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Abstract
HOP is a SCHEME-based language and system to build rich multi-
tier web applications. We present HIPHOP, a new language layer
within HOP dedicated to request and event orchestration. HIPHOP
follows the synchronous reactive model of the Esterel and Reac-
tiveC languages, originally developed for embedded systems pro-
gramming. It is based on synchronous concurrency and preemption
primitives, which are known to be key components for the modu-
lar design of complex temporal behaviors. Although the language
is concurrent, the generated code is purely sequential and thread-
free; HIPHOP is translated to HOP for the server side and to straight
JAVASCRIPT for the client side. With a music playing example, we
show how to modularly build non-trivial orchestration code with
HIPHOP.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed, and
parallel languages

General Terms Design, Languages

Keywords JavaScript, Web Programming, Functional Program-
ming, Reactive Programming, Synchronous Programming

1. Introduction
HOP [9] is a SCHEME-based programming language and system
aimed at simplifying web programming. A HOP program embeds
server code and client code in a single program. The HOP compiler
automatically splits the compound code into server code run by the
HOP runtime and client code compiled into JavaScript. HOP au-
tomatically manages data transmission and event communication
between the server and client. It can also handle applications in-
volving multiple servers and clients.

This paper introduces the HIPHOP extension1 that adds a new
dimension to HOP: the sophisticated handling of events based on

1 Work partially supported by the French ANR agency, PARTOUT grant
ANR-08-EMER-010 and PWD grant ANR-09-EMER-009-01.
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synchronous reactive programming [1], with event-handling and
concurrency programming primitives inspired by the Esterel [3]
and ReactiveC [5] languages. Synchronous reactive programming
has become classical in the circuit design and real-time program-
ming areas, where concurrency is ubiquitous and event handling is
a crucial concern. It has many industrial implementations in em-
bedded systems such as airplane, train, or plant control, as well as
complex HMIs such as airplane cockpits [4].

We show that synchronous programming techniques are also
well adapted to web programming, and especially to complex re-
quests handling. We demonstrate that embedding synchronous con-
currency and event-handling primitives into HOP makes web pro-
gramming easier and has the potential of greatly simplifying the
development of web applications.

Section 2 presents basic examples, their programming in Java-
Script, and the way they are simplified by HIPHOP. Section 3
details the reactive core of HIPHOP. Section 4 explains how the
new statements are incorporated in HOP to build HIPHOP and how
client-side synchronous event handling and concurrency are trans-
lated into JavaScript. Section 5 briefly presents a real-life example.
Section 6 gives an overview of the HIPHOP implementation. We
discuss related work in Section 7 and conclude in Section 8.

2. A First Example
JavaScript event handling is based on scripts and event listeners,
which are functions registered to handle asynchronous occurrences
of events generated by the GUI, server, and APIs. Scripts and event
listeners can be used to mimic a kind of implicitly parallel execu-
tion within the JavaScript basically sequential language. However,
as known for long in the real-time community, such callback-based
code is subject to all possible kinds of interference and much more
difficult to develop, verify and maintain than code based on explicit
concurrency and explicit preemption primitives.

Our first example will be about coordinating basic requests.
Here is the traditional XMLHttpRequest (henceforth XHR) Java-
Script example found in the Mozilla documentation.

function xhr(url) {
function transferComplete(evt) {

// do something on completion
}
function transferFailed(evt) {

// signal an error
}
var req = new XMLHttpRequest()
req.addEventListener("load", transferComplete, false)
req.addEventListener("error", transferFailed, false)
req.open("GET", url, true)
req.send(null)

}
xhr("http://www.mozilla.org");



This basic example opens a HTTP connection to the Mozilla
web server that fetches the main HTML page. The translation to
HOP is direct:
(define (xhr url)

(define (transfer-complete evt)
;; do something on completion
)

(define (transfer-failed evt)
;; signal an error
)

(let ((req (new XMLHttpRequest)))
(add-event-listener! req "load" transfer-complete)
(add-event-listener! req "error" transfer-failed)
(req.open "GET" url #t)
(req.send)))

(xhr "http://www.mozilla.org")

