

MULTISCALE METHODS IN ELECTRONIC STRUCTURE CALCULATION: A SOLVER FOR KOHN-SHAM EQUATIONS

Claire Chauvin

Condensed Matter Fundamental Modelling and Simulation

Research Department

Pr. Goedecker and Dr. Deutsch

Modelling and Simulation Laboratory

Pr. Perrier

Christian-Albrechts-Universität zu Kiel

Pr. Schneider

IHP Project Breaking Complexity

Self-consistent algorithm

3D periodic biorthogonal Multi-Resolution Analysis

Solving the self-consistent model

Numerical experiments

KOHN SHAM EQUATIONS

Let *M* nuclei $\{Z_{\alpha}, R_{\alpha}\}_{1 \leq \alpha \leq M}$ supposed to be fixed.

Let *occ* be the number of occupied states. Then the behaviour of the 2N electrons is determined by the electronic density (*HK 64*, *KS 65*):

$$\begin{split} \rho(\mathbf{r}) &= 2\sum_{i=1}^{occ} n_i |\Psi_i(\mathbf{r})|^2, \quad \int_{\mathbb{R}^3} \rho(\mathbf{r}) d\mathbf{r} = 2N, \quad \sum_{i=1}^{occ} n_i = N, \\ \text{with } \Psi_i &\in H^1(\mathbb{R}^3), \quad \langle \Psi_i | \Psi_j \rangle_{L^2} = \delta_{i,j}, \ \rho \in L^q(\mathbb{R}^3) \cap L^2(\mathbb{R}^3) \text{ , with} \\ 1 &\leqslant q \leqslant \frac{3}{2} \end{split}$$

The aim is the minimisation of the following energy:

$$\mathcal{E}[\boldsymbol{\rho}] = 2\sum_{i=1}^{occ} n_i \, \boldsymbol{\varepsilon}_i - \frac{1}{2} \int_{\mathbb{R}^3} V_c[\boldsymbol{\rho}](\mathbf{r}) \, \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r} - \int_{\mathbb{R}^3} V_{xc}[\boldsymbol{\rho}](\mathbf{r}) \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r} + \mathcal{E}_{xc}[\boldsymbol{\rho}]$$

KOHN SHAM EQUATIONS

V is the potential between nuclei and electrons: $V(\mathbf{r}) = -\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{|R_{\alpha} - \mathbf{r}|}$

 V_c is the Coulomb potential or *Hartree* potential: $V_c[\rho](\mathbf{r}) = \int_{\mathbb{R}^3} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$ $\mathcal{E}_{xc}[\rho]$ is the *exchange-correlation* energy.

The potential V_{xc} derives from this energy: $V_{xc}[\rho] = \frac{\partial \mathcal{E}_{xc}[\rho]}{\partial \rho}$

(*M*) Find
$$\{\Psi_i\}_{i=1,occ} \in (H^1(\mathbb{R}^3))^{occ}$$
 such that for all $v \in H^1(\mathbb{R}^3)$:
 $h_{\rho}(\Psi_i, v) = \frac{1}{2} \int_{\mathbb{R}^3} \nabla \Psi_i \nabla v \, d\mathbf{r} + \int_{\mathbb{R}^3} V_{ks}[\rho](\mathbf{r}) \Psi_i(\mathbf{r}) v(\mathbf{r}) d\mathbf{r} = \varepsilon_i \int_{\mathbb{R}^3} \Psi_i(\mathbf{r}) v(\mathbf{r}) d\mathbf{r}$
with $\varepsilon_1 \leq \varepsilon_2 \cdots \leq \varepsilon_{occ} < 0$

EXISTING METHODS

Slater and Gaussian-type orbitals (GAUSSIAN, *DF* 86, *S* 93): $\chi^G_{L,\alpha}(\mathbf{r}) = C x^{\ell} y^m z^n e^{-\alpha |\mathbf{r}|^2}, L = \ell + m + n$

GTO: Describe the good symetries, but STO: Good behaviour at $|\mathbf{r}| \to 0$ and redundantly. Wrong behaviour at $|\mathbf{r}| \to |\mathbf{r}| \to +\infty$, but complex calculus. 0 and $|\mathbf{r}| \to +\infty$.

