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Abstract

In this paper, the convergence properties of the finite element approximation of the
thermistor problem are investigated, both from theoretical and numerical point of
view. From one hand, based on a duality argument, a theoretical convergence result
is proved under low regularity assumption. From other hand, numerical experiments
are performed based on a decoupled algorithm. Moreover, on a non convex domain,
the convergence properties versus the mesh size are shown to be improved by using
suitable mesh adaptation strategy and error estimator.
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Introduction

Thermistor problem and similar problems coming from fluid mechanics have
been the subject of many theoretical articles [6,9,5,1,17]. These article deal
with existence and regularity results. In this paper, the thermistor problem is
presented in a numerical point of view: existence of the approximate solution
and its convergence to the exact solution under low regularity assumption.
Moreover, we successfully compare some theoretical regularity results to nu-
merical experiments.

Let Ω ⊂ Rd be an open bounded domain, d = 1, 2 or 3, whose boundary ∂Ω
is divided into two disjoint subdomains Γ1 and Γ2. The thermistor problem
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may be written as follows :
find u and φ, defined from Ω to R such that



−div(κ(u)∇u) = σ(u) |∇φ|2 in Ω,

−div(σ(u)∇φ) = f in Ω,

u = u0 on Γ2

−κ(u)∂u
∂n

= 0 on Γ1,

φ = φ0 on Γ1

−σ(u)
∂φ

∂n
= 0 on Γ2.

(1)

The data f is known, the Dirichlet boundary conditions u0 and φ0 are piecewise
linear functions defined respectively on Γ2 and Γ1. Let assume that κ and σ
are positive and bounded. If φ ∈ H1

φ0
= {v ∈ H1(Ω), v = φ0 on Γ1}, then the

right-hand-side |∇φ|2 of the first equation in (1) belongs only to L1(Ω) and
the corresponding solution u does not belong to H1

u0
(Ω) = {v ∈ H1(Ω), v =

u0 on Γ2} (see e.g. [5]).

Under certain assumptions (on the regularity of f and on the domain Ω) the
solution φ is more regular. Let us suppose that φ ∈ W 1,2r

0 (Ω) for some r > 1 :
then |∇φ|2 ∈ Lr(Ω). In [5] the authors showed that there exists a solution
u ∈ W 1,q(Ω) with q ∈ [1, d/(d− 1)[ such that:

‖u− uh‖W 1,q(Ω) ≤ Chmin(1, 2(1−1/r))
∥∥∥|∇φ|2∥∥∥

Lr(Ω)

where uh is an usual piecewise linear finite element approximation of u. More-
over a classical result has been shown in [6], under several conditions on σ and
κ, and the boundary ∂Ω.

When f = 0, problem (1) models the electric heating of a conducting body
with u being the temperature, φ the electrical potential. σ and k denotes
respectively the electrical and the thermal conductivity which may depend
on temperature (see Wiedemann-Frantz law bellow [6]). (1) is heavily used
for modelling the current density σ(u)∇φ distribution which is a key issue in
the developpement of high magnetic field magnets providing up to 34 Tesla
[15,16].

The present paper is organized as follow: section 1 presents an existence result
of the exact solution. Section 2 shows an existence and convergence result of
the approximate solution with a low regularity hypothesis on the exact solu-
tion. Section 3 introduces a numerical algorithm and presents some numerical
investigations of the solution and its regularity, by means of an adaptive FEM
strategy.
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1 Regularity results for the exact problem

Let assume that σ and κ are functions defined from Ω 7→ R, and let u ∈ L2(Ω)
be a given temperature, we want to solve:

(P ) : Find u ∈ H1
u0

and φ ∈ H1
φ0

such that:



−div (κ(u)∇u) = σ(u)|∇φ|2 in Ω,

−div (σ(u)∇φ) = f in Ω,

−κ(u)∂u
∂n

= 0 on Γ1,

−σ(u)
∂φ

∂n
= 0 on Γ2.

(2)

The regularity of u and φ depends on two factors: right-hand-side f , and
convexity and regularity of Ω.

Theorem 1 Let σ and κ be functions defined on Ω 7→ R with regularity
Cm(Ω). If f is Hm(Ω) and Ω is of class C2 then φ ∈ Hm+2(Ω) and u ∈ H2(Ω).

Proof: Under the assumptions of the theorem, φ ∈ Hm+2(Ω) (see [10,11]).
Sobolev embedding leads to the fact that |∇φ|2 ∈ L2(Ω), since there is a
continuous injection of W 1,1(Ω) in L2(Ω) in dimension 2. As a conclusion,
u ∈ H2(Ω).

The following theorem use the Sobolev embedding property:
If Ω is polygonal and piecewise Lipschitz-continuous, and if the following con-
ditions are satisfied:

s ≥ t, 1 ≤ α ≤ β, and s− 2

α
= t− 2

β

then W s,α(Ω) ⊂ W t,β(Ω) with continuous injection.