The translation to our new HIPHOP reactive style is more com-
plex since it cuts work into two parts: a reactive HIPHOP program
and the HOP linking part. The linking part is very similar to what
we had before except that it creates a HIPHOP reactive machine
and links the events to it.
(define (xhr url)

(define (transfer-complete evt)
;; do something on completion
)

(define (transfer-failed evt)
;; signal an error
)

(let ((M (make-hiphop-machine (xhr& url))))
(add-event-listener! M "failed" transfer-failed)
(add-event-listener! M "complete" transfer-complete)))

(xhr "http://www.mozilla.org")

The HIPHOP reactive machine is driven by a HIPHOP program,
built here by calling the following HOP function with a URL as
argument:

(define (xhr& url)
(let ((req (new XMLHttpRequest)))

(hiphop&
input: "load" "error"
output: "complete" "failed"
(atom& (let ((M (the-machine)))

(connect-event-listener! req "load" M)
(connect-event-listener! req "error" M)
(req.open "GET" url #t)
(req.send)))

(until& "error"
(seq&

(await& "load")
(emit& "complete" (val& "load")))

(emit& "failed" (val& "error"))))))

(define (connect-event-listener! req ev M #!optional opt)
(add-event-listener! req ev

(lambda (e)
(hiphop-input-and-react! M (or opt ev) e))))

All HIPHOP constructs end with the “&” character. The hiphop&

function defines the interface and body of the reactive code, which
is thought of as a state machine. The initial atom& form sim-
ply executes its HOP argument. Here, it connects actual events
to the symbolic inputs of the machine and initiates the request.
The rest of the HIPHOP code is of a more temporal nature. The
await& form waits for the “load” reactive event and terminates.
The first emit& form emits the “complete” reactive event bound
to “transfer-complete” in the linking code. The seq& form tells
that await& and emit& act in sequence. The until& form acts as a
watchdog: if “error” occurs during the execution of the sequence,
that sequence is immediately canceled and “failed” is emitted.
Values are transmitted using the val& form.

So far, the HIPHOP version looks more complex than the plain
HOP version for no good reason. The advantage will become clear
when we modularly extend the program. Suppose first we want to
synchronize two independent XHRs, running both of them in par-
allel and executing the transfer-complete listener only when both
have completed. We simply create a new program that concurrently
composes two xhr& HIPHOP programs and places them into an er-
ror watchdog:

(define (xhr2& url1 url2)
(hiphop&

input: "load1" "error1" "complete1"
"load2" "error2" "complete2"

output: "complete" "failed"
(until& (or& "error1" "error2")

(seq&
(par&

(run& (xhr& url1)
input: "load" "load1"
input: "error" "error1"
input: "complete" "complete1")

(run& (xhr& url2)
input: "load" "load2"
input: "error" "error2"
input: "complete" "complete2"))

(emit& "complete"))
(emit& "failed"))))

(define (xhr2 url1 url2)
(define M (make-hiphop-machine (xhr2& url1 url2)))
(add-event-listener! M "failed" transfer-failed)
(add-event-listener! M "complete" transfer-complete))

(xhr2 "http://www.mozilla.org" "http://hop.inria.fr")

The run& form instantiates a HIPHOP program, binding the
proper reactive events that are now renamed into “load1” / “load2”,
etc. The par& form runs the two xhr& instances in parallel. Its
semantics is to terminate when both have terminated. Therefore it
is sufficient to emit “complete” in seq& sequence after the par&

parallel to signal global completion. The until& form captures
errors in both xhr& instances. If there is no such error, it has no
effect ; as soon as one error occurs, it aborts both xhr& instances
and executes the (emit& "failed") statement that signals global
failure.

