Les ondelettes comme fonctions de base dans le calcul de structures électroniques

Claire Chauvin

CEA/LSim, IMAG/LMC

14 novembre 2005

Les ondelettes comme fonctions de base dans le calcul de structures électroniques

Claire Chauvin

CEA/LSim, IMAG/LMC

14 novembre 2005

Claire Chauvin (CEA/LSim, IMAG/LMC)

Les ondelettes dans une méthode ab initio

État fondamental d'un système atomique

- Théorie de la Fonctionnelle de la Densité
- Détermination des opérateurs potentiels
- Algorithme de résolution
- Méthodes ab initio

Mise en œuvre de la méthode

- Fonctions de base
- Méthode de construction de la matrice de rigidité
- Tests de la méthode pour des hamiltoniens linéaires

Tests numériques et analyse de la méthode

- Orbitales de l'atome d'hélium
- Analyse de la compressibilité des orbitales
- Convergence de l'algorithme

1 Théorie de la Fonctionnelle de la Densité

Hohenberg et Kohn, 64; Kohn et Sham, 65

On se donne:

- *M* noyaux atomiques $\{Z_{\alpha}, R_{\alpha}\}_{1 \leq \alpha \leq M}$ fixés dans \mathbb{R}^3 .
- 2N électrons, occupant No niveaux d'énergie.
- À chaque niveau d'énergie *i*, on associe:
 - un nombre d'occupation n_i , avec $0 \le n_i \le 1$ pour $i = 1, ..., N_o$, et $n_i = 0$, $\forall i > N_o$.
 - une orbitale ψ_i , telle que $\psi_i \in H^1(\mathbb{R}^3)$, et $\langle \psi_i, \psi_j \rangle = \delta_{i,j}, \forall i, j = 1, ..., N$.

Problème

Calculer l'énergie fondamentale E du système et la densité électronique p:

$$\rho(\mathbf{r}) = 2\sum_{i=1}^{N} n_i |\psi_i|^2(\mathbf{r}), \quad \forall \mathbf{r} \in \mathbb{R}^3.$$

1 Théorie de la Fonctionnelle de la Densité

Hohenberg et Kohn, 64; Kohn et Sham, 65

Définition

L'opérateur densité D :
$$f \to Df = \sum_{i=1}^{N} n_i < \psi_i, f > \psi_i$$
.
La trace $Tr(\pi)$ d'un opérateur π : $Tr(\pi) = \sum_{i=1}^{N} < \psi_i, \pi \ \psi_i > 0$

Problème

Soit
$$P = \left\{ D, D^2 \leqslant D, Tr(D) = N \right\}$$
.

 $\begin{array}{l} \textit{Trouver } D \in P \textit{ qui minimise:} \\ E(D) = 2 \textit{Tr}(\textit{HD}) + \textit{Tr}(\textit{V}_{C}(D)D) + \textit{E}_{\textit{xc}}(D) \textit{ , avec } \textit{H} = -\frac{1}{2}\Delta + \textit{V}. \end{array} \end{array}$

1. Détermination des opérateurs potentiels

Potentiel d'interaction avec les noyaux

• *V* est le potentiel d'interaction d'une orbitale avec les noyaux:

$$V(\mathbf{r}) = -\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{|R_{\alpha} - \mathbf{r}|}.$$

• Utilisation de pseudo-potentiels:

$$\begin{aligned} V_{loc}(\mathbf{r}) &= -\frac{Z_{\alpha}}{|\mathbf{r}|} \operatorname{erf}\left(\frac{|\mathbf{r}|}{\sqrt{2}r_{loc}}\right) \\ &+ \operatorname{e}^{-\frac{1}{2}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{2}} \left(C_{1} + C_{2}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{2} + C_{3}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{4} + C_{4}\left(\frac{|\mathbf{r}|}{r_{loc}}\right)^{6}\right) \end{aligned}$$

1. Détermination des opérateurs potentiels Potentiel de Hartree

• V_C est le potentiel coulombien ou potentiel de Hartree:

$$V_{C}(D)(\mathbf{r}) = V_{C}[\rho](\mathbf{r}) = \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}',$$

$$\rho = 2\sum_{i=1}^{N} n_{i} |\psi_{i}|^{2}.$$

• Calcul direct ou par résolution de l'équation de Poisson:

$$-\Delta V_C = 4\pi \rho \text{ sur } \mathbb{R}^3.$$

1. Détermination des opérateurs potentiels

Potentiel d'échange-corrélation

- Énergie d'échange-corrélation: $E_{xc}(D) = E_{xc}[\rho]$.
 - Approximation Locale de la Densité (LDA): E_{xc} s'exprime à l'aide de ε_{xc} , énergie d'une particule d'un gaz d'électrons uniforme (*Slater51*):

$$\textit{E}_{\textit{xc}}[\rho] = \int_{\mathbb{R}^3} \epsilon_{\textit{xc}}[\rho](\textbf{r})\rho(\textbf{r})\textit{d}\textbf{r}.$$