Plane waves - Fourier transforms (CPMD, ab-init, VASP):

For any kind of systems; plane waves are eigenvectors of the Laplacien, but a high resolution is needed for a high precision

 \Rightarrow Introduction of pseudopotentials. Need of adaptativity.

Mixed basis: Gaussians + Plane waves (WIEN)

Domain decomposition method: LMTO, LAPW,.... Heavy code.

USE OF WAVELETS BASIS

- Fischer and Desfranceschi (1993): radial equation. Continuous and discrete wavelet transforms (Daubechies, BCR).
- Wei and Chou (1996), Tymcak and Wang (1997): Daubechies in DFT
- Cho, Arias and al. (1993). Lippert, Arias and al. (1998): Interpolating wavelets in DFT, for 1s states.
- Flad, Hackbush and al. (2003-2004): Hyperbolic wavelets in Hartree-Fock approximation.
- Harrison, Fann and al. (2003-2004): multiwavelets to solve a problem expressed in term of integral operators.
- \Rightarrow Need a basis adapted to the interpolating problem. Linear scaling to apply hamiltonien operator. Adaptive strategy.

POTENTIAL CALCULATION

We have chosen to use the following potential forms in our implementation:

An atomic potential will be given by a *local pseudopotential* (GM 92)

$$V(\mathbf{r}) = -\frac{Z_{\alpha}}{|\mathbf{r}|} erf\left(\frac{|\mathbf{r}|}{\sqrt{2} r_{loc}}\right) + e^{-\frac{1}{2}(\frac{|\mathbf{r}|}{r_{loc}})^{2}} \left(C_{1} + C_{2}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{2} + C_{3}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{4} + C_{4}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{6}\right)$$

Local Density Approximation: \mathcal{E}_{xc} comes from the energy of a particle in uniform electron gas (S 51):

$$\mathcal{E}_{xc} = \int_{\mathbb{R}^3} \varepsilon_{xc}[\rho](\mathbf{r})\rho(\mathbf{r})d\mathbf{r}, \quad \varepsilon_{xc}[\rho] = -\frac{a_0 + a_1 r_s + a_2 r_s^2 + a_3 r_s^3}{b_1 r_s + b_2 r_s^2 + b_3 r_s^3 + b_4 r_s^4}$$

with $r_s = (\frac{3}{4\pi})^{1/3} \rho^{-1/3}$.

Hartree potential is also the solution of a Poisson equation:

$$-\Delta V_c = 4\pi \rho$$

SELF-CONSISTENT ALGORITHM

SELF-CONSISTENT ALGORITHM

 \implies Discretisation of the problem by means of Galerkin and Petrov Galerkin formulations (for Poisson and for Schrödinger) into wavelets basis.

Mathematical formulation of DFT Algorithm

3D periodic biorthogonal Multi-Resolution Analysis

- Biorthogonal MRA of $L^2(\mathbb{R})$
- Interpolating wavelets and lifting scheme
- P Biorthogonal MRA of $L^2(\mathbb{R} \backslash \mathbb{Z})$
- Extension in three dimensions
- Examples

Solving the self-consistent model

Numerical experiments

BIORTHOGONAL MRA OF $L^2(\mathbb{R})$

- The sequences $V_j = span\{\phi_{j,k} = 2^{j/2} \phi(2^j, -k)\}_{k \in \mathbb{Z}}\}$ (resp. \widetilde{V}_j), $j \in \mathbb{Z}$ generate a biorthogonal MRA of $L^2(\mathbb{R})$.
- ✓ V_j is completed with W_j so that $V_{j+1} = V_j \oplus W_j$. $W_j = span\{\psi_{j,k}\}_{k \in \mathbb{Z}}$ (resp. $\widetilde{W}_j = span\{\widetilde{\psi}_{j,k}\}_{k \in \mathbb{Z}}$).
- Linear approximation: if $f \in H^s$ then $\varepsilon_j = O(2^{-sj})$.

Non-linear approximation: if $f \in C^s$, and $F \in \ell_{\tau}$ then

$$\sigma_N(F) = O(N^{-2/\tau})$$
, with $\frac{1}{\tau} = s + \frac{1}{2}$

4th-order Daubechies scaling function and wavelet, and Fourier transform of wavelets of different supports.