Theorem 2 Let σ and κ be functions defined on Ω 7→ R with regular-
ity Cm(Ω). Assume that Ω is polygonal and piecewise Lipschitz-continuous,
and f ∈ Ls(Ω), s ∈]1,+∞[. Then u and φ belong to H1+2/q(Ω), with q >
max{q∗, 2}, and q∗ depending on the largest internal angle of Ω.

Proof: Let ωi the interior angle between two edges of polygon Ω, then the
regularity depends on ω∗i defined by:

ω∗i = ωi if the two edges of angle i have the same boundary condition.
ω∗i = 2ωi if each edge of angle i has a different boundary condition.

Let ω∗ = max{ω∗1, . . . , ω∗N}, q∗ =
2

π
ω∗ and p∗ its conjugate exponent, then

it can be shown that the solution of a Poisson equation with right-hand-side
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f ∈ Ls(Ω), s ∈]1,+∞[ has the following regularity:

φ ∈ W 2,p(Ω) for 1 < p < p∗.

Sobolev embedding leads to the conclusion that φ ∈ H1+2/q(Ω) with q >
max{q∗, 2}. This ensures that |∇φ|2 ∈ L2(Ω) and one can therefore conclude
that u is also in φ ∈ H1+2/q(Ω) with q > max{q∗, 2}.

If Ω is convex with only Dirichlet conditions then q∗ < 2, and u and φ belong
to H2(Ω).

Remark 1 The minimal condition required on φ in order to have |∇φ|2 ∈
L2(Ω) is φ ∈ H3/2(Ω). Transposed to a condition on the geometry Ω, it leads
to a maximum interior angle equals to ω∗ = 2π, which corresponds to a fissure
on Ω. Since ω∗ = 2π is the maximum possible interior angle, the solution
always satisfies |∇φ|2 ∈ L2(Ω) under the hypothesis of theorem 2.

2 Convergence of the approximate problem

The convergence of the coupled problem has already been treated in literature:
for instance in [9], despite the authors bypassed the L1 regularity problem of
the right-hand-side.

In this part, we adapt the duality argument used in [3] to get the convergence
of the coupled approximated problem. This will be done under minimum reg-
ularity conditions on u and φ.

2.1 The variational formulation

The first step is to show in which sense the variational formulation is well-
posed, to take the L1-right-hand-side into account. Boundary condition on u
is simplified, by taking homogeneous Dirichlet condition on ∂Ω, without loss
of generality [10].

2.1.1 The difficulties

Let H1
1 = {v ∈ H1(Ω), v = 0 on Γ1}, and (Th)h>0 a family of triangulation of

Ω and k ≥ 1. We introduce:

Vh = {vh ∈ H1
0 (Ω); vh|K ∈ Pk(K),∀K ∈ Th},

Wh = {vh ∈ H1
φ0

(Ω); vh|K ∈ Pk(K),∀K ∈ Th},
Xh = {vh ∈ H1

1 (Ω); vh|K ∈ Pk(K),∀K ∈ Th}.
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The approximate variational formulation of (1) writes:
(FV Ph) : find uh ∈ Vh and φh ∈ Wh such that

∫
Ω
κ(uh)∇uh.∇vh dx=

∫
Ω
σ(uh) |∇φh|2 vh dx, ∀v ∈ Vh, (3)∫

Ω
σ(uh)∇φh.∇ψh dx=

∫
Ω
f ψh dx, ∀ψh ∈ Xh. (4)

A first variational formulation of (1) has been proposed in [9]:

(F̃ V P ) : find u ∈ H1
0 (Ω) and φ ∈ H1

φ0
(Ω) such that

∫
Ω
κ(u)∇u.∇v dx=

∫
Ω
σ(u) |∇φ|2 v dx, ∀v ∈ H1

0 (Ω),∫
Ω
σ(u)∇φ.∇ψ dx=

∫
Ω
f ψ dx, ∀ψ ∈ H1

D(Ω).

Nevertheless, the integral term in the right-hand-side of the first equation has
no sense since σ(u)|∇φ|2 ∈ L1(Ω) while v ∈/L∞(Ω): we only have v ∈ H1

0 (Ω).

A second and more recent approach is the variational formulation proposed
in [5, p. 7] for the Laplace problem and based on the renormalized solu-
tion. This approach is suitable for the proof of existence of solutions with low
regularity. But it is limited to approximation with low polynom degree k = 1.

A third approach is presented in [3]: it consists in a transposition of the first
equation of (1), associated to the L1 right-hand-side. The unknown u is first
transformed in an equivalent unknown denoted by θ, in order to replace the
nonlinear operator div(κ(u)∇u) operator by the Laplace operator. Then, the
problem admits a variational formulation by transposition.