Imagine we now want to control our parallel XHR by offering
the user an abort button and limiting the request durations by
a timeout. We create a third HIPHOP program that controls the
behavior of xhr2&. It waits for xhr2& to complete or fail until the
user clicks the abort button or the timeout expires:

(define (xhr3& url1 url2)
(hiphop&

input: "load1" "error1" "load2" "error2" "abort"
output: "complete" "failed" "user-abort" "timeout"
(until& (timer& 1000)

(until& "abort"
(run& (xhr2& url1 url2))
(emit& "user-abort"))

(emit& "timeout"))))

(define (xhr3 url1 url2 id)
(define M (make-hiphop-machine (xhr3& url1 url2)))
(add-event-listener! M "failed" transfer-failed)
(add-event-listener! M "complete" transfer-complete)
(add-event-listener! M "user-abort" user-abort)
(add-event-listener! M "timeout" user-abort)
(add-event-listener! (dom-get-element-by-id id)

"click" (lambda (e) (hiphop-input! M "abort"))))

(<HTML>
(<BUTTON> id: "abort-button"

"click me to abort downloading"))

In summary, HIPHOP is based on a split between event linking
and event reaction specification, the latter based on explicit sequen-



tial, concurrent, and temporal programming primitives. We exem-
plified this with a typical client program. Of course, HIPHOP can
also be used on the server-side, for example to synchronize clients
together or complex requests chains using other servers. This will
not be studied in this paper.

3. The HIPHOP language
Technically speaking, a HIPHOP form should be seen in two ways.
First, it is a HOP form that builds a HIPHOP abstract syntax tree
when evaluated, which implies that we can dynamically build
HIPHOP programs from within HOP; we shall do that in Section
5. Second, the intention is that of concurrent and temporal code.
In this section, we describe what HIPHOP temporal programming
means.

3.1 HIPHOP programs and machines
The HIPHOP language specifies a reactive program that can be
instantiated in HOP to build an executable reactive machine. A
HIPHOP reactive program specifies a list of abstract input events, a
list of abstract output events, and a reactive code. Here is a standard
example in the reactive community, which can be seen as a reduced
version of our xhr3&:
(define abro&

(hiphop& input: "A" "B" "R" output: "O"
(loop&

(until& "R"
(par&

(await& "A")
(await& "B"))

(emit& "O")))))

A HIPHOP program is embedded into a machine M in the fol-
lowing way:

(define M (make-hiphop-machine <hiphop-program>))

Note that the same program can be embedded in several differ-
ent machines. Thus, make-hiphop-machine acts as new in object-
oriented systems.

3.2 Events and reactions
At HIPHOP level, events are abstract objects known only by their
name (string) and optional value (arbitrary HOP data). In the pre-
vious examples, we have shown how to link HOP actual events to
HIPHOP abstract events using HOP event listeners. Besides input
and output events, a HIPHOP program can also declare local events,
which behave in the same way from the HipHop point of view but
need no HOP interface. Local events help synchronizing the con-
current parts of the HIPHOP program when dealing with complex
reactive behavior. In the sequel, “[...]” mark optional arguments,
“[...]*” possibly empty lists of arguments, and “[...]+” the same
non-empty.

Input events are sent to a machine M by the HOP statement:

(hiphop-input! M "A" [<hop>])

The optional <hop> value will be the value associated with the
abstract event “A” in the HIPHOP reactive code. This only sets the
input, without triggering execution of M.

The machine is explicitly driven from HOP. It reacts only when
called using the following HOP form:

(hiphop-react! M)

Then, the input environment to which M reacts is composed of all
the input events that have been sent to the machine from HOP

since the previous reaction (or since machine build at first reaction).
All these events are perceived as conceptually simultaneous by M,
which reacts by building output events according to its HIPHOP
code execution. The execution of the reaction should be seen as
atomic: outputs computed in a reaction should not influence the
inputs for this reaction. This is to avoid interference between input
event registering and reaction.

When the machine is called to react is left to the user. It is
often useful to call the reaction function each time an input even
is sent, but many other possibilities make sense, such as making
the machine react at periodic times. To trigger a reaction in as soon
as an input occurs, one can simply write:

(hiphop-input-and-react! M "A" [<hop>])

In each reaction, an event has exactly one status chosen between
present and absent. An input event is present if and only if it was
sent by HOP before the reaction (and after the previous reaction
if any). An output or local event is present if and only if it is
emitted by the HIPHOP program in the current reaction. The status
is recomputed at each reaction.

