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Mathematical formulation of DFT - Algorithm

KOHN SHAM EQUATIONS

Let M nuclei {Zα, Rα}16α6M supposed to be fixed.

Let occbe the number of occupied states. Then the behaviour of the 2N

electrons is determined by the electronic density (HK 64, KS 65):

ρ(r) = 2
occ

∑
i=1

ni |Ψi(r)|2,
Z

R3
ρ(r)dr = 2N,

occ

∑
i=1

ni = N,

with Ψi ∈ H1(R3), < Ψi |Ψ j >L2= δi, j , ρ ∈ Lq(R3)∩L2(R3) , with

1 6 q 6
3
2

The aim is the minimisation of the following energy:

E [ρ] = 2
occ

∑
i=1

ni εi −
1
2

Z

R3
Vc[ρ](r) ρ(r)dr −

Z

R3
Vxc[ρ](r)ρ(r)dr +Exc[ρ]
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Mathematical formulation of DFT - Algorithm

KOHN SHAM EQUATIONS

V is the potential between nuclei and electrons: V(r) = −
M

∑
α=1

Zα

|Rα − r |

Vc is the Coulomb potential or Hartreepotential: Vc[ρ](r) =
Z

R3

ρ(r ′)
|r − r ′|dr ′

Exc[ρ] is the exchange-correlationenergy.

The potential Vxc derives from this energy: Vxc[ρ] =
∂Exc[ρ]

∂ρ

(M ) Find {Ψi}i=1,occ∈
(
H1(R3)

)occ
such that for all v∈ H1(R3) :

hρ(Ψi ,v) =
1
2

Z

R3
∇Ψi∇v dr +

Z

R3
Vks[ρ](r)Ψi(r)v(r)dr = εi

Z

R3
Ψi(r)v(r)dr

with ε1 6 ε2 · · · 6 εocc < 0
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Mathematical formulation of DFT - Algorithm

EXISTING METHODS

Slater and Gaussian-type orbitals (GAUSSIAN, DF 86, S 93):

χG
L,α(r) = C xℓymzn e−α|r |2, L = ℓ+m+n

GTO: Describe the good symetries, but

redundantly. Wrong behaviour at |r | →
0 and |r | → +∞ .

STO: Good behaviour at |r | → 0 and

|r | → +∞ , but complex calculus.

Plane waves - Fourier transforms (CPMD, ab-init, VASP):
For any kind of systems; plane waves are eigenvectors of the Laplacien, but a high

resolution is needed for a high precision

⇒ Introduction of pseudopotentials. Need of adaptativity.

Mixed basis: Gaussians + Plane waves (WIEN)

Domain decomposition method: LMTO, LAPW,.... Heavy code.
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Mathematical formulation of DFT - Algorithm

USE OF WAVELETS BASIS

Fischer and Desfranceschi (1993): radial equation. Continuous and

discrete wavelet transforms (Daubechies, BCR).

Wei and Chou (1996), Tymcak and Wang (1997): Daubechies in DFT

Cho, Arias and al. (1993). Lippert, Arias and al. (1998): Interpolating

wavelets in DFT, for 1s states.

Flad, Hackbush and al. (2003-2004): Hyperbolic wavelets in

Hartree-Fock approximation.

Harrison, Fann and al. (2003-2004): multiwavelets to solve a problem

expressed in term of integral operators.

⇒ Need a basis adapted to the interpolating problem. Linear scaling to apply

hamiltonien operator. Adaptive strategy.
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Mathematical formulation of DFT - Algorithm

POTENTIAL CALCULATION

We have chosen to use the following potential forms in our implementation:

An atomic potential will be given by a local pseudopotential(GM 92):

V(r) = −Zα

|r |er f

( |r |√
2 r loc

)
+

e
− 1

2 (
|r |

rloc
)2

(
C1 +C2

( |r |
r loc

)2

+C3

( |r |
r loc

)4

+C4

( |r |
r loc

)6
)

Local Density Approximation: Exc comes from the energy of a

particle in uniform electron gas (S 51):

Exc =
Z

R3
εxc[ρ](r)ρ(r)dr , εxc[ρ] = − a0 +a1 rs+a2 rs

2 +a3 r3
s

b1 rs+b2 r2
s+b3 r3

s +b4 r4
s

with rs = (
3
4π

)1/3ρ−1/3 .