2.1.2 The change of unknown

Let us denote by K a primitive of κ, defined by:

K(v) =
∫ v

0
κ(w) dw.

Then the unknown u is replaced by a new unknown θ = K(u) such that
∇θ = κ(u)∇u. The function K is differentiable with bounded derivative and
also increasing and nonnegative on R+ so that it admits an inverse K−1 from
R+ into R+. Let τ(θ) = σ ◦ K−1(θ). The function τ is continuous, bounded
and τ(θ) ≥ σmin > 0 for all θ ∈ R. The problem (1) is replaced by:
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(Q) : find θ and φ, defined from Ω to R such that

−∆θ = τ(θ) |∇φ|2 in Ω,

−div(τ(θ)∇φ) = f in Ω,

θ = 0 on ∂Ω,

φ = 0 on ∂Ω.

(5)

The corresponding approximate variational formulation writes:
(FV Qh) : find uh ∈ Vh and φh ∈ Wh such that

∫
Ω
∇θh.∇ζh dx=

∫
Ω
τ(θh) |∇φh|2 ζh dx, ∀ζh ∈ Vh, (6)∫

Ω
τ(θh)∇φh.∇ψh dx=

∫
Ω
f ψh dx, ∀ψh ∈ Xh. (7)

2.1.3 The variational formulation by transposition

Then, we multiply the first equation of (5) by a test-function ζ and integrate
over Ω. Using two times the Green formulae, the left-hand-side becomes:

−
∫
Ω

(∆θ) ζ dx=
∫
Ω
∇θ.∇ζ d−

∫
∂Ω

∂θ

∂n
ζ ds

=−
∫
Ω
θ (∆ζ) dx+

∫
∂Ω
θ
∂ζ

∂n
ds−

∫
∂Ω

∂θ

∂n
ζ ds.

Let us denote ∆−1 the inverse of the Laplace operator associated to the ho-
mogeneous Dirichlet boundary condition. The operator ∆−1 associates to the
data ξ ∈ H−1(Ω) the solution ζ = ∆−1ξ ∈ H1

0 (Ω) such that−∆ζ = ξ in Ω,

ζ = 0 on ∂Ω.

When either Ω is convex or ∂Ω is C1,1 then ∆−1 is an isomorphism from L2(Ω)
into H1

0 (Ω)∩H2(Ω). When Ω is neither convex nor with a C1,1 boundary, it is
proved in [7] that ∆−1 is an isomorphism from H−s(Ω) into H1

0 (Ω)∩H2−s(Ω)
where s < 1− π/ω and ω ∈]π, 2π[ is the largest internal angle of ∂Ω. We are
assuming that Ω has no fissure, i.e. that ω < 2π and s < 1/2. Thus s ∈ [0, 1/2[.

A variational formulation by transposition of (5) writes:
(FV Q) : find θ ∈ L2(Ω) and φ ∈ H1

φ0
(Ω) such that

∫
Ω
θ ξ dx=−

∫
Ω
τ(θ) |∇φ|2

(
∆−1ξ

)
dx, ∀ξ ∈ L2(Ω), (8)∫

Ω
τ(θ)∇φ.∇ψ dx=

∫
Ω
f ψ dx, ∀ψ ∈ H1

1 (Ω). (9)
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In [4], on a similar problem, it is proved that for small data, there exists at
least one solution (θ, φ) ∈ Hs(Ω)×H1

1 (Ω), ∀s < 1/2.

Following [3], a direct numerical approximation of this formulation would need
to explicitly know ∆−1 acting on elements of the discrete space, or some suit-
able approximation. The approximations (FV Ph) or (FV Qh) provide regular-
izations of the data appearing in problem (2). Then, the standard Galerkin
approximations (FV Ph) or (FV Qh) of (2). makes sense and only internal
approximation of H1

0 (Ω) are needed. Indeed, we are able to prove that the
solution of (FV Qh) approximates the solution by transposition of (FV Q).

2.2 A priori estimates for decoupled subproblems

We first prove the existence of the approximate solution of (FV Ph) by using
the Brouwer’s fixed point theorem.

We shall consider the two following partial problems:
(FV R1,h) : given θh ∈ Vh and φh ∈ Wh, find θh ∈ Vh such that

∫
Ω
∇θh.∇ζh dx=

∫
Ω
τ
(
θh

) ∣∣∣∇φh

∣∣∣2 ζh dx, ∀ζh ∈ Vh. (10)

(FV R2,h) : given θh ∈ Vh, find φh ∈ Wh such that

∫
Ω
τ
(
θh

)
∇φh.∇ψh dx=

∫
Ω
f ψh dx, ∀ψh ∈ Xh. (11)

Notice that both (FV R2,h) and (FV R1,h) are linear problems.