► Formule de quadrature et approximants de Padé (Hartwigsen et al. 92):

$$\begin{aligned} \forall \rho(\mathbf{r}) > 0, \quad r_{s} &= (\frac{3}{4\pi})^{1/3} \rho(\mathbf{r})^{-1/3}, \\ \epsilon_{xc}[\rho(\mathbf{r})] &= -\frac{a_{0} + a_{1} r_{s} + a_{2} r_{s}^{2} + a_{3} r_{s}^{3}}{b_{1} r_{s} + b_{2} r_{s}^{2} + b_{3} r_{s}^{3} + b_{4} r_{s}^{4}}. \end{aligned}$$

 \implies Nécessite des fonctions de base interpolantes.

• Potentiel d'échange-corrélation V_{xc}.

$$V_{xc}[\rho] = \varepsilon_{xc}[\rho] + \rho \; \frac{\partial \varepsilon_{xc}}{\partial \rho}.$$

Soit
$$P = \{D, D^2 \leq D, Tr(D) = N\}$$
.

$$\begin{array}{l} \textit{Trouver } D \in P \textit{ qui minimise:} \\ E(D) = 2 \textit{Tr}(\textit{HD}) + \textit{Tr}(\textit{V}_{C}(D)D) + \textit{E}_{\textit{xc}}(D) \textit{ , avec } \textit{H} = -\frac{1}{2}\Delta + \textit{V}. \end{array}$$

• Opérateur de Fock $F(D) = H + V_C(D) + V_{xc}(D) = -\frac{1}{2}\Delta + V + V_C(D) + V_{xc}(D).$

Équations de Kohn et Sham:

$$F(D)\psi_i = \varepsilon_i \psi_i, \forall i = 1, ..., N.$$

Soit
$$P = \{D, D^2 \leq D, Tr(D) = N\}$$
.

$$\begin{array}{l} \textit{Trouver } D \in P \textit{ qui minimise:} \\ E(D) = 2 \textit{Tr}(\textit{HD}) + \textit{Tr}(\textit{V}_{C}(D)D) + \textit{E}_{\textit{xc}}(D) \textit{ , avec } \textit{H} = -\frac{1}{2}\Delta + \textit{V}. \end{array}$$

- Opérateur de Fock $F(D) = H + V_C(D) + V_{xc}(D) = -\frac{1}{2}\Delta + V + V_C(D) + V_{xc}(D).$
- Équations de Kohn et Sham:

$$F(D)\psi_i = \varepsilon_i \psi_i, \forall i = 1, \dots, N.$$

Algorithme autocohérent:

$$\widetilde{D}^n \longrightarrow \widetilde{F}_n = F(\widetilde{D}^n) \qquad D^{n+1}$$

Soit
$$P = \{D, D^2 \leq D, Tr(D) = N\}$$
.

Trouver
$$D \in P$$
 qui minimise:
 $E(D) = 2 \operatorname{Tr}(HD) + \operatorname{Tr}(V_C(D)D) + E_{xc}(D)$, avec $H = -\frac{1}{2}\Delta + V$.

- Opérateur de Fock $F(D) = H + V_C(D) + V_{xc}(D) = -\frac{1}{2}\Delta + V + V_C(D) + V_{xc}(D).$
- Équations de Kohn et Sham:

$$\frac{F(D)\psi_i = \varepsilon_i \,\psi_i, \,\forall \, i = 1, \dots, N.}{\text{rent:}}$$

Algorithme autocohérent:

$$\widetilde{D}^n \longrightarrow \widetilde{F}_n = F(\widetilde{D}^n) \xrightarrow{\text{Diag+Aufbau}} D^{n+1}$$

Soit
$$P = \{D, D^2 \leqslant D, Tr(D) = N\}$$
.

Trouver
$$D \in P$$
 qui minimise:
 $E(D) = 2 \operatorname{Tr}(HD) + \operatorname{Tr}(V_C(D)D) + E_{xc}(D)$, avec $H = -\frac{1}{2}\Delta + V$.