INTERPOLATING WAVELETS AND LIFTING SCHEME

Interpolating scaling functions

Lifted primal wavelets

(6,6) lifted dual basis

Let θ be the Deslauriers-Dubuc interpolating scaling function generating T_0 .

When
$$\tilde{\theta}_{0,k} = \delta_k$$
, then we get a collocation method:
 $\forall f \in T_0, \quad f = \sum_{k \in \mathbb{Z}} t_{j,k} \theta_{j,k} = \sum_{k \in \mathbb{Z}} f(k/2^j) \; \theta_{j,k}^{\sharp}$

We can also use the Lifting Scheme (S 96) to improve the number of vanishing moments of ζ .

BIORTHOGONAL MRA OF $L^2(\mathbb{R} \setminus \mathbb{Z})$

Definition Periodic MRA on $T = \mathbb{R} \setminus \mathbb{Z}$ Defining the 1-periodization of $u \in L^2(\mathbb{R})$: $\check{u} = \sum_{l \in \mathbb{Z}} u(.+l)$ Then we get a biorthogonal MRA $\{\check{V}_j, \check{\widetilde{V}}_j\}$ of $L^2(T)$ spanned by $\{\check{\phi}_{j,k}\}_{k=0,2^{j}-1}, \{\check{\widetilde{\phi}}_{j,k}\}_{k=0,2^{j}-1}$. We can also define $\{\check{\Psi}_{j,k}, \check{\widetilde{\Psi}}_{j,k}\}_{k=0,2^{j}-1}$, and get biorthogonal properties.

- ⇒ No more dilatation invariance. $V_0 = cst$ and $dim \check{V}_j = dim \check{\widetilde{V}}_j = dim \check{W}_j = dim \check{\widetilde{W}}_j = 2^j.$
- \Rightarrow The wavelet transform consists in periodic convolutions.

EXTENSION TO THREE DIMENSIONS

Definition Periodic MRA on $\mathbb{T} = (\mathbb{R} \setminus \mathbb{Z})^3$

We define an isotropic tensor product of the biorthogonal MRA $\{\check{V}_j, \check{\breve{V}}_j\} \in L^2(T)$

$$\mathbb{V}_j(\mathbb{T}) = V_j \otimes V_j \otimes V_j, \ \ ilde{\mathbb{V}}_j(\mathbb{T}) = ilde{V}_j \otimes ilde{V}_j \otimes ilde{V}_j,$$

Let $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$, with $\varepsilon_i \in \{0, 1\}$. Taking $W_j^0 = V_j$ and $W_j^1 = W_j$, we introduce the wavelet isotropic space:

$$\mathbb{W}_{j}(\mathbb{T}) = \bigoplus_{\varepsilon = \{0,1\}^{3} \setminus \{(0,0,0)\}} \otimes_{m=1}^{3} W_{j}^{\varepsilon_{m}}$$

Thus, the scaling function spanning \mathbb{V}_J is written:

$$\Phi_{j,\mathbf{k}}(\mathbf{r}) = \check{\phi}_{j,k_1}(x) \check{\phi}_{j,k_2}(y) \check{\phi}_{j,k_3}(z),$$

and one get seven generating wavelets

$$\boldsymbol{\varepsilon} = \{0,1\}^3 \setminus \{(0,0,0)\}, \quad \Psi_{j,\mathbf{k}}^{(\varepsilon)}(\mathbf{r}) = \Psi_{j,k_1}^{(\varepsilon_1)}(x) \ \Psi_{j,k_2}^{(\varepsilon_2)}(y) \ \Psi_{j,k_3}^{(\varepsilon_3)}(z)$$

A FAST WAVELET TRANSFORM

j	<i>I</i> 4	<i>I4L</i> 2	I4L4	<i>I</i> 8
5	$2.9 \ 10^{-3}$	$4.2 \ 10^{-3}$	6. 10 ⁻³	$3.7 \ 10^{-3}$
6	$7.48 \ 10^{-2}$	$8.82 \ 10^{-2}$.109	$8.81 \ 10^{-2}$
7	.728	.8791	1.0998	.8747
8	6.48	7.71	9.6	7.82

Mean time (sec) for a forward+backward wavelet transform, on a Pentium III 1.39 GHz.

