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Mathematical formulation of DFT - Algorithm

Let M nuclei {Zy, Ra}1<asm supposed to be fixed.

Let occbe the number of occupied states. Then the behaviour of the 2N
electrons is determined by the electronic density (HK 64, KS 65)

OCC 5 OCC
=2 ni|Wi(r)|-, / r)ydr = 2N, ni =N,
i; | Wi (r)| RBP( ) i; i

with W; € HY(R?), < Wi|W; >2=&ij, p € LYR?)NLA(R?), with
3
1<qg< 5
155

The aim is the minimisation of the following energy:

occ
=2 Zm g&—= | V[p]( r)dr —/ Ve|P] r)dr + Exc[p]
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Mathematical formulation of DFT - Algorithm

M
7
V is the potential between nuclei and electrons: V(r) = — z a
o=1 ‘RO( o I‘\
I i ‘- . p(r’) /
V. is the Coulomb potential or Hartree potential: V¢[p](r) = =1 dr
R3 |I —

Exc|p] is the exchange-correlatioenergy.
0Exc|P]

op

The potential Vi derives from this energy: Vyc|p] =

Find {W;}i—1.0cc € (Hl(R?’))OCC such that for all ve HY(R3) :

ho (Wi, V) :% - OW;Ov dr+/Rgvks[p](r)LIJi(r)v(r)dr = § /1@3 Wi (r)v(r)dr

with 81<82 <Eocc<o
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Mathematical formulation of DFT - Algorithm

g Slater and Gaussian-type orbitals (GAUSSIAN, DF 86, S 93
XCq(r) =CXy"Z" e o* L=/+m+n

GTO: Describe the good symetries, but STO: Good behaviour at |r| — 0 and
redundantly. Wrong behaviour at |r| — Ir| — 400, but complex calculus.
0 and |r| — 4.

B Plane waves - Fourier transforms (CPMD, ab-init, VASP):
For any kind of systems; plane waves are eigenvectors of the Laplacien, but a high
resolution is needed for a high precision

=> Introduction of pseudopotentials. Need of adaptativity.

B Mixed basis: Gaussians + Plane waves (WIEN)

Domain decomposition method: LMTO, LAPW,.... Heavy code.
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Mathematical formulation of DFT - Algorithm

Fischer and Desfranceschi (1993): radial equation. Continuous and
discrete wavelet transforms (Daubechies, BCR).

Wei and Chou (1996), Tymcak and Wang (1997): Daubechies in DFT

Cho, Arias and al. (1993). Lippert, Arias and al. (1998): Interpolating
wavelets in DFT, for 1s states.

Flad, Hackbush and al. (2003-2004): Hyperbolic wavelets in
Hartree-Fock approximation.

Harrison, Fann and al. (2003-2004): multiwavelets to solve a problem
expressed in term of integral operators.

= Need a basis adapted to the interpolating problem. Linear scaling to apply

hamiltonien operator. Adaptive strategy.

C. Chauvin, June 2005 6/37



Mathematical formulation of DFT - Algorithm

We have chosen to use the following potential forms in our implementation:

An atomic potential will be given by a local pseudopotentigiGM 92:

V(r):—éerf< r )+ |
(1) = ()

r V2 Toc
_l(ﬁ)Z ( ‘ ‘ )
e 2'Moc Ci+C
Moc
Local Density Approximation: E,. comes from the energy of a
particle in uniform electron gas (S 5J):

Tio= [ exlplOp)r,  exlp] = -
i)l/?;p—l/?: .

a1
Hartree potential is also the solution of a Poisson equation:

ap+ay rs+ap rs® +ag s
birs+byrés+bard+byré

— AV, = 411
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Mathematical formulation of DFT - Algorithm

Y
5k
/\ HAM
Poisson Equation ||Exchange correlation potential
~AVK = 4 Vie[P¥]
\ / GAL
If |Ip* — X Y| > ¢ H
Determination opk*1
Else P DIAG
CvG
Stop
k k
{eFF, WY EN
\4 \
okl K
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Mathematical formulation of DFT - Algorithm

Y

5k
/ \ HAM
Poisson Equation || Exchange correlation potentig
~AVK = 4 Ve[

\ / GAL — Discretisation of the problem by means
If [|p% — p*Y| > ¢ HY of Galerkin and Petrov Galerkin formula-
Determination of* DIAG tions (for Poisson and for Schrodinger) into
EE)?D cve wavelets basis.
{Sik+lv l'IJik—i_l} EN
P T
oK Ik
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3D periodic biorthogonal Multi-Resolution Analysis

