (and similarly for inference), which should be understood as
JtK (ρ) ∈ V al (A). The context Γ is only kept to have a trace of the variables' type.

The adaptation of the structure of environments aside, we needed to give a rule to
infer the type of t+. The following has been implemented:

(n+ 1, τ) ,Γ ` t⇒ A

(n, τ) ,Γ ` t+ ⇒ A

This rule corresponds exactly to our notion of evaluation: Jt+K (n, τ) ≡ JtK (n+ 1, τ).
The implementation can be found in the branch �minittplus� of the �cubical� project9.

Two example �les are relevant. The �le �test.tt� contains the example of the polymorphic

8https://github.com/simhu/cubical/tree/cleantt
9https://github.com/simhu/cubical/tree/minittplus

ENS Lyon 12 Damien Rouhling

https://github.com/simhu/cubical/tree/cleantt
https://github.com/simhu/cubical/tree/minittplus

Internship report

identity, natural numbers, lists and magmas. There is also a proof by re�exivity that a
lifted variable is equal to the variable. The �le �equality.cub� contains an expression of
the univalence axiom (see [Uni13] for an overview of homotopy type theory).

5 Further and related work

We considered two extensions of the system. Even if we have a system in which one
can freely declare and lift constants, it would be more useful if it contained what Catarina
Coquand calls � �real� dependent types� ([Coq98]). For this purpose, our �rst extension
introduces natural numbers in the system: Nat is the type of natural numbers, we have
the constructors Zero and Succ and the primitive recursion Natrec. The lifting operator
commutes with Succ and Natrec and is eliminated on Nat and Zero. These rules aside,
introducing natural numbers is done the usual way (see [ACP11] or [Abe13] for example).

The second extension deals with an inverse operation for the lifting. Universe levels
can be shifted down as well. However, this is not as easy to write as for the lifting operator.
With the present hierarchy of universes, it is impossible to have a generic rule like

Γ ` t : T

Γ− ` t− : T−

We get stuck when we try to de�ne U−0 . It would be inconsistent to reduce it to
U0, since we could derive ` U0 : U0. A possibility, brie�y mentioned by McBride in the
comments of his blogpost ([McB11]), would be to have a hierarchy with levels over Z.
This option is totally unexplored to our knowledge. Let us however remark that it is
unclear whether we can de�ne a model for such a hierarchy, since the absence of a bottom
universe forbids the usual inductive-recursive de�nitions.

Instead, we de�ned a system in which we have to seek the �rst constructor which is
not .− in the considered term to know if we are allowed to write it. The evaluation is
extended with Jt−K (n, τ) ≡ JtK (n− 1, τ) and the evaluation of universes becomes partial
JUnK (m, τ) ≡ Un+m if n+m is non negative.

Moreover, our system seems to be related to Quine's New Foundations ([Qui37]).
Indeed, Quine's system is known to be equiconsistent with TST+ (Typed Set Theory
with typical ambiguity) ([Spe90]). In TST+, there is an operation which increments every
type index in a formula, denoted Φ+. Typical ambiguity expresses the logical equivalence
between Φ and Φ+ for any Φ. TST+ has recently been proven consistent by Murdoch
Gabbay ([Gab14]), using nominal sets (see [Pit13] for an overview of nominal sets).

ENS Lyon 13 Damien Rouhling

Internship report

Conclusion

The goal of this work was to make precise the proposition of Conor McBride for a lifting
operator for a cumulative hierarchy of universes ([McB11]). The purpose of this operator
is to allow in a simple way the combination of cumulativity and universe polymorphism
in a proof assistant.

The introduction of this operator in the syntax of terms brought complications in
the handling of variables and substitutions. However, they are solved by using adapted
structures such as explicit substitutions and level annotations in environments.

We proved weak normalization for the resulting system using normalization by eval-
uation. A partial equivalence relation model was built to prove the completeness of this
normalization. For its soundness, we needed Kripke logical relations. An important re-
mark is that we used the standard instantiations of these structures, the adaptation of
environments put aside. Only the inductive hypotheses were to be adapted to get our
results.