Cut on z = .5 of the 4order Daubechies wavelet $\Psi_{5,16}^{(1,1,1)}$, and the z = 0cut of its discrete Fourier transform.

EXEMPLE OF A DECOMPOSITION IN A WAVELET BASIS

A step of the forward wavelet transform applied to the *H*2 density. Isosurface $4.810^{-2} a.u.$

ALGORITHM

Mathematical formulation of DFT Algorithm

3D periodic biorthogonal Multi-Resolution Analysis

Numerical experiments

INTRODUCTION

- The system is composed by the *M* nuclei $\{Z_I, R_I\}_{1 \le I \le M}$ of a *molecule*: potentials and orbitals decay at infinity, and there are zero outside an open $\Omega =]0, L[^3]$.
- Let $(\mathbb{R}\setminus L\mathbb{Z})^3$ be a torus of \mathbb{R}^3 ; we consider functions *L*-periodic in the three dimensions. We thus define:

 $\forall X, Y, Z \in (\mathbb{R} \setminus L\mathbb{Z})^3, f(X, Y, Z) = f(Lx, Ly, Lz) = {}^L f(x, y, z), \ x, y, z \in \mathbb{T}$

We use two projections of
$${}^{L}f \in L^{2}(\mathbb{T})$$
 on MRA:

The first t_1 , is orthogonal; we note it $\left\{ \Phi_{J,\mathbf{k}}, \widetilde{\Phi}_{J,\mathbf{k}} \right\}_{\mathbf{k} \in \Omega_I}$.

The second one t_2 , is biorthogonal, interpolating (or lifted); we note it $\left\{\theta_{J,\mathbf{k}}, \widetilde{\theta}_{J,\mathbf{k}}\right\}_{\mathbf{k}\in\Omega_J}$. The collocation basis is noted $\Theta_J^{\sharp} = \left\{\theta_{J,\mathbf{k}}^{\sharp}\right\}_{\mathbf{k}\in\Omega_J}$.

HAM HAMILTONIAN CONSTRUCTION

 \implies We get ${}^{L}V^{t_2}$, ${}^{L}V^{t_2}_{xc}$ with there analytic forms.

 \implies The resolution of Poisson equation to determine ${}^{L}V_{c}^{t_{2}}$ is made by a collocation method, or a Petrov-Galerkin method. In (GC 2003), we use either the preconditionning property of the lifted stiffness matrix, or a solver combining wavelets and multigrid.

 \implies At the end of this step, we thus get:

$$orall \mathbf{r} \in \mathbb{T}, \quad {}^{L}V_{ks}^{t_{2}}(\mathbf{r}) = \sum_{\mathbf{k}\in\Omega_{J}} {}^{L}V_{ks}(\mathbf{k}/2^{J}) \; \mathbf{\theta}_{J,\mathbf{k}}^{\sharp}(\mathbf{r})$$

and $\mathcal{H}[{}^{L}\widetilde{\mathbf{\rho}}^{k}] = -\frac{1}{2L^{2}}\Delta + {}^{L}V_{ks}^{t_{2}}(\mathbf{r})$

GAL GALERKIN FORMULATION

Let ${}^L \psi_i^J = \sum_{\mathbf{k} \in \Omega_J} c_{J,\mathbf{k}}^i \Phi_{J,\mathbf{k}}$ for i = 1, occ, and $C_J^i = \{c_{J,\mathbf{k}}^i\}_{\mathbf{k} \in \Omega_J}$. At

iteration k, the linear system is thus:

$$\mathbb{H}_{J}^{k} C_{J}^{i} = \varepsilon_{i} C_{J}^{i},$$

$$\begin{bmatrix} \mathbb{A}^{J} + \mathbb{B}^{k,J} \end{bmatrix} C_{J}^{i} = \varepsilon_{i} C_{J}^{i},$$

$$\mathbb{A}_{\mathbf{k},\mathbf{k}'}^{J} = \frac{1}{2L^{2}} \int_{\Omega_{1}} \nabla \Phi_{J,\mathbf{k}}(\mathbf{r}) \nabla \Phi_{J,\mathbf{k}'}(\mathbf{r}) d\mathbf{r}$$