- Opérateur de Fock $F(D) = H + V_C(D) + V_{xc}(D) = -\frac{1}{2}\Delta + V + V_C(D) + V_{xc}(D).$
- Équations de Kohn et Sham:

$$F(D)\psi_i = \varepsilon_i \psi_i, \forall i = 1, \dots, N.$$

Algorithme autocohérent:

$$\widetilde{D}_{t}^{n} \longrightarrow \widetilde{F}_{n} = F(\widetilde{D}^{n}) \xrightarrow{\text{Diag+Autbau}} D^{n+1}$$

Itération autocohérente

1. Algorithme de résolution Résolution des équations de Kohn et Sham

Pour D
ⁿ fixé, calcul des N valeurs propres les plus basses ε_iⁿ⁺¹, et des vecteurs propres associés ψ_iⁿ⁺¹ :

$$F(\widetilde{D}^{n}) \psi_{i}^{n+1} = \varepsilon_{i}^{n+1} \psi_{i}^{n+1}, \qquad \forall i = 1, \dots, N$$

$$\bullet \text{ Principe Aufbau:} \left\{ \begin{array}{l} n_{i} = 1, \quad \forall i = 1, \dots, \mu, \\ n_{i} \leq 1, \quad \forall i = \mu+1, \dots, N_{o}, \\ n_{i} = 0, \quad \forall i > N_{o}. \end{array} \right.$$

$$\Longrightarrow \text{ On forme } D^{n+1} = \sum_{i=1}^{N} n_{i} < \psi_{i}^{n+1}, ... > \psi_{i}^{n+1}.$$

• On calcule l'énergie totale selon:

$$E^{n} = 2\sum_{i=1}^{N} n_{i} \varepsilon_{i}^{n+1} - \frac{1}{2} \operatorname{Tr}(V_{C}(\widetilde{D}^{n})D^{n+1}) - \operatorname{Tr}(V_{xc}(\widetilde{D}^{n})D^{n+1}) + E_{xc}(D^{n+1}).$$

1. Algorithme de résolution

Détermination de la densité comme un point fixe

$$\widetilde{D}^{n} \longrightarrow \widetilde{F}_{n} = F(\widetilde{D}^{n}) \xrightarrow{\text{Diag+Aufbau}} D^{n+1}$$

Itération autocohérente

• Le plus simple est l'algorithme de Roothaan:

$$\widetilde{D}^{n+1} = D^{n+1}$$

- Convergence de l'algorithme (*Cancès 01*):
 - Soit vers un point fixe *D^f*; le minimum de *E* est atteint.
 - ► Soit vers un cycle limite (D^{2f}, D^{2f+1}). Le minimum de E n'est atteint pour aucun de ces points.
- D'autres méthodes donnent des résultats de convergence, inconditionnelle ou rapide.

1. Algorithme de résolution

Algorithme autocohérent

伺い イヨト イヨト

1. Méthodes ab initio

Méthodes existantes

Résoudre un problème approché en cherchant:

$$\Psi_i = \sum_k c_k^i \phi_k, \quad \forall i = 1, \dots, N$$

- Orbitales de type Slater ou Gaussiennes (GAUSSIAN, Davidson et Feller 86, Slater 93): $\phi_{L,\alpha}^{G}(\mathbf{r}) = C x^{\ell} y^{m} z^{n} e^{-\alpha |\mathbf{r}|^{2}}, L = \ell + m + n$
 - Symétries, Comportement en 0 et en +∞.
 - Familles non libres, calculs complexes (STO).
- Ondes planes transformées de Fourier (CPMD, ab init, VASP):
 - Pas d'adaptativité possible: création des pseudopotentiels.
- Bases mixtes (WIEN):
 - Décomposition de domaine, ou non.
 - \implies Pas de base systématique.

1. Méthodes ab initio

Utilisation de bases d'ondelettes

- Fischer et Desfranceschi (1993).
 - Équation radiale. Transformées en ondelettes discrète et continue (Daubechies, BCR).
- Wei et Chou (1996), Tymcak et Wang (1997).
 - Daubechies dans DFT.
- Cho, Arias et al. (1993). Lippert, Arias et al. (1998).
 - Ondelettes interpolantes dans la DFT.
- Flad, Hackbush et al. (2003-2004).
 - Ondelettes hyperboliques dans l'approximation de Hartree-Fock.
- Harrison, Fann et al. (2003-2004).
 - Multiwavelets, système résolu sous forme intégrale.

⇒ Base adaptée au problème d'interpolation, complexité linéaire pour appliquer l'opérateur hamiltonien, stratégie adaptative.