Biorthogonal MRA of L(IR)
Interpolating wavelets and lifting scheme
Biorthogonal MRA of L?(R\Z)

Extension in three dimensions

Examples

[Sol ving the sel f-consistent nodel ]

[ Numerical experinments ]
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3D periodic biorthogonal Multi-Resolution Analysis

The sequences V| = span{@j k = 2112 ®2. —K)}kez} (resp. \N/j ),
j € Z generate a biorthogonal MRA of L%(R).

Vj is completed with W so that Vj 1 =Vj ©W; . W = spanWj k fkez
(resp. W = span{y;j k bkez )-
Linear approximation: if f € HSthen g = O(27%)) .

Non-linear approximation: if f € C® and F € /; then

1 1
on(F) = O(N~%/T), with = =s+ =
T 2
2 W T degré 4
| i —- degré 6 . .
i / ol S 4th-order Daubechies scaling func-
- /.\ A el ' tion and wavelet, and Fourier trans-
’ ] \\\/ o form of wavelets of different sup-
-1

ol ports.
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3D periodic biorthogonal Multi-Resolution Analysis

Interpolating scaling functions Lifted primal wavelets (6,6) lifted dual basis
0.8 4 ‘
0.6 3
_ |
041 2r !
1 L
02k : LA
0 N+
02| | o \
3 2 1 0 1 2 3 04 S0 2 4 A 2 0 2 4

Let 8 be the Deslauriers-Dubuc interpolating scaling function generating To.

When éo,k — J , then we get a collocation method:

VieTy, f= ztj,kej,k: Z f(k/2!) Gﬁ,k
keZ kez

We can also use the Lifting Scheme (S 99 to improve the number of
vanishing moments of (.
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3D periodic biorthogonal Multi-Resolution Analysis

Definition Periodic MRAon T = R\Z
Defining the 1-periodization of @ L%(R):

U= Zu(.+|)

leZ
Then we get a biorthogonal MR, ,\7,-} of L?(T) spanned by

{9 kFk—0,2i—1, {9 kke02i—1 - We can also defing Uj k, LTJj,k}k:O,Zi_l , and
get biorthogonal properties.

= No more dilatation invariance. Vg = cst and
dimV; =dimV; =dimW, = dimW; = 2/.

= The wavelet transform consists in periodic convolutions.
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3D periodic biorthogonal Multi-Resolution Analysis

Definition Periodic MRA on T = (R\Z)>
We define an isotropic tensor product of the biorthogonal MRA

(V1.V} e LX(T)

Vi(T) =V;®V;®V;, @j (T) :\7j ®\7j ®\7j,

Let € = (g1,€2,€3), with&; € {0,1}. Taking W = V; and W' =W, we
introduce the wavelet isotropic space:
Wj(T) = @e_01)3,((0.0.0)} Dm-1 W™
Thus, the scaling function spanniivgy is written:
O k() = @1y (X) Py (Y) B ks (D),
and one get seven generating wavelets

e={0,13\{(0,0,0)}, W) =T wiDy) v (2
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3D periodic biorthogonal Multi-Resolution Analysis

j 14 1412 14L4 18
5| 29103 | 421032 |6.10°| 3.710°°
6|7481072 (882102 | .109 |8.81107
7| 728 8791 | 1.0998 | .8747
8| 6.48 7.71 9.6 7.82

Mean time (sec) for a forward+backward wavelet transform,
on a Pentium 11l 1.39 GHz.

Cut on z = .5 of the 4-
order Daubechies wavelet

(1,1,1)
We 16

and the

z=20

cut of its discrete Fourier

transform.