$$\mathbb{B}_{\mathbf{k},\mathbf{k}'}^{k,J} = L^{3} \int_{\Omega_{1}} \Phi_{J,\mathbf{k}}(\mathbf{r}) {}^{L} V_{ks}^{t_{2}}(\mathbf{r}) \Phi_{J,\mathbf{k}'}(\mathbf{r}) d\mathbf{r}$$

$$= L^{3} \sum_{\mathbf{k}\in\Omega_{J}}^{L} V_{ks}(\mathbf{k}/2^{J}) \underbrace{\int_{\Omega_{1}} \Phi_{J,\mathbf{k}}(\mathbf{r}) \theta_{J,\mathbf{k}}^{\sharp} \Phi_{J,\mathbf{k}'}(\mathbf{r}) d\mathbf{r},$$
Connection coefficient

⇒ (B 92, SP 94, DM 93), (F 97 2000, M 96)

Solving the Self-Consistent Model

GAL GALERKIN FORMULATION II

1. From $\mathbb{V}_J^{t_1}$ to $\mathbb{V}_J^{t_2}$ and then from $\mathbb{V}_J^{t_2}$ to $\mathbb{V}_J^{t_1}$

$${}^{L}V_{ks}^{t_{2}} {}^{L}\Psi_{i}^{J} = \sum_{\mathbf{k}\in\Omega_{J}} {}^{L}V_{ks}(\mathbf{k}/2^{J}) {}^{L}\Psi_{i}^{J}(\mathbf{k}/2^{J}) \theta_{J,\mathbf{k}}^{\sharp},$$

$$< {}^{L}V_{ks}^{t_{2}} {}^{L}\Psi_{i}^{J} | \Phi_{J,\mathbf{k}'} > = 2^{-3J/2} \sum_{\mathbf{k}\in\Omega_{J}} {}^{L}V_{ks}(\mathbf{k}/2^{J}) {}^{L}\Psi_{i}^{J}(\mathbf{k}/2^{J}) \int_{\Omega_{1}} \theta_{J,\mathbf{k}'} \Phi_{J,\mathbf{k}}$$

So $\mathbb{B}^{k,J}$ is approximated by the operator:

$$\mathbb{B}^{k,J} = L^3 D_J^{-1} Z ^L V_{ks}^{t_2} D_J X$$

where $D_J = 2^{3J/2} I$ and thus the application of $\mathbb{B}^{k,J}$ to C_J^i costs $(2d + d') \times 2^{3J}$ operations.

2. From $\mathbb{V}_{J}^{t_{1}}$ to $\widetilde{\mathbb{V}}_{J}^{t_{2}}$ and then from $\widetilde{\mathbb{V}}_{J}^{t_{2}}$ to $\mathbb{V}_{J}^{t_{1}}$ The operator $\mathbb{B}^{k,J}$ is approximated by: $\mathbb{B}^{k,J} = L^{3}D_{J} X^{T} {}^{L}V_{ks}^{t_{2}} D_{J}^{-1} Z^{T}$

DIAG DIAGONALISATION PROCEDURE

Implicit Restart Arnoldi Method (S 92, S 96, LSY 97). ARPACK library.

 \implies Lanczos method in case of symmetric matrice.

We calculate not only *occ* occupied Ritz values, but also *nv* additionnal eigenvalues, and the corresponding virtual orbitals:

 $\rho = 2\sum_{i=1}^{n} n_i |\Psi_i|^2$ or $\rho = 2\sum_{i=1}^{n} n_i |\Psi_i|^2$, with $n_i = 0$, i = occ + 1, nv350∟ 300 # Matrix/vector product vs number of eigenvalues, 250 for a given Hamiltonien. 200 For the helium pseudopotential, occ = 1, k = 1. nv vs matrix vector product. Krylov space dimen-150 sion is 50, resolution is 128^3 . t_1 is Daubechies 6, 100 and t_2 is 8-supported interpolating family. 50 18 20 8 10 12 16 2 4 6 14

EN EVALUATION OF ENERGIES

An eigenvalue should be calculated as follows:

$$\varepsilon_i^{k+1} = \frac{1}{2L^2} \int_{\Omega_1} |\nabla^L \psi_i^{k+1}|^2 + L^3 \int_{\Omega_1} {}^L V_{ks}^{t_2}(\mathbf{r}) | {}^L \psi_i^{k+1} |^2(\mathbf{r}) d\mathbf{r}$$

 \implies Evaluation of one-orbital density on t_2 , and then we get directly the potential energy. (costs $(d+2)2^{3J}$ operations.)