État fondamental d'un système atomique

- Théorie de la Fonctionnelle de la Densité
- Détermination des opérateurs potentiels
- Algorithme de résolution
- Méthodes ab initio

Mise en œuvre de la méthode

- Fonctions de base
- Méthode de construction de la matrice de rigidité
- Tests de la méthode pour des hamiltoniens linéaires

Tests numériques et analyse de la méthode

- Orbitales de l'atome d'hélium
- Analyse de la compressibilité des orbitales
- Convergence de l'algorithme

2. Fonctions de base

Analyse multirésolution biorthogonale de $L^2(\mathbb{R})$

AMR de $L^2(\mathbb{R})$: $\{V_j\}_{j\in\mathbb{Z}}$, $\{\widetilde{V}_j\}_{j\in\mathbb{Z}}$ $\forall f \in L^2(\mathbb{R}), P_j f = \sum_{k\in\mathbb{Z}} \langle f, \widetilde{\phi}_{j,k} \rangle |\phi_{j,k}|$. Fonction d'échelle: $\phi_{j,k} = 2^{j/2} \phi(2^j - k).$ Biorthogonalité: $\langle \phi_{j,k}, \tilde{\phi}_{j,k'} \rangle = \delta_{k,k'}.$

Ondelettes
$$\psi_{j,k} \in W_j$$
, $V_{j+1} = V_j \oplus W_j$, et $\widetilde{\psi}_{j,k} \in \widetilde{W}_j$, $\widetilde{V}_{j+1} = \widetilde{V}_j \oplus \widetilde{W}_j$.

$$\forall f \in L^2(\mathbb{R}), f = \sum_{k \in \mathbb{Z}} \langle f, \widetilde{\phi}_{j_0,k} \rangle \phi_{j_0,k} + \sum_{j \ge j_0}^{+\infty} \sum_{k \in \mathbb{Z}} \langle f, \widetilde{\psi}_{j,k} \rangle \psi_{j,k}.$$

• Approximation linéaire: si $f \in H^s$ alors $\varepsilon_i = O(2^{-sj})$,

• non linéaire: si $f \in B_{\tau}^{s,\tau}$ alors $\sigma_N(f) = O(N^{-s})$.

Condition: $\widetilde{\psi}_{j,k}$ a $m \ge s$ moments nuls: $\int_{\mathbb{R}} x^k \widetilde{\psi}_{j,k}(x) dx = 0, \quad k = 0, \dots, m-1.$

2. Fonctions de base

Ondelettes orthogonales et interpolantes

Fonctions d'échelle θ

- Orthogonal=V_j^{t1} de base {φ_{j,k}}_{k∈ℤ}.
 L'ondelette associée ψ_{j,k} possède m₁ moments nuls.
- Biorthogonal= V_j^{t₂} engendrée par θ_{j,k}, ondelette ζ_{j,k}.
 - θ fonction d'échelle interpolante de Deslaurier-Dubuc.
 - Pour $\tilde{\Theta}_{0,k} = \delta_k$, $\zeta_{j,k}$ possède m_2 moments nuls:

$$\forall f \in \mathbf{C}^{\mathbf{0}}, \ I_{j}f = \sum_{k \in \mathbb{Z}} c_{j,k} \ \theta_{j,k} = \sum_{k \in \mathbb{Z}} f(k/2^{j}) \theta(2^{j} - k).$$

Famille de Daubechies avec m = 4.

2. Fonctions de base AMR sur le tore $L^2(\mathbb{R}/\mathbb{Z})$

- Tore $T = \mathbb{R}/\mathbb{Z}$.
- Périodisation en 1D de $u \in L^2(\mathbb{R})$:

$$\forall x \in \mathbb{R}, \quad \check{u}(x) = \sum_{l \in \mathbb{Z}} u(x+l)$$

► AMR biorthogonales { V
_j, V
_j} de L²(T) engendrées par {
[↓]_{j,k}}_{k=0,2^j-1} et { [↓]_{j,k}}_{k=0,2^j-1}.

$$\Rightarrow$$
 $V_0 = \{cst\}$ et dim $\check{V}_j = dim \ \widetilde{\check{V}}_j = dim \ \check{W}_j = dim \ \check{\widetilde{W}}_j = 2^j$.

 \Rightarrow Transformée en ondelettes: une suite de convolutions périodiques.

2. Fonctions de base AMR sur le tore $L^2(\mathbb{T})$

• Tore
$$\mathbb{T} = T^3 = (\mathbb{R}/\mathbb{Z})^3$$
.