Hartree potential is also the solution of a Poisson equation:

−∆Vc = 4π ρ

C. Chauvin, June 2005 7/37



Mathematical formulation of DFT - Algorithm

SELF-CONSISTENT ALGORITHM

ρ̃k

HAM

Poisson Equation

−∆Vk
c = 4πρ̃k

Exchange correlation potential
Vxc[ρ̃k]

GAL

H
J

DIAG

{εk+1
i , Ψk+1

i } EN

Ekρk+1

?

?

P
P

PPq

P
P

PPq

�
�

��)

�
�

��)

P
P

PPq

?

CVG

If ||ρ̃k − ρk+1|| > ε
Determination of̃ρk+1

Else
Stop
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Mathematical formulation of DFT - Algorithm

SELF-CONSISTENT ALGORITHM

ρ̃k

HAM

Poisson Equation

−∆Vk
c = 4πρ̃k

Exchange correlation potential
Vxc[ρ̃k]

GAL

H
J

DIAG

{εk+1
i , Ψk+1

i } EN

Ekρk+1

?

?

P
P

PPq

P
P

PPq

�
�

��)

�
�

��)

P
P

PPq

?

CVG

If ||ρ̃k − ρk+1|| > ε
Determination of̃ρk+1

Else
Stop

=⇒ Discretisation of the problem by means

of Galerkin and Petrov Galerkin formula-

tions (for Poisson and for Schrödinger) into

wavelets basis.
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3D periodic biorthogonal Multi-Resolution Analysis

BIORTHOGONAL MRA OF L2(R)

The sequences Vj = span{φ j,k = 2 j/2 φ(2 j .−k)}k∈Z} (resp. Ṽj ),

j ∈ Z generate a biorthogonal MRA of L2(R).

Vj is completed with Wj so that Vj+1 = Vj ⊕Wj . Wj = span{ψ j,k}k∈Z

(resp. W̃j = span{ψ̃ j,k}k∈Z ).

Linear approximation: if f ∈ Hs then ε j = O(2−s j) .

Non-linear approximation: if f ∈Cs, and F ∈ ℓτ then

σN(F) = O(N−2/τ), with
1
τ

= s+
1
2

4th-order Daubechies scaling func-

tion and wavelet, and Fourier trans-

form of wavelets of different sup-

ports.
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3D periodic biorthogonal Multi-Resolution Analysis

INTERPOLATING WAVELETS AND LIFTING SCHEME

Interpolating scaling functions Lifted primal wavelets (6,6) lifted dual basis

Let θ be the Deslauriers-Dubuc interpolating scaling function generating T0.

When θ̃0,k = δk , then we get a collocation method:

∀ f ∈ T0, f = ∑
k∈Z

t j,kθ j,k = ∑
k∈Z

f (k/2 j) θ♯
j,k

We can also use the Lifting Scheme (S 96) to improve the number of

vanishing moments of ζ.
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3D periodic biorthogonal Multi-Resolution Analysis

BIORTHOGONAL MRA OF L2(R\Z)

Definition Periodic MRA on T = R\Z
Defining the 1-periodization of u∈ L2(R):

ǔ = ∑
l∈Z

u(.+ l)

Then we get a biorthogonal MRA{V̌j ,
ˇ̃V j} of L2(T) spanned by

{φ̌ j,k}k=0,2 j−1,{
ˇ̃φ j,k}k=0,2 j−1 . We can also define{ψ̌ j,k, ˇ̃ψ j,k}k=0,2 j−1 , and

get biorthogonal properties.

⇒ No more dilatation invariance. V0 = cst and

dimV̌j = dim ˇ̃V j = dimW̌j = dim ˇ̃W j = 2 j .