%1\*:
' ) %
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3D periodic biorthogonal Multi-Resolution Analysis

EXEMPLE OF A DECOMPOSITION IN A WAVELET BASIS

A step of the forward wavelet transform
applied to the H2 density. Isosurface
4.8107% a.u..
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Solving the Self-Consistent Model

Y

=~k
A/p\ HAM

Poisson Equation || Exchange correlation potentig

—AVK = 41K Vico[P']
T~ GAL
If B¢ — p*H| > e B
: - k+1
Eletermlnatlon op DIAG
S€ CvG
Stop
{eft ikrly EN
\ 4 \
okl ol
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[ 3D periodic biorthogonal Milti-Resolution Analysis ]

Solving the self-consistent nodel
Hamiltonian construction
Galerkin formulation
Diagonalisation procedure

Evaluation of energies

Convergence

[ Numerical experinments ]
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Solving the Self-Consistent Model

The system is composed by the M nuclei {Z;, R }1<i<m of a

molecule potentials and orbitals decay at infinity, and there are zero
outside an open Q =]0,L[>.

Let (R\LZ)® be a torus of R3; we consider functions L-periodic in the
three dimensions. We thus define:

vX,Y,Z € (R\LZ)3, f(X,Y,Z) = f(Lx,Ly,L2) = “f(x,y,2), X,y,z€ T

We use two projections of ~f € L?(T) on MRA:

B The first t1, is orthogonal; we note it {CD‘J,k, 637k}

keQ; .
B The second one 1y, is biorthogonal, interpolating (or lifted); we note
it {63 k,éj k} . The collocation basis is noted
9 ) kEQJ
o5 = {6} -
J J.k keQ;
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Solving the Self-Consistent Model

HAM

. LAK ie A - f
Start: -p"is given, projected on O]

— We get "V, L\i2 with there analytic forms.

— The resolution of Poisson equation to determine '-Véz IS made by a
collocation method, or a Petrov-Galerkin method. In (GC 2003, we use either
the preconditionning property of the lifted stiffness matrix, or a solver
combining wavelets and multigrid.

—> At the end of this step, we thus get:

vreT, “W2(r) = % “Vis(k/2%) 65, (1)
keQ;

and  H['pN =50+ V2(r)
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Solving the Self-Consistent Model

GAL
Y = % Chx Pak fori=1,0cc and C) = {C)} Jkeq, - At
iteration K, trljg IiJnear system is thus:
HYCL =¢ C},
A + B4 Ch =& ).
Ak K= iz O®;k (r)dPy e (r) dr
2L% Ja,

Bkk’_L3/ D (r) "VE(r) Py (r) dr
L

3 Y Vig(k/2) / (1) 6 Py (r) dr
ke \Ql

7

~”

Connection coef ficient

— (B 92, SP 94, DM 93, (F 97 2000, M 96
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Solving the Self-Consistent Model

GAL

1. From Vgl to VSZ and then from VSZ to Vgl

bz ty) = % “Vis(k/2%) S (k/27) 65,
keQ;

T % WVis(k /27) LW (K /2) /Q 8110 Pag
keQj 1

So B*Y is approximated by the operator:
- t
B*) = 13D;t z v 2 Dy X
where D3 = 239/2] and thus the application of B’ to C costs (2d+d') x 2%
operations.

2. From V? to V2 and then from V2 to V'

The operator B%Y is approximated by:
kJ _ (3 T Lyto =1 T
B™ =L°Dj X ng D;~Z
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Solving the Self-Consistent Model

DI AG

Implicit Restart Arnoldi MethodS 92, S 96, LSY 9Y. ARPACK library.

—> Lanczos method in case of symmetric matrice.

We calculate not only occoccupied Ritz values, but also nv additionnal

eigenvalues, and the corresponding virtual orbitals:

occC

occt+nv

p:2Zni|LIJi\2 or p=2 Z ni|Wil%, with n; =0, i =occ+1,nv
= =

350 —

3003—
2503—
200/
150F
100f

50F

0 L.

0

\|||\||
12 14 16 1

8

20

# Matrix/vector product vs number of eigenvalues,
for a given Hamiltonien.

For the helium pseudopotential, occ= 1, k = 1.
Nnv vs matrix vector product. Krylov space dimen-
sion is 50, resolution is 128°. t1 is Daubechies 6,
and 1y is 8-supported interpolating family.

C. Chauvin, June 2005

22137



Solving the Self-Consistent Model

EN

An eigenvalue should be calculated as follows:
1
k+1 L k+112 | |3 Ly /t2 L k+12
et = o [ 10U [ | el P
—> Evaluation of one-orbital density on to, and then we get directly the

potential energy. (costs (d+ 2)2* operations.)

— A finer resolution should be used to make the square of I-L|Jik+1.