• Produit tensoriel isotrope de $\{\check{V}_j,\check{\widetilde{V}}_j\}\in L^2(T)$:

$$\mathbb{V}_J(\mathbb{T}) = \check{V}_J \otimes \check{V}_J \otimes \check{V}_J.$$

• Élément de base de \mathbb{V}_J :

$$\Phi_{J,\mathbf{k}}(\mathbf{r}) = \check{\phi}_{J,k_1}(x) \ \check{\phi}_{J,k_2}(y) \ \check{\phi}_{J,k_3}(z), \quad \forall \mathbf{k} \in \Omega_J$$

• 7 ondelettes: avec $\psi^{(0)} = \phi$ et $\psi^{(1)} = \psi$:

$$\boldsymbol{\epsilon} = \{0,1\}^3 \backslash \{(\boldsymbol{0})\}, \quad \Psi_{J,\boldsymbol{k}}^{(\boldsymbol{\epsilon})}(\boldsymbol{r}) = \psi_{J,k_1}^{(\boldsymbol{\epsilon}_1)}(\boldsymbol{x}) \; \psi_{J,k_2}^{(\boldsymbol{\epsilon}_2)}(\boldsymbol{y}) \; \psi_{J,k_3}^{(\boldsymbol{\epsilon}_3)}(\boldsymbol{z})$$

2. Fonctions de base

Une transformée en ondelettes rapide

2. Fonctions de base

Exemple de décomposition en ondelettes

Une étape de l'analyse en ondelettes appliquée à la densité électronique du dihydrogène H_2 . Isosurface $4.810^{-2} a.u.$

État fondamental d'un système atomique

- Théorie de la Fonctionnelle de la Densité
- Détermination des opérateurs potentiels
- Algorithme de résolution
- Méthodes ab initio

Mise en œuvre de la méthode

- Fonctions de base
- Méthode de construction de la matrice de rigidité
- Tests de la méthode pour des hamiltoniens linéaires

Tests numériques et analyse de la méthode

- Orbitales de l'atome d'hélium
- Analyse de la compressibilité des orbitales
- Convergence de l'algorithme

2. Algorithme

- 2

2. Adimensionnalisation des équations

• *M* noyaux $\{Z_{\alpha}, R_{\alpha}\}_{1 \leq \alpha \leq M}$ dans $\Omega =]0, L[^3.$

 $\forall X, Y, Z \in (\mathbb{R}/L\mathbb{Z})^3, \ ^Lf(X, Y, Z) = f(Lx, Ly, Lz) = \ f(x, y, z), \ x, y, z \in \mathbb{T}$

 \implies Résolution sur $\Omega_1 =]0,1[^3.$

Projection de f sur deux types d'AMR:

► Une orthogonale t₁ {Φ_{J,k}}_{k∈Ω_J}. L'ondelette associée Ψ_{J,k} possède m₁ moments nuls ⇒ {ψ_i}_{i=1,N}

• L'autre biorthogonale t_2 , interpolante $\left\{\Theta_{J,\mathbf{k}}, \widetilde{\Theta}_{J,\mathbf{k}}\right\}_{\mathbf{k}\in\Omega_J}$. L'ondelette duale \widetilde{Z} possède m memorte pule \rightarrow potentiele.

 $Z_{J,\mathbf{k}}$ possède m_2 moments nuls \Longrightarrow potentiels

2. Adimensionnalisation des équations

• *M* noyaux $\{Z_{\alpha}, R_{\alpha}\}_{1 \leqslant \alpha \leqslant M}$ dans $\Omega =]0, L[^3.$

 $\forall X, Y, Z \in (\mathbb{R}/L\mathbb{Z})^3, \ ^Lf(X, Y, Z) = f(Lx, Ly, Lz) = \ f(x, y, z), \ x, y, z \in \mathbb{T}$

 \implies Résolution sur $\Omega_1 =]0,1[^3.$

• Projection de *f* sur deux types d'AMR:

► Une orthogonale t₁ {Φ_{J,k}}_{k∈Ω_J}. L'ondelette associée Ψ_{J,k} possède m₁ moments nuls ⇒ {ψ_i}_{i=1,N}

• L'autre biorthogonale t_2 , interpolante $\left\{\Theta_{J,\mathbf{k}}, \widetilde{\Theta}_{J,\mathbf{k}}\right\}_{\mathbf{k}\in\Omega_J}$. L'ondelette duale $\widetilde{Z}_{J,\mathbf{k}}$ possède m_2 moments nuls \Longrightarrow potentiels

 $\implies \text{Approximation de l'opérateur } F \text{ en exprimant les potentiels dans } \mathbb{V}_{J+1}^{t_2} \text{ .}$ $\implies \text{Construction de la matrice de rigidité de } F.$