⇒ The wavelet transform consists in periodic convolutions.
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3D periodic biorthogonal Multi-Resolution Analysis

EXTENSION TO THREE DIMENSIONS

Definition Periodic MRA on T = (R\Z)3

We define an isotropic tensor product of the biorthogonal MRA

{V̌j ,
ˇ̃V j} ∈ L2(T)

V j(T) = Vj ⊗Vj ⊗Vj , Ṽ j(T) = Ṽj ⊗Ṽj ⊗Ṽj ,

Let ε = (ε1,ε2,ε3), with εi ∈ {0,1}. Taking W0
j = Vj and W1

j = Wj , we

introduce the wavelet isotropic space:

W j(T) = ⊕ε={0,1}3\{(0,0,0)}⊗3
m=1Wεm

j

Thus, the scaling function spanningVJ is written:

Φ j,k(r) = φ̌ j,k1(x) φ̌ j,k2(y) φ̌ j,k3(z),

and one get seven generating wavelets

ε = {0,1}3\{(0,0,0)}, Ψ(ε)
j,k(r) = ψ(ε1)

j,k1
(x) ψ(ε2)

j,k2
(y) ψ(ε3)

j,k3
(z)
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3D periodic biorthogonal Multi-Resolution Analysis

A FAST WAVELET TRANSFORM

j I4 I4L2 I4L4 I8

5 2.9 10−3 4.2 10−3 6. 10−3 3.7 10−3

6 7.48 10−2 8.82 10−2 .109 8.81 10−2

7 .728 .8791 1.0998 .8747

8 6.48 7.71 9.6 7.82

Mean time (sec) for a forward+backward wavelet transform,

on a Pentium III 1.39 GHz.

Cut on z = .5 of the 4-

order Daubechies wavelet

Ψ(1,1,1)
5,16 , and the z = 0

cut of its discrete Fourier

transform.
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3D periodic biorthogonal Multi-Resolution Analysis

EXEMPLE OF A DECOMPOSITION IN A WAVELET BASIS

A step of the forward wavelet transform

applied to the H2 density. Isosurface

4.810−2 a.u..
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Solving the Self-Consistent Model

ALGORITHM

ρ̃k

HAM

Poisson Equation

−∆Vk
c = 4πρ̃k

Exchange correlation potential
Vxc[ρ̃k]

GAL

H
J

DIAG

{εk+1
i , Ψk+1

i } EN

Ekρk+1

?

?

P
P

PPq

P
P

PPq

�
�

��)

�
�

��)

P
P

PPq

?

CVG

If ||ρ̃k − ρk+1|| > ε
Determination of̃ρk+1

Else
Stop
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Solving the Self-Consistent Model

INTRODUCTION

The system is composed by the M nuclei {ZI , RI}16I6M of a

molecule: potentials and orbitals decay at infinity, and there are zero

outside an open Ω =]0,L[3.

Let (R\LZ)3 be a torus of R3; we consider functions L-periodic in the

three dimensions. We thus define:

∀X,Y,Z ∈ (R\LZ)3, f (X,Y,Z) = f (Lx,Ly,Lz) = L f (x,y,z), x,y,z∈ T

We use two projections of L f ∈ L2(T) on MRA:

The first t1, is orthogonal; we note it
{

ΦJ,k ,Φ̃J,k

}
k∈ΩJ

.

The second one t2, is biorthogonal, interpolating (or lifted); we note

it
{

θJ,k, θ̃J,k

}
k∈ΩJ

. The collocation basis is noted

Θ♯
J =

{
θ♯

J,k

}
k∈ΩJ

.
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Solving the Self-Consistent Model

HAM HAMILTONIAN CONSTRUCTION

Start: Lρ̃k is given, projected on Θ♯
J

=⇒ We get LVt2, LVt2
xc with there analytic forms.

=⇒ The resolution of Poisson equation to determine LVt2
c is made by a

collocation method, or a Petrov-Galerkin method. In (GC 2003), we use either

the preconditionning property of the lifted stiffness matrix, or a solver

combining wavelets and multigrid.

=⇒ At the end of this step, we thus get:

∀r ∈ T, LVt2
ks(r) = ∑

k∈ΩJ

LVks(k/2J) θ♯
J,k(r)

and H [ Lρ̃k] = − 1
2L2 ∆+ LVt2

ks(r)
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Solving the Self-Consistent Model

GAL GALERKIN FORMULATION I

Let LψJ
i = ∑

k∈ΩJ

ci
J,k ΦJ,k for i = 1,occ, and Ci

J = {ci
J,k}k∈ΩJ . At

iteration k, the linear system is thus:

H
k
J Ci

J = εi Ci
J ,[

A
J +B

k,J
]
Ci

J = εi Ci
J ,

A
J
k,k′ =

1
2L2

Z

Ω1

∇ΦJ,k(r)∇ΦJ,k′(r) dr

B
k,J
k,k′ = L3

Z

Ω1

ΦJ,k(r) LVt2
ks(r) ΦJ,k′(r) dr

= L3
L

∑
k∈ΩJ

Vks(k/2J)
Z

Ω1

ΦJ,k(r) θ♯
J,k ΦJ,k′(r) dr

︸ ︷︷ ︸
Connection coe f f icient

,

=⇒ (B 92, SP 94, DM 93), (F 97 2000, M 96)
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Solving the Self-Consistent Model

GAL GALERKIN FORMULATION II

1. From V
t1
J to V

t2
J and then from V

t2
J to V

t1
J

LVt2
ks

LΨJ
i = ∑

k∈ΩJ

LVks(k/2J) LΨJ
i (k/2J) θ♯

J,k ,

< LVt2
ks

LΨJ
i | ΦJ,k′ > = 2−3J/2 ∑

k∈ΩJ

LVks(k/2J) LΨJ
i (k/2J)

Z

Ω1

θJ,k′ ΦJ,k

So B
k,J is approximated by the operator:

B
k,J = L3D−1

J Z LVt2
ks DJ X

where DJ = 23J/2I and thus the application of B
k,J to Ci

J costs (2d+d′)×23J

operations.

2. From V
t1
J to Ṽ

t2
J and then from Ṽ

t2
J to V

t1
J

The operator B
k,J is approximated by:

B
k,J = L3DJ XT LVt2

ks D−1
J ZT
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Solving the Self-Consistent Model

DIAG DIAGONALISATION PROCEDURE

Implicit Restart Arnoldi Method(S 92, S 96, LSY 97). ARPACK library.

=⇒ Lanczos method in case of symmetric matrice.

We calculate not only occoccupied Ritz values, but also nv additionnal

eigenvalues, and the corresponding virtual orbitals:

ρ = 2
occ

∑
i=1

ni |Ψi |2 or ρ = 2
occ+nv

∑
i=1

ni |Ψi |2 , with ni = 0, i = occ+1,nv

# Matrix/vector product vs number of eigenvalues,

for a given Hamiltonien.

For the helium pseudopotential, occ= 1, k = 1.

nv vs matrix vector product. Krylov space dimen-

sion is 50, resolution is 1283. t1 is Daubechies 6,

and t2 is 8-supported interpolating family.
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Solving the Self-Consistent Model

EN EVALUATION OF ENERGIES

An eigenvalue should be calculated as follows:

εk+1
i =

1
2L2

Z

Ω1

|∇ Lψk+1
i |2 +L3

Z

Ω1

LVt2
ks(r) | Lψk+1

i |2(r)dr

=⇒ Evaluation of one-orbital density on t2, and then we get directly the

potential energy. (costs (d+2)23J operations.)

=⇒ A finer resolution should be used to make the square of Lψk+1
i .

This involves a scheme like: V
t1
J −→ V

t2
J+ℓ

=⇒ In the next part, numerical tests for this evaluation.

Let recall the total energy:

E [ Lρ̃k] =

2
occ

∑
i=1

ni εk+1
i − L3

2

Z

Ω1

LVc[
Lρ̃k] ρk+1−L3

Z

Ω1

LVxc[
Lρ̃k]ρk+1+Exc[

Lρ̃k]

Once we get Lψk+1
i on t2, we get ρk+1 on t2. This step costs

(occ×d+1)23J operations. The calculation of E is thus linear.
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Solving the Self-Consistent Model

CVG CONVERGENCE

From an input ρ̃k at iteration k, we get a new density ρk+1 .

The output ρk+1 is contructed with the {ψk+1
i } by following the Aufbau

principle.

If ||ρk+1− ρ̃k||ℓ2 6 τ , then the algorithm has converged.

Else, the simplest construction of a new input ρ̃k+1 is to take the last

output, i.e. ρ̃k+1 = ρk+1 . This algorithm, called the Roothaan

algorithm, is the simplest way to minimize the total energy.