- . t t
This involves a scheme like: Vi — V2 ,

— In the next part, numerical tests for this evaluation.

Let recall the total energy:

[ 9 =
T o1 LB L sk kil 3 [ Ly g Lkgakil L=k
ZZniEﬁ 5 | Ve[ PTp —L/ Vil 00" + Exc[ 0]
i: Ql Ql

Once we get I-L|Jik+1 on Iy, we get pk+1 on 2. This step costs

(ocex d+ 1)2% operations. The calculation of E is thus linear.
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Solving the Self-Consistent Model

CVG

From an input ﬁk at iteration k, we get a new density pkle :

The output p*t1 is contructed with the {L|Jik+1} by following the Aufbau
principle.

k41
It 1P
Else, the simplest construction of a new input 5k+1 IS to take the last

output, i.e. Pt = p*1 . This algorithm, called the Roothaan
algorithm, is the simplest way to minimize the total energy.

—p¥ ¢, < T, then the algorithm has converged.

It was proved that Roothaan’s algorithm gives not always a unique
fixed-point. In DIIS, or ODA, one can construct a new input density ﬁk“
so that the global energy £k s is minimized along the sequence of 5k.
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Mat hemati cal formul ation of DFT
Al gorithm

[ 3D periodic biorthogonal Milti-Resolution Analysis ]

[Solving t he sel f-consi stent nndel]

Numerical experinments
Hydrogen atom
Hydrogen in LDA
Small atoms

Occupied and unoccupied orbitals

Compressibility of orbitals
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Numerical experiments

Linear Hamiltonian H = —}A— i
2 r|
J C218 D6 18 D8 I8 D8 16
32 | 2410° | 44102 | 22102 | 1.8.10°°
64 | 36.102 | 68103 | 3103 | 26.10°°
128 | 4.10°% 8.10~% 41074 21074

Cinetic energy for the hydrogen wave function. J is the resolution, C218 means t; = C2 and
t> = 18, that is 2—-order Coiflet and 4—order interpolet. L = 10Bohr.

C218 D6I8 D8I8 D8I6
32 | 1.410°3 | 64103 | 1.4102 | 151072
64 | 1.10°2 8.10°3 4103 8.10°3

Error in the evaluation of ground state of Hydrogen, by IRAM procedure. L = 10Bohr.
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Numerical experiments

1. From V§ to V¥ {Cik}keq, — {I1.p}peq, — Ep = ZQ r3,V(p)
pelily
J c218 D6 18 DS I8 DS 16
32 | 287102 | 1.34102 | 724102 | 6.2410°3
64 | 1.8010° | 274103 | 1.06 104 | 46310°
128 | 89510° | 1.1510° | 4.1210° | 43210°

Potential energy approximation with the first method

2. From Vgl to VSZ and to /%752

{caktkeo; — {riplpeq, — Ep= % rapV(P) Tap
pelil;

\ {FJ,p}peQJ /
J C218 D6 18 D8 I8 D8 16
32 | 181102 | 987102 | 724103 | 586103
64 | 116103 | 1.2110° | 3.1610% | 228104
128 | 48310 | 58110% | 1.6610° | 19610

Potential energy approximation with the second method

C. Chauvin, June 2005
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Numerical experiments

D616 D816 D618 D818 C2I8
323 | -0.4711 | -0.4703 | -0.4856 | -0.4773 | -0.4731
64% | -0.5002 | -0.5007 | -0.5002 | -0.5007 | -0.5012

Ground state for hydrogen in DFT-LDA approximation, L = 7a.u..

#Y Epw ‘Fanczos

32 | 1052 8188 | -0.4759 | -0.4773

A8 | 2872 | 23149 | -0.4774 | -0.4786

643 | 8188 | 65578 | -0.4777 | -0.4787

90° | 23149 | 185147 | -0.4777 | -0.4789
CPMD

C. Chauvin, June 2005
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Numerical experiments

Hydrogene (H) | Hélium (He) | Lithium (Li) | Néon (Ne)
N 1 2 3 10
n; (1/2,0) (1,0) (1,1/2) (1,1,3)
E (H) -5 -2.90 -7.48 -128.94

Experimental values for some atoms, en Hartree

Element | Résolution | Occupation L Eiot

Hélium 128 (1,0) 9 -4.78
Lithium 643 (1,1/2) 10 | -11.85
Bérylium 128 (1,1) 15 | -22.49
Néon 643 (1,1,1,1,1) | 20 | -143.00