We designed a type checking algorithm and implemented an adapted version of it.
The adaptation is based on the link with presheaf models of type theory, a �eld still in
development. We provided some examples we believe to be relevant.

A natural extension to the system, de�ning an inverse operation for the lifting, raised
the question of a hierarchy with levels over Z. The usual method for building models
seems to be unusable in this context.

The link between our system and Quine's New Foundations still has to be explored.
Especially, �consistent renamings of levels�, which are used to express typical ambiguity
in Gabbay's proof of consistency for TST+ ([Gab14]), might prove useful in a simpler
expression of both the lifting operator and its inverse.

ENS Lyon 14 Damien Rouhling

Internship report

A Rules of the calculus

De�nitions.

� ok
(empty-def)

l ok � `l T c /∈ l
l.c : T ok

(prim-def)

l ok � `l t : T c /∈ l
l.c = t : T ok

(def)

Contexts.

l ok

� `l
(empty-ctx)

Γ `l Γ `l T
Γ.T `l

(ext-ctx)

Substitutions.

Γ `l

Γ `l id : Γ
(id-subs)

Σ `l δ : ∆ Γ `l σ : Σ

Γ `l δσ : ∆
(comp-subs)

Γ `l

Γ `l 〈〉 : �
(ept-subs)

Γ `l T
Γ.T `l�: Γ

(fst-subs)

Γ `l δ : ∆ ∆ `l T Γ `l t : Tδ

Γ `l (δ, t) : ∆.T
(ext-subs)

Terms.

Γ `l

Γ `l Un : Un+1

(u-u-f)
Γ `l R : Un Γ.R `l S : Un

Γ `l Π R (λ.S) : Un

(fun-u-f)

Γ `l Γ (i) ≡ T
Γ `l vi : T

(hyp)
Γ `l R Γ.R `l S Γ.R `l t : S

Γ `l λ.t : Π R (λ.S)
(fun-i)

Γ `l R Γ.R `l S Γ `l t : Π R (λ.S) Γ `l r : R

Γ `l t r : S [r]
(fun-el)

∆ `l T ∆ `l t : T Γ `l δ : ∆

Γ `l tδ : Tδ
(subs-term)

Γ `l t : R Γ `l R ≤ S
Γ `l t : S

(sub)

� `l t : T Γ `l 〈〉 : �
Γ `l t : T

(closed-term)
Γ `l t : T

Γ+ `l t+ : T+
(lift-term)

Γ `l c : T ∈ l
Γ `l c : T

(prim-def-term)
Γ `l c = t : T ∈ l

Γ `l c : T
(def-term)

Subtypes.

Γ `l R = S

Γ `l R ≤ S
(refl-sty)

Γ `l

Γ `l Un ≤ Un+1

(u-sty)

Γ `l R′ ≤ R Γ.R `l S Γ.R′ `l S ≤ S′

Γ `l Π R (λ.S) ≤ Π R′
(
λ.S′

) (fun-sty)

Γ `l R ≤ R′ Γ `l R′ ≤ R′′

Γ `l R ≤ R′′
(trans-sty)

∆ `l R ≤ S Γ `l δ : ∆

Γ `l Rδ ≤ Sδ
(subs-sty)

Γ `l R ≤ S
Γ+ `l R+ ≤ S+

(lift-sty)

Figure 6: Typing rules

ENS Lyon 15 Damien Rouhling

Internship report

Γ `l t : T

Γ `l t = t : T
(refl-et)

Γ `l t = t′ : T Γ `l t = t′′ : T

Γ `l t′ = t′′ : T
(sym-tran-et)

Γ `l t : T

Γ `l tid = t : T
(neut-et)

Γ `l δ : ∆

Γ `l Unδ = Un : Un+1

(u-subs-et)

Γ `l δ : ∆ ∆ `l T Γ `l t : Tδ

Γ `l v0 (δ, t) = t : Tδ
(snd-et)

Γ `l Γ (i+ 1) ≡ T
Γ `l vi �= vi+1 : T

(w-var-et)

Γ `l δ : ∆ Γ `l s : S ∆ (i) ≡ T
Γ `l vi+1 (δ, s) = viδ : T

(sub-var-et)