2. Construction de la matrice de rigidité à l'étape *n* Hamiltonien HAM

Étape *n*: densité connue dans $\mathbb{V}_{J+1}^{t_2}$:

$$\begin{array}{lll} < \ \widetilde{\rho}^n, \ \widetilde{\Theta}_{J+1} > & = & 2^{-3J/2} \ \widetilde{\rho}^n(x_{J+1,\boldsymbol{k}}), \quad \forall \ \boldsymbol{k} \in \Omega_{J+1} \\ \\ \widetilde{\rho}^n(\boldsymbol{r}) & = & \sum_{\boldsymbol{k} \in \Omega_{J+1}} < \ \widetilde{\rho}^n, \ \widetilde{\Theta}_{J+1} > \ \Theta_{J+1,\boldsymbol{k}}(\boldsymbol{r}), \quad \forall \ \boldsymbol{r} \in \mathbb{T}. \end{array}$$

• Détermination de V_C^n dans $\mathbb{V}_{J+1}^{t_2}$ en résolvant l'équation de Poisson:

$$\begin{aligned} -\frac{1}{L^2} \Delta V_C^n &= 4\pi \, \widetilde{\rho}^n, \\ \int_{\mathbb{T}} V_C^n &= 0. \end{aligned}$$

- Algorithme itératif avec préconditionnement diagonal en base d'ondelettes.
- Algorithme combinant ondelettes et multigrille (Goedecker Chauvin 03).
- Échange-corrélation $V_{xc}^n(x_{J+1,k})$ pour tout $x_{J+1,k}$, $k \in \Omega_{J+1}$.
- Interaction avec les noyaux V (formule analytique, indépendante de n).

2. Construction de la matrice de rigidité Hamiltonien HAM

On obtient le potentiel de Kohn et Sham aux points:

$$V_{\mathsf{KS}}^n(\mathbf{x}_{J+1,\mathbf{k}}) = V(\mathbf{x}_{J+1,\mathbf{k}}) + V_{\mathsf{C}}^n(\mathbf{x}_{J+1,\mathbf{k}}) + V_{\mathbf{x}\mathsf{C}}^n(\mathbf{x}_{J+1,\mathbf{k}})$$

Puis on interpole V_{KS}^n dans $\mathbb{V}_{J+1}^{t_2}$:

$$V_{KS}^n(\mathbf{r}) = 2^{-3J/2} \sum_{\mathbf{k} \in \Omega_{J+1}} V_{KS}^n(\mathbf{x}_{J+1,\mathbf{k}}) \Theta_{J+1,\mathbf{k}}(\mathbf{r}), \quad \forall \mathbf{r} \in \mathbb{T}.$$

À la fin de HAM :

$$\boldsymbol{F}[\,\widetilde{\boldsymbol{\rho}}^n] = -\frac{1}{2L^2} \Delta + \boldsymbol{V}_{KS}^n(\mathbf{r}).$$

2. Construction de la matrice de rigidité

Discrétisation des équations de Kohn et Sham Dis

• On cherche
$$\psi_i^{n+1} = \sum_{\mathbf{k} \in \Omega_J} c_{J,\mathbf{k}}^i \Phi_{J,\mathbf{k}}$$
 pour $i = 1, \dots, N$.

- Coefficients $C^i = \{c^i_{J,\mathbf{k}}\}_{\mathbf{k}\in\Omega_J}$.
- Formulation de Galerkin :

$$\begin{split} \mathbb{H}^{n} \mathbf{C}^{i} &= \mathbf{\varepsilon}_{i}^{n+1} \mathbf{C}^{i}, \\ [\mathbb{A} + \mathbb{B}^{n}] \mathbf{C}^{i} &= \mathbf{\varepsilon}_{i}^{n+1} \mathbf{C}^{i}, \\ \mathbb{A}_{\mathbf{k},\mathbf{k}'} &= \frac{1}{2L^{2}} \int_{\mathbb{T}} \nabla \Phi_{J,\mathbf{k}}(\mathbf{r}) \nabla \Phi_{J,\mathbf{k}'}(\mathbf{r}) \, d\mathbf{r}, \\ \mathbb{B}^{n}_{\mathbf{k},\mathbf{k}'} &= \int_{\mathbb{T}} \Phi_{J,\mathbf{k}}(\mathbf{r}) \, V^{n}_{KS}(\mathbf{r}) \, \Phi_{J,\mathbf{k}'}(\mathbf{r}) \, d\mathbf{r} \\ &= 2^{-3J/2} \sum_{\mathbf{k}'' \in \Omega_{J}} V^{n}_{KS}(\mathbf{x}_{J+1,\mathbf{k}''}) \underbrace{\int_{\mathbb{T}} \Phi_{J,\mathbf{k}}(\mathbf{r}) \, \Theta_{J+1,\mathbf{k}''} \, \Phi_{J,\mathbf{k}'}(\mathbf{r}) \, d\mathbf{r}}_{Conficient de connection}. \end{split}$$