An event also has an optional value, which is received from the
environment using hiphop-input! for an input event or internally
emitted together with the status for an output or local event. Unlike
the status, the value is memorized between reactions: the value
of an event in a reaction remains the value it had in the previous
reaction if the event is not received (for an input) or emitted (for an
output or local) in the reaction.

The value is either a single HOP value if there is only one emitter
for the event during the reaction or the multiset of all emitted values
if there are several emitters. The use of multisets instead of lists is
important to guaranty determinism because multiset operations are
associative: the multiset does not depend on the internal emission
order in the generated code execution.

In each reaction, all events and event values are broadcast to
all concurrent statements of the program, which all see the same
statuses and values. Unlike asynchronous concurrent programs,
concurrent HIPHOP programs are deterministic.

3.3 The reactive code
The reactive code is based on deterministic sequencing, concur-
rency, and temporal statements inspired from Esterel [3] and Reac-
tiveC [5]. Their intuitive semantics is described below; see [2] for
a complete presentation of synchronous programming, including
formal semantics.

HIPHOP differs from classical languages by the temporal char-
acter of its execution: current control positions are memorized from
one reaction to the next. Consider the following sequence:

(seq&
(await& "A")
(await& "B")
(emit& "O"))

At first reaction, control stops on (await& "A"). It stays there
at each subsequent reaction until the first reaction where “A” is
present. In this reaction, control immediately moves to (await&

"B") and stays there until the next reaction where “B” is present.
During this reaction, and without further delay, it outputs “O” and
terminates.

We say that a statement that starts and terminates in the same
reaction is instantaneous or immediate; this is the case for emit&.
Otherwise, we say that the statement pauses, waiting for the next
reaction, and we call it a delay statement; this is the case for await&.
Things that happen in the same reaction are called simultaneous.
This is of course a conceptual notion in terms of abstract reactions,
not a physical one.



Here is the list of HIPHOP values and statements:
<hiphop> →

(hiphop& [input: [<string>]+] [output: [<string>]+]
[<hiphop-stmt>]+)

<hiphop-stmt> → (nothing&)
| (emit& string [<hop>])
| (sustain& string [<hop>])
| (atom& <hop>)
| (if& <event-test> <hiphop-stmt> [<hiphop-stmt>])
| (if& <hiphop-val> <hiphop-stmt> [<hiphop-stmt>])
| (pause&)
| (seq& [<hiphop-stmt>]+)
| (par& [<hiphop-stmt>]+)
| (loop& [<hiphop-stmt>]+)
| (await& [immediate: <bool>] <event-test>)
| (until& [immediate: <bool>] <event-test>

<hiphop-stmt> [<hiphop-stmt>])
| (local& ([<string>]+) [<hiphop-stmt>]+)
| (let& ([(id <hiphop-val>)]+) [<hiphop-stmt>]+)
| (run& <hiphop> [input: <string> <string>]*)

<event-test> → <string>
| (or& <event-test>+)
| (and& <event-test>+)
| (not& <event-test>)

<hiphop-val> → (val& <string>)
| <hop>

A hiphop& program is specified by an input event list, an out-
put event list, and a reactive statement list (implicitly in seq& se-
quence).

An event test is a Boolean expression about events presence in
the reaction. For instance, in a reaction, (and& "A" "B") is true
if both “A” and “B” are present. The val& form returns the value
attached to the mentioned event.

The nothing& statement does nothing and terminates instanta-
neously. It is the HIPHOP no-op.

The emit& statement emits the event named string, possibly
with value that of the second argument. It is instantaneous.

The sustain& statement keeps emitting the event at each reac-
tion. It can be defined in HOP using the pause& statement defined
below:
(define (sustain& event #!optional val)

(loop&
(emit& event val)
(pause&)))

The atom& statement calls HOP to executes its hop argument; it
is instantaneous, which means that it should be a reasonably simple
HOP expression in practice. The let& statement below makes it
possible to pass HIPHOP values to the atom body, see below.

The if& statement evaluates its test. If the result is true, it im-
mediately executes its second HIPHOP argument; otherwise, it im-
mediately executes its third argument. Notice that these arguments
can be arbitrary instantaneous or delayed HIPHOP statements. Ter-
mination of the if& statement is instantaneously triggered by ter-
mination of the selected branch. As before, values can be passed to
a HOP test using let&.