� `l t : T Γ `l 〈〉 : �
Γ ` t〈〉 = t : T 〈〉

(ept-closed-et)

Γ `l R = R′ : Un Γ.R′ `l S′ : Un Γ.R `l S = S′ : Un

Γ `l Π R (λ.S) = Π R′
(
λ.S′

)
: Un

(cong-fun-et)

∆ `l R : Un ∆.R `l S : Un Γ `l δ : ∆

Γ `l (Π R (λ.S)) δ = Π (Rδ) (λ.S (δ �, v0)) : Un

(fun-subs-et)

Γ `l R Γ.R `l S Γ.R `l t = t′ : S

Γ `l λ.t = λ.t′ : Π R (λ.S)
(xi-et)

∆ `l R ∆.R `l S ∆.R `l t : S Γ `l δ : ∆

Γ `l (λ.t) δ = λ (t (δ �, v0)) : (Π R (λ.S)) δ
(abs-subs-et)

Γ `l R Γ.R `l S Γ `l t = t′ : Π R (λ.S) Γ `l r = r′ : R

Γ `l t r = t′ r′ : S [r]
(cong-app-et)

∆ `l R ∆.R `l S ∆ `l t : Π R (λ.S) ∆ `l r : R Γ `l δ : ∆

Γ `l (t r) δ = tδ (rδ) : (S [r]) δ
(app-subs-et)

∆ `l t = t′ : T Γ `l δ = δ′ : ∆

Γ `l tδ = t′δ′ : Tδ
(cong-subs-et)

∆ `l T ∆ `l t : T Σ `l δ : ∆ Γ `l σ : Σ

Γ `l (tδ)σ = t (δσ) : (Tδ)σ
(assoc-et)

Γ `l R Γ.R `l S Γ.R `l t : S Γ `l r : R

Γ `l (λ.t) r = t [r] : S [r]
(beta-et)

Γ `l t = t′ : R Γ `l R ≤ S
Γ `l t = t′ : S

(sub-et)
Γ `l R Γ.R `l S Γ `l t : Π R (λ.S)

Γ `l t = λ. (t � v0) : Π R (λ.S)
(eta-et)

Γ `l t = t′ : T

Γ+ `l t+ = t′+ : T+
(lift-et)

Γ `l T Γ `l vi : T

Γ+ `l v+
i = vi : T+

(lift-var-et)

Γ `l R Γ.R `l S Γ `l λ.t : Π R (λ.S)

Γ+ `l (λ.t)+ = λ.
(
t+
)

: (Π R (λ.S))+ (lift-abs-et)

Γ `l R Γ.R `l S Γ `l t : Π R (λ.S) Γ `l r : R

Γ+ `l (t r)+ = t+ r+ : (S [r])+ (lift-app-et)

Γ `l R : Un Γ.R `l S : Un

Γ+ `l (Π R (λ.S))+ = Π R+
(
λ.S+

)
: U+

n

(lift-fun-et)

∆ `l T ∆ `l t : T Γ `l δ : ∆

Γ+ `l (tδ)+ = t+δ+ : (Tδ)+ (lift-subs-et)

Γ `l

Γ+ `l U+
n = Un+1 : Un+2

(lift-u-et)
Γ `l c = t : T ∈ l

Γ `l c = t : T
(def-et)

Figure 7: Equality rules for terms

ENS Lyon 16 Damien Rouhling

Internship report

Γ `l δ : ∆

Γ `l δ = δ : ∆
(refl-es)

Γ `l δ : ∆

Γ `l idδ = δ : ∆
(neut-l-es)

� `l id = 〈〉 : �
(id-ept-es)

Γ `l δ : ∆

Γ `l 〈〉δ = 〈〉 : �
(comp-ept-es)

Γ `l δ = δ′ : ∆ Γ `l δ = δ′′ : ∆

Γ `l δ′ = δ′′ : ∆
(sym-trans-es)

Γ `l δ : ∆

Γ `l δid = δ : ∆
(neut-r-es)

Γ `l T
Γ.T `l id = (�, v0) : Γ.T

(id-ext-es)