Coefficient de connection

 \implies (Beylkin 92, Sweldens Piessens 94, Dahmen Micchelli 93), (Fischer 97, 00, Modisette 96)

Claire Chauvin (CEA/LSim, IMAG/LMC)

2. Construction de la matrice de rigidité Discrétisation des équations de Kohn et Sham Dis

Définition (Opérateur de changement de base)

Soit X l'opérateur permettant de passer de $\mathbb{V}_{J}^{t_1}$ à $\mathbb{V}_{J+1}^{t_2}$:

$$X(\mathbf{k},\mathbf{k}') = \int_{\mathbb{T}} \Phi_{J,\mathbf{k}'} \ \widetilde{\Theta}_{J+1,\mathbf{k}}, \quad \forall \ \mathbf{k} \in \Omega_J, \quad \forall \ \mathbf{k}' \in \Omega_{J+1}.$$

Soit Z l'opérateur permettant de passer de $\mathbb{V}_{J+1}^{t_2}$ à $\mathbb{V}_{J}^{t_1}$:

$$Z(\mathbf{k},\mathbf{k}') = \int_{\mathbb{T}} \Theta_{J+1,\mathbf{k}'} \; \Phi_{J,\mathbf{k}}, \quad \forall \; \mathbf{k} \in \Omega_J, \quad \forall \; \mathbf{k}' \in \Omega_{J+1}.$$

Définition (Produit)

Soit \mathbb{P}^n l'opérateur qui à un ensemble de coefficients C de taille $2^{3(J+1)}$ associe le produit point par point avec V_{KS}^n :

$$(\mathbb{P}^n C)_{\mathbf{k}} = 2^{-3J/2} V_{\mathcal{KS}}^n(\mathbf{x}_{J+1,\mathbf{k}}) \ C_{\mathbf{k}}, \quad \forall \ \mathbf{k} \in \Omega_{J+1}.$$

2. Construction de la matrice de rigidité

Discrétisation des équations de Kohn et Sham Dis

On cherche une forme approchée de la matrice de rigidité.

Méthode 1:

$$^{1}\mathbb{B}^{n}=Z\mathbb{P}^{n}X.$$

Méthode 2:

$${}^{2}\mathbb{B}^{n} = Z \mathbb{P}^{n} Z^{T}$$
.

2. Tests de la méthode pour des hamiltoniens linéaires

Deux hamiltoniens pour lesquels ϵ_1, ψ_1 connus analytiquement:

Calcul de l'erreur en 3D pour l'oscillateur harmonique et l'hydrogène.

글 🕨 🚊

2. Tests de la méthode pour des hamiltoniens linéaires

- Énergie potentielle: $e_{p_1} = \frac{(C^1)^T \mathbb{B}^n C^1}{(C^1)^T C^1}$
- Méthode 1 \implies $O(2^{-J m_1})$.
- Méthode 2 \implies $O(2^{-J \min(2m_1, m_2)})$.

Oscillateur harmonique

Atout: complexité linéaire par rapport à *dim* $\mathbb{V}_{J+1}^{t_2}$ et par rapport aux supports de ϕ et θ .

Claire Chauvin (CEA/LSim, IMAG/LMC)

2. Tests de la méthode pour des hamiltoniens linéaires

- Énergie potentielle: $e_{p_1} = \frac{(C^1)^T \mathbb{B}^n C^1}{(C^1)^T C^1}$
- Méthode 1 \implies $O(2^{-J m_1})$.
- Méthode 2 \implies $O(2^{-J \min(2m_1, m_2)})$.

Hydrogène

Atout: complexité linéaire par rapport à *dim* $\mathbb{V}_{J+1}^{t_2}$ et par rapport aux supports de ϕ et θ .

Claire Chauvin (CEA/LSim, IMAG/LMC)

État fondamental d'un système atomique

- Théorie de la Fonctionnelle de la Densité
- Détermination des opérateurs potentiels
- Algorithme de résolution
- Méthodes ab initio

Mise en œuvre de la méthode

- Fonctions de base
- Méthode de construction de la matrice de rigidité
- Tests de la méthode pour des hamiltoniens linéaires

Tests numériques et analyse de la méthode

- Orbitales de l'atome d'hélium
- Analyse de la compressibilité des orbitales
- Convergence de l'algorithme

• Pour Z = 2, L = 30 Bohr, J = 7:

► Avec l'Aufbau: un état occupé $N_o = 1$, et N = 30: $n_1 = 1$. ⇒ Énergie fondamentale $E^f = -4.78 H$.