Theorem 3 (a priori estimate for the first subproblem)
Problem (FV R1,h) admits an unique solution, which satisfies the a priori es-
timate:

‖θh‖Hs(Ω)≤C1

(
1 + h2−s− d

2 |log h|1−
1
d

) ∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

(12)

for a positive constant C1.

Remark 2 (on the bound)
In [3] the authors proposed a comparable bound in the case d = 2 and k = 1:

‖θh‖Hs(Ω) ≤ C1

(
1 + h1−s

) ∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

.

The bound (12) is an extension of this bound to multidimensional systems
d ≥ 2 and higher polynomial degree k ≥ 1. Our proof bases on the discrete
inverse inequality proposed by [14] and involving the log h factor.
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Proof: The existence of the solution θh ∈ Vh of (10) follows from the Lax-

Milgram theorem. As τ
(
θh

) ∣∣∣∇φh

∣∣∣2 ∈ L∞(Ω), problem (10) admits an unique

solution. The estimate (12) is more complex because of the Hs norm. Follow-
ing [11], observe that Hs

0(Ω) = Hs(Ω), ∀s ∈ [0, 1
2
] and that Hs

0(Ω) is reflexif:

((Hs
0(Ω)))′′ = Hs(Ω) = (H−s(Ω))

′
= Hs(Ω) = Hs

0(Ω). Thus the Hs norm
could be computed by duality:

‖θh‖Hs(Ω) = sup
ξ∈H−s(Ω)−{0}

〈θh, ξ〉Hs
0 ,H−s

‖ξ‖H−s(Ω)

= sup
ζ∈H1

0 (Ω)∩H2−s(Ω)−{0}

〈θh, ∆ζ〉Hs
0 ,H−s

‖∆ζ‖H−s(Ω)

since H−s(Ω) and H1
0 (Ω) ∩H2−s(Ω) are isomorph.

The linear application ∆−1 is continuous from H−s into H2−s: thus there exists
a constant C2 > 0 such that∥∥∥∆−1ξ

∥∥∥
H2−s

≤ C2 ‖ξ‖H−s(Ω) , ∀ξ ∈ H−s(Ω).

Using the isomorphism between H−s(Ω) and H1
0 (Ω) ∩H2−s(Ω), the previous

inequality writes:

‖ζ‖H2−s ≤ C2 ‖∆ζ‖H−s(Ω) , ∀ζ ∈ H1
0 (Ω) ∩H2−s(Ω).

Then

‖θh‖Hs(Ω) =C−1
2 sup

ζ∈H1
0 (Ω)∩H2−s(Ω)−{0}

〈θh, ∆ζ〉Hs
0 ,H−s

‖ζ‖H2−s(Ω)

.

For all ζ ∈ H1
0 (Ω) ∩ H2−s(Ω), let ζ̃ ∈ Vh its Lagrange interpolation. Then,

from the Green formulae:

〈θh, ∆ζ〉Hs
0 ,H−s =

∫
Ω
∇θh.∇ζ dx−

∫
∂Ω
θh
∂ζ

∂n
ds

=
∫
Ω
∇θh.∇ζ̃ dx+

∫
Ω
∇θh.∇

(
ζ − ζ̃

)
dx

=
∫
Ω
τ
(
θh

) ∣∣∣∇φh

∣∣∣2 ζ̃ dx+
∫
Ω
∇θh.∇

(
ζ − ζ̃

)
dx

=A1 + A2.

We next estimate A1 and A2.

The A1 estimate – As ζ ∈ H2−s(Ω) ⊂ L∞(Ω) and since the Lagrange inter-
polation operator is continuous linear mapping from L∞(Ω) into L∞(Ω) there

exists a constant C3 > 0 such that
∥∥∥ζ̃∥∥∥

L∞(Ω)
≤ C3 ‖ζ‖L∞(Ω), we have:
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A1≤
∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

∥∥∥ζ̃∥∥∥
L∞(Ω)

≤C3

∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

‖ζ‖L∞(Ω) .

Since the injection from H2−s(Ω) into L∞(Ω) is continuous, there exists a
constant C4 such that ‖ζ‖L∞(Ω) ≤ C3C4 ‖ζ‖H2−s(Ω) and then

A1≤C4

∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

‖ζ‖H2−s(Ω) .

The A2 estimate – A slight modification of the argument of Exercise 8.3
of [8] proves that there exists a constant depending only on Ω such that∥∥∥∇ (

ζ − ζ̃
)∥∥∥

L2(Ω)
≤ C5h

1−s ‖ζ‖H2−s(Ω) .

Then, from the Cauchy-Schwartz inequality:

A2 ≤ C5h
1−s ‖∇θh‖L2(Ω) ‖ζ‖H2−s(Ω) .