 \implies A finer resolution should be used to make the square of ${}^{L}\psi_{i}^{k+1}$. This involves a scheme like: $\mathbb{V}_{J}^{t_{1}} \longrightarrow \mathbb{V}_{J+\ell}^{t_{2}}$

 \implies In the next part, numerical tests for this evaluation.

$$\begin{split} \mathcal{E}[\ ^{L}\widetilde{\rho}^{k}] &= \\ 2\sum_{i=1}^{occ} n_{i} \ \varepsilon_{i}^{k+1} - \frac{L^{3}}{2} \int_{\Omega_{1}} \ ^{L}V_{c}[\ ^{L}\widetilde{\rho}^{k}] \ \rho^{k+1} - L^{3} \int_{\Omega_{1}} \ ^{L}V_{xc}[\ ^{L}\widetilde{\rho}^{k}] \rho^{k+1} + \mathcal{E}_{xc}[\ ^{L}\widetilde{\rho}^{k}] \\ \text{Once we get } \ ^{L}\psi_{i}^{k+1} \ \text{on } t_{2}, \text{ we get } \rho^{k+1} \ \text{on } t_{2}. \text{ This step costs} \\ (occ \times d + 1)2^{3J} \text{ operations. The calculation of } \mathcal{E} \text{ is thus linear.} \end{split}$$

CVG CONVERGENCE

From an input $\widetilde{\rho}^k$ at iteration k, we get a new density ρ^{k+1} .

- The output ρ^{k+1} is contructed with the $\{\psi_i^{k+1}\}$ by following the Aufbau principle.
- If $||\rho^{k+1} \widetilde{\rho}^k||_{\ell_2} \leq \tau$, then the algorithm has converged.
- Else, the simplest construction of a new input $\tilde{\rho}^{k+1}$ is to take the last output, i.e. $\tilde{\rho}^{k+1} = \rho^{k+1}$. This algorithm, called the Roothaan algorithm, is the simplest way to minimize the total energy.
- It was proved that Roothaan's algorithm gives not always a unique fixed-point. In DIIS, or ODA, one can construct a new input density $\tilde{\rho}^{k+1}$ so that the global energy \mathcal{E}_{KS} is minimized along the sequence of $\tilde{\rho}^k$.

Mathematical formulation of DFT Algorithm

3D periodic biorthogonal Multi-Resolution Analysis

Solving the self-consistent model

Numerical experiments

- Hydrogen atom
- Hydrogen in LDA
- 🧬 Small atoms
- Occupied and unoccupied orbitals
- Compressibility of orbitals

HYDROGEN ATOM

Linear Hamiltonian
$$\mathcal{H} = -\frac{1}{2}\Delta - \frac{1}{|\mathbf{r}|}$$

J	C2 8	D6 18	D8 18	D8 l6
32	2.410^{-2}	$4.4.10^{-2}$	$2.2.10^{-2}$	$1.8.10^{-2}$
64	$3.6.10^{-3}$	$6.8.10^{-3}$	3.10^{-3}	$2.6.10^{-3}$
128	4.10^{-4}	8.10^{-4}	4.10^{-4}	2.10^{-4}

Cinetic energy for the hydrogen wave function. *J* is the resolution, *C*2*I*8 means $t_1 = C2$ and $t_2 = I8$, that is 2--order Coiflet and 4-order interpolet. L = 10Bohr.

	C2I8	D618	D818	D8I6
32	$1.4.10^{-3}$	$6.4.10^{-3}$	$1.4.10^{-2}$	$1.5.10^{-2}$
64	1.10^{-2}	8.10^{-3}	4.10^{-3}	8.10^{-3}

Error in the evaluation of ground state of Hydrogen, by IRAM procedure. L = 10Bohr.