Our evaluations
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Numerical experiments

For Helium pseudopotential; Z=2, ny =1, occ=1, nv=29, J=7,L = 30Bohr. The first
orbitals appear in the good order, degeneracy and symmetries. Orbitales are almost
antisymmetric.
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Numerical experiments

For Helium pseudopotential; Z=2, np =1, occ=1, nv= 29, J = 7. Higher
energy orbitals do not have the symmetries expected. Here are the 11, 16 and
27 orbitals.
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Numerical experiments

Ny = np = 1/2; orbitals 1 — 6. En-
ergies of these states: —2.1 H,
—0.728H, —0.719H, —0.704H,
—0.679H. Lost of symmetry and
degeneracy properties.
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Numerical experiments

e

Ny = Ny = 1/2, helium pseudopo-
tential. Isosurface of £0.002a.u..
Energies of these states, respec-
tively —0.203 —0.202 —0.200,
—0.191, —0.191 H. The first or-
bitals have not symetries. But
higher energy orbitals satisfy de-
generacy order and symetries of
a real state. Here is the exam-
ple of the 22— 26th orbitals, cor-
responding to 4d-orbitals.

C. Chauvin, June 2005
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Numerical experiments

When the program converges, we get { Sif, I‘LIJif }i:1,...,occ,

Applying a wavelet transform:
J—-1

P Lyl =ty = Ci,. k Pox+ dhe wie)
| ke%jo ) ee{o,l}z\«om:zlo o,

and defining new sets ﬁj, jo < ] < J with thresholding T:

Qj = {k € Qj, ‘dik‘ > T}

We then make an inverse wavelet transform of the compressed function. We
get a behaviour like || 7 — iF ||o~ CN™¢

1 2 3 4 5
64° 2 | -1.36 | -1.36 | -1.36 | -1.55
1283 | -1.74 | -1.43 | -1.36 | -1.36 | -1.36

Coefficient a for the five first virtual orbitals of Helium atom.
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Numerical experiments

J = 6. Compressibility of the first orbital of Helium, and impact on Kinetic and Potential energies

T compression | #W, e €p
1.210°7 86% 36700 | 0.210°7 | 0.310°8
6.6210°° 97% 7864 | 0.610™° | 0.810°°
1.4610°4 99% 2621 | 0.610°3 | 0.310°%

Behaviour of the different energies:
ec(W1) —ec(PL) s ~CNF,
lep(Wi) — ep(T)|r ~CN P,

Idem for €y, Vxc and €y Y, Y and v.

Cinetic and Potential Energy Slopes for the helium

orbital. SCF resolution with =7, and t = D8, t; = B

| 8.

i 1 2 3 4 5
-286 | -2.38 | -1.98 | -1.92 | -2.05
B’ | -3.86 | -2.81 | -2.61 | -2.68 | -2.65
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Numerical experiments

e € | Exc | Exc | €ou
t1 B B’ y % V

64 | d6 | -1.93 | -2.51 | -2.19 | -2.18 | -2.91
64° | d8 | -255 | -2.96 | -1.7 | -1.7 | -2.4
643 | d10 | -29 |-335| -15 | -15 | -25
128 | d6 | -1.45 | -2.18 | -2.18 | -2.18 | -2.18
128 | d8 | -2.12 | -2.90 | -1.91 | -1.91 | -2.15
128 | d10 | -2.62 | -3.33 | -2.26 | -2.26 | -2.52

Slopes of the lines on log/log scales (#p vs relative error of energy), for different Daubechies’s

orders. SCF calculation for the hydrogen atom in LDA approximation. J=7,L = 7,to = |8.
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Conclusion

A mathematical formulation of the Density-Functional Theory
A method for the interpolation problem.
Two methods to solve Poisson equation.

A solver for Kohn-Sham equations in LDA-approximation.

—> Perform this solver on a regular basis to describe more precisely physical
experiments (pseudopotential - exchange-correlation term).

— Functionnal analysis in DFT: proof of existence of discrete eigenvalues for
the linearized hamiltonien, and criteria on V. for self-consistent convergence
(in progress).

—> Towards an adaptive method: analysis of the potential operator
compressibility, a first solver with orbitals in wavelet basis.
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