Since ∇θh|K ∈ Pk−1 for all K ∈ Th, we have:

‖∇θh‖L2(Ω) = sup
ζh∈Vh

∫
Ω
∇θh.∇ζh dx

‖∇ζh‖L2(Ω)

= sup
ζh∈Vh

∫
Ω
τ
(
θh

) ∣∣∣∇φh

∣∣∣2 ζh dx

‖∇ζh‖L2(Ω)

by using (10)

≤
∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

sup
ζh∈Vh

‖ζh‖L∞(Ω)

‖∇ζh‖L2(Ω)

.

From [14] we have the following inverse inequality:

‖ζh‖L∞(Ω) ≤ C6h
1− d

2 |log h|1−
1
d ‖ζh‖H1(Ω) , ∀ζh ∈ Vh.

Then, using the Poincaré inequality:

‖∇θh‖L2(Ω)≤C
−1
0 C6h

1− d
2 |log h|1−

1
d

∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

where C0 is the constant of the Poincaré inequality. Grouping the previous
inequality yields:

A2≤C−1
0 C5C6h

2−s− d
2 |log h|1−

1
d

∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

‖ζ‖H2−s(Ω) .
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Grouping the A1 and A2 estimates, we get:

〈θh, ∆ζ〉Hs
0 ,H−s ≤

(
C3C4 + C−1

0 C5C6h
2−s− d

2 |log h|1−
1
d

) ∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

‖ζ‖H2−s(Ω)

and then

‖θh‖Hs(Ω)≤C
−1
2

(
C3C4 + C−1

0 C5C6h
2−s− d

2 |log h|1−
1
d

) ∥∥∥∥τ (θh

) ∣∣∣∇φh

∣∣∣2∥∥∥∥
L1(Ω)

.

Finally, (12) is obtained with C1 = C−1
2 max

(
C3C4, C

−1
0 C5C6

)
.

Theorem 4 (a priori estimate for the second subproblem)
Problem (FV R2,h) admits an unique solution, which satisfies the a priori es-
timate:

‖φh‖H1(Ω)≤C7 ‖f‖L2(Ω) (13)

for a positive constants C7.

Proof: The existence of the solution φh ∈ Wh of (11) follows from the Lax-
Milgram theorem. From one hand, choosing ψh = φh ∈ Vh in (11), we get:

∫
Ω
τ
(
θh

)
|∇φh|2 dx=

∫
Ω
f φh dx

≤‖f‖L2(Ω) ‖φh‖L2(Ω)

≤‖f‖L2(Ω) ‖φh‖H1(Ω)

≤ 1

2β
‖f‖2

L2(Ω) +
β

2
‖φh‖2

H1(Ω) , ∀β > 0.

From other hand, from the hypothesis on σ and the Poincaré inequality:

∫
Ω
τ
(
θh

)
|∇φh|2 dx≥σmin

∫
Ω
|∇φh|2 dx

≥σminC0 ‖φh‖2
H1(Ω)

where C0 > 0 is the Poincaré inequality constant, depending only on Ω. Group-
ing the two previous inequalities, we get:

σminC0 ‖φh‖2
H1(Ω)≤

1

2β
‖f‖2

L2(Ω) +
β

2
‖φh‖2

H1(Ω) , ∀β > 0.

Choosing β = σmin we get:

σminC0

2
‖φh‖2

H1(Ω)≤
1

2σminC0

‖f‖2
L2(Ω)
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or equivalently:

‖φh‖H1(Ω)≤
1

σminC0

‖f‖L2(Ω) .

Thus, we get (13) with C7 = 1/(σminC0).

2.3 Existence result for the approximate problem

Theorem 5 (existence result)
Assume that h < h0. Then, the discrete problem (FV Qh) admits always a
solution which satisfies the estimates:

‖θh‖Hs(Ω)≤C1

(
1 + h2−s− d

2 |log h|1−
1
d

) ∥∥∥τ (θh) |∇φh|2
∥∥∥

L1(Ω)
, (14)

‖φh‖H1(Ω)≤C7 ‖f‖L2(Ω) . (15)

Proof: Let us consider the continuous linear transformation Fi, i = 1, 2 from
Vh×Wh onto itself defined as follows: the image by Fi of

(
θh, φh

)
∈ Vh ×Wh is

the element (θh, φh) ∈ Vh ×Wh defined as the solution of (FV Ri,h). The trans-
formations Fi, i = 1, 2 are well defined, due to the uniqueness of solutions of
subproblems (FV Ri,h). Let F = F1 ◦ F2 be the continuous linear transforma-

tion obtained by composition as follows: the image by F of
(
θh, φh

)
∈ Vh ×Wh

is the element (θh, φh) ∈ Vh ×Wh defined in two steps:

1. φh is the solution of (FV R2,h) for a given θh ∈ Vh.