Numerical experiments

HYDROGEN ATOM

1. From
$$\mathbb{V}_J^{t_1}$$
 to $\mathbb{V}_J^{t_2}$ $\{c_{J,\mathbf{k}}\}_{\mathbf{k}\in\Omega_J} \longrightarrow \{r_{J,p}\}_{p\in\Omega_J} \longrightarrow E_p^J = \sum_{p\in\Omega_J} r_{J,p}^2 V(p)$

J	C2 18	D6 18	D8 18	D8 l6
32	$2.87 \ 10^{-2}$	$1.34 \ 10^{-2}$	$7.24 \ 10^{-3}$	$6.24 \ 10^{-3}$
64	$1.80 \ 10^{-3}$	$2.74 \ 10^{-3}$	$1.06 \ 10^{-4}$	$4.63 \ 10^{-5}$
128	$8.95 \ 10^{-5}$	$1.15 \ 10^{-3}$	$4.12 \ 10^{-5}$	$4.32 \ 10^{-5}$

Potential energy approximation with the first method

2. From $\mathbb{V}_J^{t_1}$ to $\mathbb{V}_J^{t_2}$ and to $\widetilde{\mathbb{V}}_J^{t_2}$

$$\{c_{J,\mathbf{k}}\}_{\mathbf{k}\in\Omega_J} \longrightarrow \{r_{J,p}\}_{p\in\Omega_J} \longrightarrow E_p^J = \sum_{p\in\Omega_J} r_{J,p} V(p) \widetilde{r}_{J,p}$$

 $\searrow \quad \{\widetilde{r}_{J,p}\}_{p\in\Omega_J} \nearrow$

J	C2 18	D6 18	D8 18	D8 l6	
32	$1.81 \ 10^{-2}$	$9.87 \ 10^{-3}$	$7.24 \ 10^{-3}$	$5.86 \ 10^{-3}$	
64	$1.16 \ 10^{-3}$	$1.21 \ 10^{-3}$	$3.16 \ 10^{-4}$	$2.28 \ 10^{-4}$	
128	$4.83 \ 10^{-5}$	$5.81 \ 10^{-4}$	$1.66 \ 10^{-5}$	$1.96 \ 10^{-4}$	
Potential energy approximation with the second method					

HYDROGEN IN LDA - COMPARISON WITH CPMD

	D616	D8I6	D618	D818	C2I8
32^{3}	-0.4711	-0.4703	-0.4856	-0.4773	-0.4731
64 ³	-0.5002	-0.5007	-0.5002	-0.5007	-0.5012

Ground state for hydrogen in DFT-LDA approximation, L = 7a.u..

	#ψ	#ρ	\mathcal{E}_{pw}	$\mathcal{E}_{lanczos}$
32 ³	1052	8188	-0.4759	-0.4773
48 ³	2872	23149	-0.4774	-0.4786
64 ³	8188	65578	-0.4777	-0.4787
90 ³	23149	185147	-0.4777	-0.4789

CPMD

SMALL ATOMS

	Hydrogène (H)	Hélium (He)	Lithium (Li)	Néon (Ne)
N	1	2	3	10
n _i	(1/2,0)	(1,0)	(1,1/2)	(1,1,3)
£ (H)	5	-2.90	-7.48	-128.94

Experimental values for some atoms, en Hartree.

Élement Résolution		Occupation	L	E_{tot}
Hélium	128 ³	(1,0)	9	-4.78
Lithium	64 ³	(1,1/2)	10	-11.85
Bérylium	128 ³	(1,1)	15	-22.49
Néon	64 ³	(1,1,1,1,1)	20	-143.00

Our evaluations

For Helium pseudopotential; Z = 2, $n_1 = 1$, occ = 1, nv = 29, J = 7, L = 30 *Bohr*. The first orbitals appear in the good order, degeneracy and symmetries. Orbitales are almost antisymmetric.

For Helium pseudopotential; Z = 2, $n_1 = 1$, occ = 1, nv = 29, J = 7. Higher energy orbitals do not have the symmetries expected. Here are the 11, 16 and 27 orbitals.