It was proved that Roothaan’s algorithm gives not always a unique

fixed-point. In DIIS, or ODA, one can construct a new input density ρ̃k+1

so that the global energy EKS is minimized along the sequence of ρ̃k.
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Numerical experiments

HYDROGEN ATOM

Linear Hamiltonian H = −1
2

∆− 1
|r |

J C2 I8 D6 I8 D8 I8 D8 I6

32 2.410−2 4.4.10−2 2.2.10−2 1.8.10−2

64 3.6.10−3 6.8.10−3 3.10−3 2.6.10−3

128 4.10−4 8.10−4 4.10−4 2.10−4

Cinetic energy for the hydrogen wave function. J is the resolution, C2I8 means t1 = C2 and

t2 = I8, that is 2−-order Coiflet and 4−order interpolet. L = 10Bohr.

C2I8 D6I8 D8I8 D8I6

32 1.4.10−3 6.4.10−3 1.4.10−2 1.5.10−2

64 1.10−2 8.10−3 4.10−3 8.10−3

Error in the evaluation of ground state of Hydrogen, by IRAM procedure. L = 10Bohr.
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Numerical experiments

HYDROGEN ATOM

1. From V
t1
J to V

t2
J {cJ,k}k∈ΩJ −→ {rJ,p}p∈ΩJ −→ EJ

p = ∑
p∈ΩJ

r2
J,p V(p)

J C2 I8 D6 I8 D8 I8 D8 I6

32 2.87 10−2 1.34 10−2 7.24 10−3 6.24 10−3

64 1.80 10−3 2.74 10−3 1.06 10−4 4.63 10−5

128 8.95 10−5 1.15 10−3 4.12 10−5 4.32 10−5

Potential energy approximation with the first method

2. From V
t1
J to V

t2
J and to Ṽ

t2
J

{cJ,k}k∈ΩJ −→ {rJ,p}p∈ΩJ −→ EJ
p = ∑

p∈ΩJ

rJ,p V(p) r̃J,p

ց {r̃J,p}p∈ΩJ ր

J C2 I8 D6 I8 D8 I8 D8 I6

32 1.81 10−2 9.87 10−3 7.24 10−3 5.86 10−3

64 1.16 10−3 1.21 10−3 3.16 10−4 2.28 10−4

128 4.83 10−5 5.81 10−4 1.66 10−5 1.96 10−4

Potential energy approximation with the second method
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Numerical experiments

HYDROGEN IN LDA - COMPARISON WITH CPMD

D6I6 D8I6 D6I8 D8I8 C2I8

323 -0.4711 -0.4703 -0.4856 -0.4773 -0.4731

643 -0.5002 -0.5007 -0.5002 -0.5007 -0.5012

Ground state for hydrogen in DFT-LDA approximation, L = 7a.u..

# ψ # ρ Epw Elanczos

323 1052 8188 -0.4759 -0.4773

483 2872 23149 -0.4774 -0.4786

643 8188 65578 -0.4777 -0.4787

903 23149 185147 -0.4777 -0.4789

CPMD
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Numerical experiments

SMALL ATOMS

Hydrogène (H) Hélium (He) Lithium (Li) Néon (Ne)

N 1 2 3 10

ni (1/2,0) (1,0) (1,1/2) (1,1,3)

E (H) -.5 -2.90 -7.48 -128.94

Experimental values for some atoms, en Hartree.

Élement Résolution Occupation L Etot

Hélium 1283 (1,0) 9 -4.78

Lithium 643 (1,1/2) 10 -11.85

Bérylium 1283 (1,1) 15 -22.49

Néon 643 (1,1,1,1,1) 20 -143.00

Our evaluations
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Numerical experiments

OCCUPIED AND UNOCCUPIED ORBITALS

For Helium pseudopotential; Z = 2, n1 = 1, occ= 1, nv= 29, J = 7,L = 30Bohr. The first

orbitals appear in the good order, degeneracy and symmetries. Orbitales are almost

antisymmetric.
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Numerical experiments

OCCUPIED AND UNOCCUPIED ORBITALS

For Helium pseudopotential; Z = 2, n1 = 1, occ= 1, nv= 29, J = 7. Higher

energy orbitals do not have the symmetries expected. Here are the 11, 16 and

27 orbitals.
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Numerical experiments