Σ `l δ : ∆ ∆ `l T Σ `l t : Tδ Γ `l σ : Σ

Γ `l (δ, t)σ = (δσ, tσ) : ∆.T
(ext-es)

Θ `l δ : ∆ Σ `l θ : Θ Γ `l σ : Σ

Γ `l (δθ)σ = δ (θσ) : ∆
(assoc-es)

Γ `l δ : ∆ ∆ `l T Γ `l t : Tδ

Γ `l� (δ, t) = δ : ∆
(fst-es)

Γ `l σ = σ′ : Σ Σ `l δ = δ′ : ∆

Γ `l δσ = δ′σ′ : ∆
(cong-comp-es)

Γ `l δ = δ′ : ∆ ∆ `l T Γ `l t = t′ : Tδ

Γ `l (δ, t) =
(
δ′, t′

)
: ∆.T

(cong-ext-es)

Figure 8: Equality rules for substitutions

B Evaluation and read-back

Evaluation and application:

[i] (τ) := τ (i)
JviK (n, τ, l) := [i] (τ)
JcK (n, τ, l) := ↑JT K(n,τ,l) cn if c : T ∈ l
JcK (n, τ, l) := JtK (n, τ, l) if c = t : T ∈ l
Jλ.tK (ρ) := (λ.t) ρ
Jr sK (ρ) := JrK (ρ) · JsK (ρ)

JUnK (m, τ, l) := Un+m

Jt+K (n, τ, l) := JtK (n+ 1, τ, l)
JΠ R SK (ρ) := Fun JRK (ρ) JSK (ρ)
JtσK (n, τ, l) := JtK (n, JσK (n, τ, l) , l)

J�K (n, add (a, τ) , l) := τ
JidK (n, τ, l) := τ

J〈〉K (ρ) := i 7→ U0

J(σ, t)K (ρ) := add (JtK (ρ) , JσK (ρ))
JσδK (n, τ, l) := JσK (n, JδK (n, τ, l) , l)(
↑Fun A F e

)
· a := ↑F ·a (e d) where d ≡↓A a

(λ.t) (n, τ, l) · a := JtK (n, add (a, τ) , l)

ENS Lyon 17 Damien Rouhling

Internship report

Read-back:

Rnfn ↓Fun A F f := λ.Rnfn+1 ↓F ·a (f · a) where a ≡↑A xn
Rnfn ↓Uk Ui := Ui

Rnfn ↓Ui Fun A F := Π
(
Rnfn ↓Ui A

) (
Rnfn ↓Fun A (λ.v1)(0,add(Ui,i7→U0),�) F

)
Rnfn ↓B↑B

′
e := Rnen e

Rnen c
k := ck

Rnen xk := vn−(k+1)

Rnen (e d) := (Rnen e)
(
Rnfn d

)
References

[AAD07] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation
for martin-löf type theory with one universe. Electr. Notes Theor. Comput.
Sci., 173:17�39, 2007.

[Abe10] Andreas Abel. On parametric polymorphism and irrelevance in martin-löf
type theory, 2010.

[Abe13] Andreas Abel. Normalization by evaluation � dependent types and impred-
icativity. Habilitation thesis, Institut für Informatik, Ludwig-Maximilians-
Universität München, 2013.

[AC05] Andreas Abel and Thierry Coquand. Untyped algorithmic equality for martin-
löf's logical framework with surjective pairs. In Pawel Urzyczyn, editor,
TLCA, volume 3461 of Lecture Notes in Computer Science, pages 23�38.
Springer, 2005.

[AC14] Andreas Abel and James Chapman. Normalization by evaluation in the delay
monad: A case study for coinduction via copatterns and sized types. In Paul
Levy and Neel Krishnaswami, editors, MSFP, volume 153 of EPTCS, pages
51�67, 2014.

[ACD08] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic
beta-eta-conversion test for martin-löf type theory. In Philippe Audebaud
and Christine Paulin-Mohring, editors, MPC, volume 5133 of Lecture Notes
in Computer Science, pages 29�56. Springer, 2008.

[ACP11] Andreas Abel, Thierry Coquand, and Miguel Pagano. A modular type-
checking algorithm for type theory with singleton types and proof irrelevance.
Logical Methods in Computer Science, 7(2), 2011.