2. θh is the solution of (FV R1,h) for a given
(
θh, φh

)
∈ Vh ×Wh;

From theorem 4 we have:

‖φh‖H1(Ω)≤C7 ‖f‖L2(Ω) ,

and from theorem 3:
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‖θh‖Hs(Ω)≤C1

(
1 + h2−s− d

2 |log h|1−
1
d

) ∥∥∥τ (θh

)
|∇φh|2

∥∥∥
L1(Ω)

≤C1

(
1 + h

2−s− d
2

0 |log h0|1−
1
d

) ∥∥∥τ (θh

)
|∇φh|2

∥∥∥
L1(Ω)

for all h < h0 since h 7→ hε| log h|µ is an increasing function, ∀ε > 0,∀µ ≥ 0,

≤C1

(
1 + h

2−s− d
2

0 |log h0|1−
1
d

)
σmax ‖∇φh‖L2(Ω)

since τ(.) is bounded,

≤C1

(
1 + h

2−s− d
2

0 |log h0|1−
1
d

)
σmax ‖φh‖H1(Ω)

≤C1C7

(
1 + h

2−s− d
2

0 |log h0|1−
1
d

)
σmax ‖f‖L2(Ω)

from theorem 4.

Thus, grouping the two previous inequalities:

∥∥∥F (θh, φh

)∥∥∥
Hs(Ω)×H1(Ω)

:=
(
‖θh‖2

Hs(Ω) + ‖φh‖2
H1(Ω)

) 1
2 ≤ C8 ‖f‖L2(Ω) ,

where

C8 = C7

(
1 + σ2

maxC
2
1

(
1 + h

2−s− d
2

0 |log h0|1−
1
d

)2
) 1

2

.

By Brouwer’s fixed point theorem, we conclude that problem (FV Qh) always
admits a solution. The estimates (14)-(15) are directly obtained from theo-

rem 3 and 4 with the fixed point
(
θh, φh

)
= (θh, φh) ∈ Vh ×Wh.

2.4 Convergence result of the approximate solution

Theorem 6 (convergence to the continuous solution)
Assume that h < h0. Then, there exists a subsequence of the solutions (θh, φh)h∈]0,h0[

provided by (FV Qh) that converge strongly in Hs(Ω)×H1(Ω) to a solution of
(FV Q).

Proof: We perform this proof in three steps.

step 1. a priori estimate – Let us start by finding a bound for θh. By
theorem (5), the sequence (θh)h>0 is bounded in Hs(Ω). Also the sequence
(φh)h>0 is bounded in H1(Ω).

step 2. Limit for the potential equation – Let us recall that the embed-
ding of Hs(Ω) in L2(Ω) for any s > 0 is compact. Then, the sequence (θh)h>0

contains a subsequence (θh′)h′>0 which is strongly convergent in L2(Ω) to a
function θ ∈ L2(Ω).

From the estimate for the potentials, we may find a subsequence (φh′)h′>0 of
(φh)h>0 weakly convergent in H1(Ω) to a function φ. In [4], in the similar

12



context of two coupled turbulent fluids, the authors deduces that it contains
a subsequence that converges strongly in H1(Ω) to φ. Then we may pass to
the limit in (7) and deduce that (θ, φ) satisfies (9).

step 3. Limit for the heat equation – Consider ξ ∈ D(Ω) and denote
ζ = ∆−1ξ. As in the proof of theorem 3, let ζ̃ ∈ Vh be the interpolation of ζ.
We have:

∫
Ω
θh ∆ζ dx=λ

∫
Ω
τ (θh) |∇φh|2 ζ̃ dx+

∫
Ω
∇θh.∇

(
ζ − ζ̃

)
dx

=A1 + A2.

We next analyze the convergence of the two terms A1 and A2.

• The A1 limit – As in Exercise 8.3 of [8]:

∥∥∥ζ − ζ̃
∥∥∥

L∞(Ω)
≤C5 h

1
2 ‖ζ‖

W
1
2 ,∞(Ω)

.

Then, since the embedding from H2(Ω) into W
1
2
,∞(Ω) is continuous, there

exists a constant C9 > 0 such that ‖ζ‖
W

1
2 ,∞(Ω)

≤ C9 ‖ζ‖H2(Ω) , ∀ζ ∈ H2(Ω).

Thus, the previous inequality becomes:

∥∥∥ζ − ζ̃
∥∥∥

L∞(Ω)
≤C5C9 h

1
2 ‖ζ‖H2(Ω) .

As the sequence (τ(θh)|∇φh|2)h>0 converges strongly in L1(Ω) to τ(θ)|∇φ|2,
then

lim
h→0

A1 = lim
h→0

∫
Ω
τ(θh)|∇φh|2 ζ̃ dx =

∫
Ω
τ(θ)|∇φ|2 ζ dx.