 $n_1 = n_2 = 1/2$, helium pseudopotential. Isosurface of $\pm 0.002a.u.$. Energies of these states, respectively -0.203, -0.202, -0.200, -0.191, -0.191 *H*. The first orbitals have not symetries. But higher energy orbitals satisfy degeneracy order and symetries of a real state. Here is the example of the 22 - 26th orbitals, corresponding to 4d-orbitals.

z_y

COMPRESSIBILITY OF ORBITALS

When the program converges, we get $\{ e^f_i, {}^L \psi^f_i \}_{i=1,...,occ}$,

Applying a wavelet transform:

$$\begin{split} \mathbb{P}_{J}^{t_{1} \ L} \Psi_{i}^{f} = & L \Psi_{i}^{J} = \sum_{\mathbf{k} \in \Omega_{j_{0}}} c_{j_{0}, \mathbf{k}}^{i} \Phi_{J, \mathbf{k}} + \sum_{\epsilon \in \{0, 1\}^{3} \setminus \{(\mathbf{0})\}} \sum_{j=j_{0}}^{J-1} \sum_{\mathbf{k} \in \Omega_{j}} d_{j, \mathbf{k}}^{i, \epsilon} \Psi_{j, \mathbf{k}}^{(\epsilon)} \\ \text{and defining new sets } \widetilde{\Omega}_{j}, \ j_{0} < j < J \text{ with thresholding } \tau: \\ \widetilde{\Omega}_{j} = \left\{ \mathbf{k} \in \Omega_{j}, \ |d_{j, \mathbf{k}}^{\epsilon}| \ge \tau \right\} \end{split}$$

We then make an inverse wavelet transform of the compressed function. We get a behaviour like $\| \psi_i^J - \widetilde{\psi}_i^{\tau} \|_2 \sim CN^{-\alpha}$

	1	2	3	4	5
64 ³	-2	-1.36	-1.36	-1.36	-1.55
128 ³	-1.74	-1.43	-1.36	-1.36	-1.36

Coefficient α for the five first virtual orbitals of Helium atom.

COMPRESSIBILITY OF ORBITALS

τ	compression	#Ψ _i	e _c	e_p
1.210^{-7}	86%	36700	0.210^{-7}	0.310^{-8}
6.6210^{-6}	97%	7864	0.610^{-5}	0.810^{-7}
1.4610^{-4}	99%	2621	0.610^{-3}	0.310^{-4}

J = 6. Compressibility of the first orbital of Helium, and impact on Kinetic and Potential energies

Behaviour of the different energies: $|e_c(\Psi_1^J) - e_c(\widetilde{\Psi}_1^{\tau})|_r \sim CN^{-\beta}$, $|e_p(\Psi_1^J) - e_p(\widetilde{\Psi}_1^{\tau})|_r \sim CN^{-\beta'}$, Idem for e_{xc} , v_{xc} and $e_{cou\ell} \gamma$, γ' and ν .

Cinetic and Potential Energy Slopes for the helium	i	1	2	3	4	5
orbital. SCF resolution with $J = 7$, and $t_1 = D8$, $t_2 =$	β	-2.86	-2.38	-1.98	-1.92	-2.05
<i>I</i> 8.	β'	-3.86	-2.81	-2.61	-2.68	-2.65

COMPRESSIBILITY OF ORBITALS: IMPACT ON ENERGIES

		e _c	e_p	\mathcal{E}_{xc}	E_{xc}	e_{coul}
	t_1	β	β′	γ	γ'	ν
64 ³	d6	-1.93	-2.51	-2.19	-2.18	-2.91
64 ³	d8	-2.55	-2.96	-1.7	-1.7	-2.4
64 ³	d10	-2.9	-3.35	-1.5	-1.5	-2.5
128 ³	d6	-1.45	-2.18	-2.18	-2.18	-2.18
128 ³	d8	-2.12	-2.90	-1.91	-1.91	-2.15
128 ³	d10	-2.62	-3.33	-2.26	-2.26	-2.52

Slopes of the lines on log/log scales (# ρ vs relative error of energy), for different Daubechies's orders. SCF calculation for the hydrogen atom in LDA approximation. $J = 7, L = 7, t_2 = I8$.

RESULTS - FORECASTS

- A mathematical formulation of the Density-Functional Theory
- A method for the interpolation problem.
- **Two methods to solve Poisson equation.**
- A solver for Kohn-Sham equations in LDA-approximation.

⇒ Perform this solver on a regular basis to describe more precisely physical experiments (pseudopotential - exchange-correlation term).

 \implies Functionnal analysis in DFT: proof of existence of discrete eigenvalues for the linearized hamiltonien, and criteria on V_{xc} for self-consistent convergence (in progress).

 \implies Towards an adaptive method: analysis of the potential operator compressibility, a first solver with orbitals in wavelet basis.