► Sans Aufbau: deux états occupés $N_0 = 2$, et N = 30: $n_1 = n_2 = \frac{1}{2}$. ⇒ Énergie fondamentale $E^f = -2.81 H$.

 $n_1 = 1$. Apparition des premières orbitales avec les bonnes dégénérescences et symétries.

3. Exemples numériques et analyse de la méthode Compressibilité des orbitales

- À la convergence de l'algorithme: { ϵ^f_i , ψ^f_i } $_{i=1,...,N}$.
- Compression des orbitales:
 - Seuillage des coefficients d'ondelette:

$$\Psi^f_i = \sum_{\mathbf{k}\in\Omega_{j_0}} c^i_{j_0,\;\mathbf{k}}\; \Phi_{J,\mathbf{k}} + \sum_{arepsilon\in\{0,1\}^3\setminus\{(\mathbf{0})\}} \sum_{j=j_0}^{J-1} \sum_{\mathbf{k}\in\Omega_j} d^{j,arepsilon}_{j,\mathbf{k}} \; \Psi^{(arepsilon)}_{j,\mathbf{k}}$$

• Soit
$$\widetilde{\Omega}_j = \left\{ \mathbf{k} \in \Omega_j, |d_{j,\mathbf{k}}^{\varepsilon}| \ge \tau \right\}$$
, $j_0 \le j < J$.

• On étudie alors $\| \psi_i^f - \widetilde{\psi}_f^{\tau} \|_2 \sim CN^{-\alpha}$.

1	2	3	4	5
1.74	1.43	1.36	1.36	1.36

Coefficient a pour les 5 premières orbitales de l'atome d'hélium.

3. Exemples numériques et analyse de la méthode

Erreur sur les énergies après compression de l'orbitale

τ	#ψ ₁	erreur sur e _{cin}	erreur sur ep
1.2 10 ⁻⁷	36700 (86%)	0.2 10 ⁻⁷	0.3 10 ⁻⁸
6.62 10 ⁻⁶	7864 (97%)	$0.6 \ 10^{-5}$	$0.8 \ 10^{-7}$
$1.46 \ 10^{-4}$	2621 (99%)	0.6 10 ⁻³	$0.3 \ 10^{-4}$

J = 6 (262144 coefficients). Compressibilité de l'orbitale occupée de l'hélium, et impact sur l'approximation des énergies cinétique et potentielle.

3. Exemples numériques et analyse de la méthode Convergence de l'algorithme

- Complexité d'une itération, avec $N = 2^{3(J+1)}$:
 - Étape HAM $\implies O(N)$ itérations pour V_C , et 1 pour V_{xc} .
 - ► Étape Dis ⇒ O((m₁ + m₂) N) opérations pour un produit matrice/vecteur.
 - ► Étape DIAG ⇒ quelques centaines de produits matrice/vecteur.
- Sur de petits atomes:
 - Quelques itérations autocohérentes (< 5).
 - Décroissance de l'énergie Eⁿ au cours des itérations.
 - Énergies fondamentales plus basses que les énergies attendues: facteur 2 par rapport à d'autres simulations (CPMD).

Résultats

- Deux méthodes pour résoudre l'équation de Poisson (Goedecker Chauvin 03).
- Construction de la matrice de rigidité par une méthode combinant méthode de collocation et formulation de Galerkin.
 - Pour traiter le potentiel non linéaire.
 - Méthode linéaire en fonction de la discrétisation et du support des fonctions de base.
 - Utilisable pour d'autres types de fonctions de base.
- Résolution des équations de la DFT dans l'approximation de la LDA.
- Mise en évidence de l'intérêt des ondelettes dans le calcul de structures électroniques.

Perspectives

- Amélioration de la méthode: approximation des potentiels, convergence de l'algorithme autocohérent.
- Comparaison avec les méthodes existantes.
- Méthode adaptative: analyse de la compressibilité des opérateurs potentiels, et mise en œuvre d'un solveur de la DFT avec les orbitales exprimées en base d'ondelettes.
- Preuve mathématique pour l'erreur d'approximation des énergies.

Problème ouvert:

• Analyse fonctionnelle de la DFT: trouver un critère sur V_{xc} pour l'existence et l'unicité d'une solution aux équations de Kohn et Sham.