OCCUPIED AND UNOCCUPIED ORBITALS

n1 = n2 = 1/2; orbitals 1−6. En-
ergies of these states: −2.1 H,
−0.728H, −0.719H, −0.704H,
−0.679H. Lost of symmetry and
degeneracy properties.
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Numerical experiments

OCCUPIED AND UNOCCUPIED ORBITALS

n1 = n2 = 1/2, helium pseudopo-
tential. Isosurface of ±0.002a.u..
Energies of these states, respec-
tively −0.203, −0.202, −0.200,
−0.191, −0.191 H. The first or-
bitals have not symetries. But
higher energy orbitals satisfy de-
generacy order and symetries of
a real state. Here is the exam-
ple of the 22− 26th orbitals, cor-
responding to 4d-orbitals.
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Numerical experiments

COMPRESSIBILITY OF ORBITALS

When the program converges, we get { ε f
i , Lψ f

i }i=1,...,occ,

Applying a wavelet transform:

P
t1
J

Lψ f
i =L ψJ

i = ∑
k∈Ω j0

ci
j0, k ΦJ,k + ∑

ε∈{0,1}3\{(0)}

J−1

∑
j= j0

∑
k∈Ω j

di,ε
j,kΨ(ε)

j,k

and defining new sets Ω̃ j , j0 < j < J with thresholding τ:

Ω̃ j =
{

k ∈ Ω j , |dε
j,k | > τ

}

We then make an inverse wavelet transform of the compressed function. We

get a behaviour like ‖ ψJ
i − ψ̃τ

i ‖2∼CN−α

1 2 3 4 5

643 -2 -1.36 -1.36 -1.36 -1.55

1283 -1.74 -1.43 -1.36 -1.36 -1.36

Coefficient α for the five first virtual orbitals of Helium atom.
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Numerical experiments

COMPRESSIBILITY OF ORBITALS

τ compression #Ψi ec ep

1.210−7 86% 36700 0.210−7 0.310−8

6.6210−6 97% 7864 0.610−5 0.810−7

1.4610−4 99% 2621 0.610−3 0.310−4

J = 6. Compressibility of the first orbital of Helium, and impact on Kinetic and Potential energies

Behaviour of the different energies:

|ec(ψJ
1)−ec(ψ̃τ

1)|r ∼CN−β ,

|ep(ψJ
1)−ep(ψ̃τ

1)|r ∼CN−β′ ,

Idem for exc, vxc and ecouℓ γ, γ′ and ν.

Cinetic and Potential Energy Slopes for the helium

orbital. SCF resolution with J= 7, and t1 = D8, t2 =

I8.

i 1 2 3 4 5

β -2.86 -2.38 -1.98 -1.92 -2.05

β′ -3.86 -2.81 -2.61 -2.68 -2.65
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Numerical experiments

COMPRESSIBILITY OF ORBITALS: IMPACT ON ENERGIES

ec ep Exc Exc ecouℓ

t1 β β′ γ γ′ ν

643 d6 -1.93 -2.51 -2.19 -2.18 -2.91

643 d8 -2.55 -2.96 -1.7 -1.7 -2.4

643 d10 -2.9 -3.35 -1.5 -1.5 -2.5

1283 d6 -1.45 -2.18 -2.18 -2.18 -2.18

1283 d8 -2.12 -2.90 -1.91 -1.91 -2.15

1283 d10 -2.62 -3.33 -2.26 -2.26 -2.52

Slopes of the lines on log/log scales (#ρ vs relative error of energy), for different Daubechies’s

orders. SCF calculation for the hydrogen atom in LDA approximation. J = 7,L = 7, t2 = I8.
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Conclusion

RESULTS - FORECASTS

A mathematical formulation of the Density-Functional Theory

A method for the interpolation problem.

Two methods to solve Poisson equation.

A solver for Kohn-Sham equations in LDA-approximation.

=⇒ Perform this solver on a regular basis to describe more precisely physical

experiments (pseudopotential - exchange-correlation term).

=⇒ Functionnal analysis in DFT: proof of existence of discrete eigenvalues for

the linearized hamiltonien, and criteria on Vxc for self-consistent convergence

(in progress).

=⇒ Towards an adaptive method: analysis of the potential operator

compressibility, a first solver with orbitals in wavelet basis.
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