The pause& statement delays execution by one reaction. When
executed, it pauses for the reaction and terminates at the next
reaction.

The seq& statement executes its arguments in order: the first
HIPHOP statement starts immediately when the sequence starts;
when it terminates, be it immediately or in a delayed way, the
second argument is immediately started, etc. For instance, (seq&
(emit& "A") (emit& "B")) immediately emits A and B, which
are seen as simultaneous within the reaction, while (seq& (emit&

"A") (pause&) (emit& "B")) emits “A” and “B” in two successive
reactions.

The loop& statement is a loop-forever, equivalent to the infinite
repetition of its argument statements, which are themselves implic-
itly evaluated in sequence. For instance, (loop& (pause&) (emit&

"A")) waits for the next reaction and then keeps emitting “A” at
each reaction. A loop can only be exited by using the until& state-
ment below.

The par& statement starts its arguments concurrently and termi-
nates at the reaction where the last of them terminates. Therefore,
(par& (await& "A") (await "B")) terminates when both “A” and
“B” have been received. Remember that all arms of a par& state-
ment see all statuses and values of all (visible) events in exactly the
same way.

The await& statement is a delay statement that waits for its argu-
ment to become true. By default, it pauses in the reaction where it is
started; then, at each reaction, it evaluates the condition and termi-
nates if the result is true; otherwise, it pauses again. If :immediate
#t is specified, the await& statement terminates immediately if
its condition is true at start time. It is then a shorthand for: (if&
event-test (nothing&) (await& event-test)).

For the until& statement, call the second argument the body and
the third argument the handler (assumed to be nothing& if syntac-
tically absent). The body is run until it terminates or the event test
becomes true. More precisely, at each reaction, the body is run for
the reaction. If it terminates, so does the until& statement. Other-
wise, the event test is evaluated; if its value is true, then the body
is killed whichever state it was in and control passes to the han-
dler. The event test is not performed at first reaction for the default
form; it is performed when :immediate #t is specified. Note that
the handler is not executed if the body terminates normally and the
event test is false.

The local& statement declares local events in the first argument
list. Their scope is the body, which is the implicitly seq& sequential
list of the HIPHOP arguments. Such local events behave exactly
as input and output events, except that their scope is limited to the
local& body. They are not visible from HOP. A local& statement
terminates when its body does.

The let& statement makes it possible for HOP forms called in
emit&, atom&, and if& statements to access the values of HIPHOP
events. The syntax is similar to that of the HOP let. Bindings are
of the form (v (val& "S")) to transfer the value of a event, or
(v hop) to perform any kind of HOP binding. A let& statement
terminates when its implicitly seq& sequential body does.

The run& statement instantiates another HIPHOP program in-
place, according to a list of abstract event bindings that act as tex-
tual substitutions for the body. It is the basis of modular HIPHOP
programming. The optional argument list specifies how events are
bound between the caller and callee, by enumerating pairs of the
form :input caller-string callee-string. It is useless to spec-
ify an identity pair such as :input "A" "A", which is implicit. A
binding of the form :input "" "A" leaves the “A” callee event un-
bound and transforms it into a local event for the callee’s body. The
run& statement terminates when its body does. It may be killed by
an until& statement as for any other statement.

3.4 Future additions
We plan to add the Esterel suspend& statement that suspends ex-
ecution of its body for one reaction when its event-test is true, as
well as Esterel tasks [2]. Tasks are external asynchronously con-
current computation entities whose execution is assumed to be non-
instantaneous. For instance, a task could be “close the roller blinds”
or “download the 5th Beethoven symphony”. Their execution can
be tightly controlled by until& and suspend& statements.



4. HOP Integration
In this section we present the interface between HOP and HIPHOP,
i.e., the HIPHOP machine API.

As explained in Section 3.1, building an HIPHOP machine M

from HIPHOP program P is realized by:

(define M (make-hiphop-machine P))

Notice that HIPHOP programs are HOP values. Therefore we
can use the full power of HOP to build them, depending, for in-
stance, on size parameters. This will be done in Section 5.