• The A2 limit – As in the proof of theorem 3:

A2≤C−1
0 C5C6h

2−s− d
2 |log h|1−

1
d

∥∥∥τ (θh) |∇φh|2
∥∥∥

L1(Ω)
‖ζ‖H2−s(Ω) ,

and then

lim
h→0

A2 = 0 .

Then, the limit satisfies

−
∫
Ω
θ ξ dx =

∫
Ω
τ(θ)|∇φ|2 ζ dx, ∀ξ = ∆ζ ∈ D(Ω).

Then (8) is satisfied since D(Ω) is dense in H−s(Ω). In conclusion, the limit
(θ, φ) is a solution of (FV Q): this complete the proof of theorem 6.
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3 Numerical experimentations

3.1 The algorithm

The system is not solved in the form given by (3), (4). Unlike studies on a sim-
ilar case [17], we found that under certain conditions, a fixed point algorithm
does not successfully converge towards a couple of discrete solutions (uh, φh).
An evolution problem is introduced and the steady state solution is computed
by using a semi-implicit decoupled algorithm :

∂u

∂t
≈ un+1 − un

∆tn
.

The aim is to solve the semi-implicit system at iteration n :
Given un ∈ H1

u0
, find un+1 ∈ H1

u0
and φn+1 ∈ H1

φ0
, such that



un+1 − un

∆tn
− div(κ(un)∇un+1) = σ(un) |∇φn|2 ,

−div(σ(un)∇φn+1) = f,

−κ(un)
∂un+1

∂n
= 0 on Γ1,

−σ(un)
∂φn+1

∂n
= 0 on Γ2.

Here Dirichlet condition for u is inhomogeneous, we define the proper finite
element space Yh = {vh ∈ H1

u0
(Ω); vh|K ∈ Pk(K),∀K ∈ Th}, and Zh whose

functions are nul on Γ2, e.g. vh = 0|Γ2 . The approximate variational formula-
tion of (1) writes:

(FV Ph) : Given un
h ∈ Yh, find un+1

h ∈ Yh and φn+1
h ∈ Wh such that

∫
Ω
un+1

h vh dx+ ∆tn
∫
Ω
κ(un

h)∇un+1
h .∇vh dx= ∆tn

∫
Ω
σ(un

h) |∇φn
h|

2 vh dx

+
∫
Ω
unvh dx, ∀vh ∈ Zh,∫

Ω
σ(un

h)∇φn+1
h .∇wh dx=

∫
Ω
f wh dx, ∀wh ∈ Xh.

The nonlinear coupled stationary problem is then solved by using a sequence
of two linear decoupled subproblems of generalized Poisson type with non con-
stant coefficients. The stopping criteria is related to the norm of the residual
term of the stationary problem.
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3.2 Estimation of the order of convergence: first approach

We expect a convergence behavior as:

‖u− uh‖Hm ≈ hγ−m. (16)

A comparable convergence behavior is expected for φ with a possible different
power index γ.

The power index γ associated to u and φ are investigated numerically by using
three meshes hn, hn−1 and hn−2 of a mesh family (hn)n>0, with hn < hn−1 for
all n > 0. The power index is extracted from the following relation:

‖vhn−1 − vhn−2‖L2(Ω)

‖vhn − vhn−1‖L2(Ω)

=
(hn−2/hn−1)

γ − 1

1− (hn/hn−1)γ
. (17)

Note that [3] used a comparable approach with a slightly different formulae.
With the present, the γ power index is always defined: the right-hand-side as
a function of γ is positive and increases with hn, and (17) always admits a
solution. Simulations of γ are presented in the following numerical experiment
section.

3.3 Estimation of the order of convergence: second approach

The posteriori error estimator η introduced by Kelly et al. [12,13] is defined
locally on each element K from the numerical solution uh by :

(ηu
K)2 =

h

24

∫
∂K

[
κ(uh)

∂uh

∂n

]2

ds,

and globally on the whole domain Ω:

ηu =
√∑

K∈P
(ηu

K)2.

A comparable estimator ηφ is introduced for φh with a variable coefficient
σ(uh). Such estimators are able to detect high variations of the gradients of
the approximate solutions ∇uh, e.g. locally high value of the Hessian of uh.
For smooth solutions the gradient varies slowly, whereas at the vicinity of
singularities the gradient and its derivatives increases dramatically. Since this
estimator is expected to behave asymptotically as the H1 error, we are looking
for the convergence behavior of the error estimator ηu and ηφ with respect to
the mesh parameter h:

ηu ≈ hλ−1, (18)

in the case of an uniform grid. Power index λ associated to φ could be differ-
ent. Note that a recent a posteriori estimation for the thermistor problem [1]
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propose an error estimator for φ based on the jump gradient term across el-
ement boundaries, as for the Kelly estimate, plus some additional residual
terms. Here, the contribution of these additional residual terms to the error
estimator are not investigated numerically at the vicinity of a corner singular-
ity ; we expect that the gradient jump term in the error estimator dominates
the other residual terms.