[Agd] Agda. http://wiki.portal.chalmers.se/agda/pmwiki.php.

[AS12] Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality
in predicative type theory. Logical Methods in Computer Science, 8(1), 2012.

[CD97] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7(1):75�
94, 1997.

[CJ10] Thierry Coquand and Guilhem Jaber. A note on forcing and type theory.
Fundam. Inform., 100(1-4):43�52, 2010.

[CKNT09] Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström, and Makoto
Takeyama. A simple type-theoretic language: Mini-tt. In Yves Bertot, Gérard
Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors, From Semantics to
Computer Science, pages 139�164. Cambridge University Press, 2009. Cam-
bridge Books Online.

[Coq] Coq. http://coq.inria.fr/.

ENS Lyon 18 Damien Rouhling

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/

Internship report

[Coq98] Catarina Coquand. A realizability interpretation of martin-löf's type theory,
1998.

[Cur91] Pierre-Louis Curien. An abstract framework for environment machines. Theor.
Comput. Sci., 82(2):389�402, 1991.

[FP13] Daniel Fridlender and Miguel Pagano. A type-checking algorithm for martin-
löf type theory with subtyping based on normalisation by evaluation. In
Masahito Hasegawa, editor, TLCA, volume 7941 of Lecture Notes in Com-
puter Science, pages 140�155. Springer, 2013.

[Gab14] Murdoch James Gabbay. Consistency of quine's new foundations using nom-
inal techniques. CoRR, abs/1406.4060, 2014.

[Gir72] J. Y Girard. Interprétation fonctionnelle et élimination des coupures de
l'arithmétique d'ordre supérieur. Thèse d'état, Université de Paris 7, 1972.

[Has] Haskell. http://www.haskell.org.

[Her05] Hugo Herbelin. Type inference with algebraic universes in the calculus of
inductive constructions, 2005.

[HP91] Robert Harper and Robert Pollack. Type checking with universes. Theor.
Comput. Sci., 89(1):107�136, 1991.

[McB11] Conor McBride. Crude but e�ective strati�cation, 2011. http://mazzo.li/

epilogue/index.html%3Fp=857&cpage=1.html.

[ML72] Per Martin-Löf. An intuitionistic theory of types, 1972. Technical report.

[ML84] Per Martin-Löf. Intuitionistic type theory, 1984. Bibliopolis.

[Pal98] Erik Palmgren. On universes in type theory. Oxford University Press, 1998.

[Pit13] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science,
volume 57 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2013.

[Qui37] W. V. Quine. New foundations for mathematical logic. The American Math-
ematical Monthly, 44(2):pp. 70�80, 1937.

[Sch11] Gabriel Scherer. Universe subtyping in martin-löf type theory, 2011. Internship
report.

[Spe90] Ernst Specker. Typical ambiguity. In Gerhard Jäger, Hans Läuchli, Bruno
Scarpellini, and Volker Strassen, editors, Ernst Specker Selecta, pages 193�201.
Birkhäuser Basel, 1990.

[ST14] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in coq. In
Gerwin Klein and Ruben Gamboa, editors, ITP, volume 8558 of Lecture Notes
in Computer Science, pages 499�514. Springer, 2014.

[Tai75] WilliamW. Tait. A realizability interpretation of the theory of species. In Rohit
Parikh, editor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics,
pages 240�251. Springer Berlin Heidelberg, 1975.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

ENS Lyon 19 Damien Rouhling

http://www.haskell.org
http://mazzo.li/epilogue/index.html%3Fp=857&cpage=1.html
http://mazzo.li/epilogue/index.html%3Fp=857&cpage=1.html
http://homotopytypetheory.org/book

	Introduction
	Context
	Motivations
	System
	Contributions

	Normalization by evaluation
	Principle
	In presence of the lifting operator

	Completeness and soundness of NbE
	PER model and completeness of NbE
	Kripke relations and soundness of NbE

	Implementation
	Bidirectional type-checking
	Adaptation and integration of the calculus

	Further and related work
	Conclusion
	Rules of the calculus
	Evaluation and read-back
	References