Sending an input to M with an optional HOP value is done using
the (hiphop-input! M "A" [hop]) form. Although this form can
appear anywhere in HOP programs, it is good practice to associate
it with event listeners as done in our examples.

Outputs are systematically handled by HOP event listeners at-
tached to the machine. These are registered with the following
forms:

(add-event-listener! M string function)

where string is the output event name and function is a one-
argument function. The argument is the event descriptor that con-
tains the event name and optional value. The function is called
when the output is emitted by the HIPHOP program. It is possi-
ble to register several events listeners for the same output event,
which are invoked as for JavaScript.

Running a reaction of the machine M is done by calling

(hiphop-react! M)

This call blocks until the reaction completes. It can itself involve
the evaluation of HOP forms in emit&, atom&, and if& statements,
see Section 3.3.

Of course, the major difficulty is to generate the HOP and
JavaScript codes that performs the reaction according to the
HIPHOP specification. We shall give no details here, see for in-
stance [8] for Esterel compilation techniques.

A very important point is that the generated code is purely
sequential and it can be fully and faithfully implemented in straight
JavaScript. Although HIPHOP code can be highly concurrent in its
own way, its concurrency is purely logical and does not lead to run-
time threads. Program behavior remains deterministic w.r.t. input
sequences, unlike with all forms of asynchronous concurrency-
based programming techniques.

Notice also that HIPHOP machines can also communicate with
each other in HOP, possibly using standard asynchronous web
protocols. For instance, a HIPHOP machine can drive a complex
UI on the client, another HIPHOP machine can drive complex
server mashup activities involving a variety of other asynchronous
servers, and both machines can communicate asynchronously using
HOP server/client communication primitives. This is akin to the
Globally Asynchronous Locally Synchronous (GALS) model that
has become standard in other Computer Science fields such that
Systems on Chips (SoC) design.

5. A real life example
We want to take organized benefit of the numerous sources that
provide musical contents with the help of some specialized search
sites that reply questions about musical composers, songs, etc., by
lists of URLs where music can be found. The first step is to ask a
question to the search site and to gather the URLs (not done here).
Then, we try playing the music contents in sequence. Some musical
downloads may fail, other may come fast, slow, etc. Our choice is

to play music in a greedy way. We first play according to the fastest
response. Then, we continue according to which download is ready
next, selecting one if many are. The whole application completes
when all the available music pieces have been played. Of course,
some downloads may fail.

orch&

player&

req&
req&
req&
req&

who
ready(url)
go(url)

play(url)play-done

Figure 1. The multiple URLs audio player

Our architecture is picture in Figure 1. It consists of a HIPHOP
program concurrently composed of an orchestrator HIPHOP sub-
program orch&, a set of requesters req&, one per URL returned by
the search engine, and a music player controller player&. At pro-
gram creation time, the requesters are built and indexed by the URL
they are responsible for. The set of URLs needs not be known by
orch&.

The subprograms chat with each other as follows:

• When the program starts or each time a music play is over,
orch& keeps broadcasting the event “who” to all the requesters.

• When ready, each requester replies by an event “ready” with
value its URL. A requester that receives a download error sim-
ply terminates.

• When orch& receives “ready”, by definition of HIPHOP simul-
taneous event emissions, the value “ready” is the multiset com-
posed of all the URLs of the ready requesters. At that time,
orch& selects one of the requesters and replies with the event
“go” with value the selected URL.

• Still in the same reaction, the selected requester sends the
“play” event to player& and terminates. The other ready re-
questers discard “go” and continue waiting for “who”. The non-
ready or terminated requesters ignore “go” altogether.

• When receiving “play” with the URL, the player& starts
playing the music, until completion or error. Then, it sends
“play-done” to orch&, which loops and looks for another ready
requester.

In the main program called urlplayer&, the orchestrator, re-
questers, and player are put in parallel. To handle global termina-
tion, we introduce a local event “all-done” and an until& state-
ment to terminate the whole behavior, killing the orchestrator and
player. The “all-done” event is emitted when all requesters and the
currently played music have terminated.

Here is the code of the main program urlplayer&. Notice the
use of a HOP map on the URL list to build the requesters:



(define (urlplayer& urls)
(let ((loads (rename "load-" urls))

(errors (rename "error-" urls)))
(hiphop& input: loads errors "ended"

(local& ("who" "ready" "go" "play" "play-done"
"reqs-done")

(until& (and& "all-done" "play-done")
(par&

(seq&
(all-reqs& urls loads errors)
(sustain& "reqs-done"))

(run& orch&)
(run& player&)))))))

(define (all-reqs& urls loads errors)
(par&

(map (lambda (u l e)
(run& (req& u)

input: "load" l
input: "error" e))

urls loads errors)))

(define (rename prefix urls)
(map (lambda (u) (string-append prefix u)) urls))

The code of orch& is fairly trivial. Notice the use of sustain&
to keep broadcasting “who” until some requester is ready:

(define orch&
(hiphop&

input: "ready" "play-done"
output: "who"
(loop&

(until& "ready"
(sustain& "who"))

(let& ((url-list (val& "ready"))
(url-go (apply select url-list)))

(emit& "go" url-go)
(await& "play-done")))))

The req& program first runs the xhr& subprogram of Section 2
to start downloading. It terminates if a download error occurs. If
the download is complete, req& waits for “who” and immediately
replies by “ready” with value its URL. In the same reaction, orch&
replies with “go” and the URL it has selected as “go” value. If
the selected URL is the req&’s URL, this req& is selected and
immediately ships its URL to the player& and provokes its own
termination by emitting “done”, which is caught by the enclosing
until&. Otherwise, req& waits for the next “who”:

(define (req& url)
(hiphop&

input: "who" "go" "load" "error"
output: "ready" "play"
(local& ("complete" "failed" "done")

(run& (xhr& url))
(if& "complete"

(until& "done"
(loop&

(await& immediate: #t "who")
(emit& "ready" url)
(let& ((go (value& "go")))

(if& (eq? go url)
(seq&

(emit& "play" url)
(emit& "done"))

(pause&)))))))))

The player& just plays the music when requested and emits
“play-done” when done:

(define player&
(hiphop&

input: "play" "ended"
output: "play-done"
(loop&

(await& immediate: #t "play")
(let& ((url (val& "play")))

(atom& (set! audio.src url)))
(await& "ended")
(emit& "play-done"))))

To finish the whole HOP program, we need to link the HIPHOP
code to a HOP master. This is almost trivial since most of the
work was already done in xhr&. We only need to define the main
function and perform an audio “ended” event connection for the
actual HTML5 player:

(define (urlplayer urls)
(<HTML>

(<AUDIO> onended:
~(hiphop-input-and-react! M "ended" event))

~(let ((M (make-hiphop-machine (urlplayer& urls))))
(hiphop-react! M))))

6. Implementation
In this section, we explain how HIPHOP programs are compiled
and executed on the server and client sides. Figure 2 sketches the
associated architecture.
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Figure 2. HIPHOP architecture

6.1 HIPHOP to HOP compiling
HIPHOP programs are parsed by the server’s HOP system using
the hiphopc function, which translates HIPHOP programs into HOP
values that represent their ASTs (abstract syntax trees). For server-
side execution, the ASTs are directly taken as input by the server’s
HOP compiler and HIPHOP runtime. For client-side execution,
the ASTs are processed further by the hop2client function that
generate client-side code.

Notice that the hiphopc and hop2client functions reside on the
server. Therefore, if the client wants to compile HIPHOP source
code (for instance, interactively entered by the user), the client
sends this code to the server, which processes it by hiphopc and
hop2client and sends back the result.



6.2 The HIPHOP runtime
The HIPHOP runtime manages reactive machines by defining the
functions mentioned in Sections 3.2 and 4: make-hiphop-machine
and all the functions whose names start by hiphop-.

The HIPHOP runtime is written as a HOP module. Thus, any
HOP program running on the server can import the HIPHOP mod-
ule and use its API code to interface reactive machines. To run reac-
tive machines on the client-side, the HIPHOP runtime is compiled
to client code by calling the hop2client HOP function described
above.

Communication between client and server reactive code re-
quires no particular addition to HOP.

Causality cycles The heart of the HIPHOP runtime is an in-
terpreter that executes the reactive instructions specified in the
HIPHOP ASTs. This interpreter is based on the Constructive Se-
mantics described in [8]. In the synchronous languages field, it is
well-known that synchronous concurrency can provoke causality
cycles, i.e., internal synchronous deadlocks. Such cycles are de-
tected at run-time by the HIPHOP interpreter; they raise an excep-
tion and abort execution instead of stupidly deadlocking as would
asynchronous threads do. In the future, we will add a static analysis
pass to detect the absence of causality cycles before compiling, as
for Esterel.

Timers In addition to the basic reactive primitives, HIPHOP pro-
vides the user with a timer& function, which we used in section
2 within the definition of xhr3&. Executing (timer& delay) gen-
erates an internally named event that occurs after (at least) delay

milliseconds and make the HIPHOP code react to it.
On the server side, the implementation of timer is direct in

HOP. On the client side, it uses the JAVASCRIPT timers, which
are asynchronous entities that call back some event handler code at
the specified time. Client HOP uses JAVASCRIPT timers to defines
the after HOP function, which takes as arguments a delay and an
argumentless function to be called when the timer expires. This
mechanism is used to define timer:
(define (timer& delay)

(lambda (current-machine)
(let ((event (format "Timer-~a" (gensym))))

(after delay
(lambda ()

(hiphop-input! current-machine event)))
event)))

7. Related work
Our first example, showed in Section 2, is about coordinating re-
quests. The Orc language [6] addresses this issue by proposing a
process calculus composed of three basic combinators: symmet-
ric composition, dynamic parallel-for loop, and pruning. Our par&
form is akin to Orc’s symmetric composition, while until& is a
way to preempt computations similar to pruning but more general.
The temporal algebra of HIPHOP is richer than that of Orc. How-
ever HIPHOP does not offer the flexibility of the Orc f > x > g
operator that dynamically creates parallel executions and connects
data streams, which is fundamental for large-scale data processing.
We do not know yet how to incorporate such dataflow primitives in
HIPHOP.

Flapjax [7] provides a unified framework for programming with
events on the client-side. The authors highlight three principles
that should ease programming mashup applications: event-driven
reactivity, consistency, and uniformity when treating events. We
obey the same principles: the HIPHOP machine only needs to react
upon new inputs (e.g. external events); consistency is guaranteed
by the atomicity of a reaction (i.e. output events cannot change
the status of input events within a reaction); HIPHOP events are

all handled using the same set of primitives. Furthermore use the
addEventListener primitive to register output events handler on
an HIPHOP machine, syntactically sticking to the DOM standard’s
primitive.

Orc and Flapjax are dataflow languages. Data channels are im-
plicit in Orc: the combinators implicitly build and connect channels
between expressions. Flapjax uses explicit event streams in con-
junction with flow behaviors to manipulate data. Evaluation is asyn-
chronous, and values are propagated at any time. Flapjax choose
to use the topological order to prioritize computation and avoid
glitches. Because of the reactive semantics, a safe scheduling is
computed at compile-time, there is no need for priorities, and there
are no glitches. Event and data causality is respected at run-time by
construction.

8. Conclusion
We have presented HIPHOP a new way to orchestrate activities
within HOP. HIPHOP deals with abstract events linked to actual
web, UI, or API events by trivial HOP linking code. The HIPHOP
reactive statements are imported from the Esterel [3] and ReactiveC
[5] languages, which were created in the 80’s for programming em-
bedded systems. They are based on temporal sequentiality, con-
currency, and preemption. They have a well-understood and well-
published formal semantics, not repeated here. Integrating these
statements in HOP gives new possibilities in two directions: first,
bringing the power of reactive programming into HOP-based web
programming; second, because of the reflexive character of HOP
that can build its own programs as data structures, making it pos-
sible to dynamically build and execute complex HIPHOP reactive
code in function of the problem to solve and to the current envi-
ronment of a client or server. Of course, much work remains to be
done to implement HIPHOP in a really efficient way, to develop
bigger web applications with it, and to incorporate orchestration
mechanisms available elsewhere but not yet in HIPHOP.
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