3.4 Numerical investigations

Two test cases arising from the context of magnet modelling [15] are considered
here. In the first case a disk made of copper alloy is studied. An explicit solution
exists for (1) assuming constant coefficients σ(u) and κ(u) and no vanishing
Dirichlet conditions u0 and φ0. For sake of symmetry we will restreint ourselves
to one fourth of the domain.

In the second one we consider a non-convex geometry with a reentrant corner.
Morevoer we assume that σ(u) depends on the temperature, and that κ(u) is
given by the Wiedmann-Frantz law :

κ(u) = L σ(u) u, (19)

where L is a constant, the so-called Lorentz number. See [6] for a theoretical
proof of the existence and uniquess of (1) in that case.

3.4.1 Test case 1: convex geometry and constant coefficients

We assume here that σ(u) = 50199996 m/Ω and that κ(u) = 380 W/(m.K)
(i.e. electric and thermal conductivity of a copper alloy at room tempera-
ture). The domain Ω is shown on Fig. 1, with internal and external radius
r1 = 0.0193 m and r2 = 0.0242 m. The Dirichlet boundary condition is
φ0 = 0 V on the blue border and φ0 = U = 0.210 V on the red one. The
temperature is fixed to u0 = 293K on Γ2 and ∂u

∂n
= 0 on Γ1.

Figure 1. Test case 1: axisymmetric geometry and isovalues of the potential φ.
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Figure 2. Test case 1: behavior of the error ‖φ− φh‖1,Ω versus the size of the finite
element space N for k = 1, 2, 3.

Exact solution (u, φ) writes in terms of cylindrical coordinates:

u(r, θ) = u0−
σU

8πκ

(
ln2(r)− ln(r) ln(r1r2) + ln(r1) ln(r2)

)
and φ(r, θ) =

Uθ

2π
.

Note that both u and φ belong to C∞(Ω).
Fig. 2 shows the error ‖φ− φh‖1,Ω versus the size of the finite element space
N = cardVh for various values k = 1, 2, 3 of the polynom basis Qk for a family
of uniformly refined meshes. All computations are performed by using the
deal II finite element library [2]. The error ‖φ−φh‖1,Ω ≈ hk as predicted by (16)
with γ = k + 1 and m = 1. The convergence properties of the temperature u
are comparable and are not represented here.

Q1

γ λ δ

φ 1.99 1.93 1.99

u 2.00 1.99 2.00
Table 1
Convergence order of the finite element method for test 1.

Table 1 estimates the order of convergence of the finite element method Q1

by three methods and for (uh, φh). The first method evaluates γ, the order
of convergence by solving the non linear equation (17). The second method
based on the Kelly error estimate, evaluates λ from (18) from a sequence
of ten meshes by a least square procedure. The third method based on the
knowledge of the exact solution (u, φ) computes directly the L2-norm error
and then estimates the convergence order denoted by δ by a least square
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Figure 3. Test case 1: efficiency of the Kelly error estimate ηφ for k = 1.

procedure. Since the exact solution (u, φ) is regular for the test case 1, the
expected values for all the orders of convergence γ, λ and δ is k + 1. Values
of γ and λ provide a rather good idea of the convergence order. Fig. 3 shows
the error estimate efficiency ηφ/‖φ − φh‖1,Ω: it stays globally around 1, with
a slight increase when the number of degree of freedom N increases. Thus,
the Kelly error estimate represents a very good estimation of the error for our
problem.

3.4.2 Test case 2: non-convex geometry and non-constant coefficients

A non-convex geometry Ω with a reentrant corner is then considered (see
Fig. 4). The interior angle equals to ω = 3π/2.

Here σ(u) depends on temperature u [15] :

σ(u) =
σ0

1 + β(u− u0)

with σ0 = 50199996 m/Ω, β = 10−3K−1, and κ(u) is expressed by (19) with
L = 2.410−8Ω.W/K2.

The solution is represented on Fig. 4.

Both u and φ belong to the same Hilbert space Hs. Based on the interior angle
ω∗ = 3π/2 of the domain Ω, theorem 2 provides a regularity result: both u and
φ belongs to Hs for all s < s∗, where s∗ = 1 + 2/3 = 1.66 . . .. The expected
convergence order of the finite element method is hmin(k+1,s∗) = hs∗ that is
independent of k. Table 2 confirms this slow convergence property, based on
the estimations of the convergence order γ and λ introduced in the previous
paragraph. Note that the estimation δ is no more available, since the exact
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Figure 4. Isocontours of the temperature u and the potential φ for test 2.

Qk Q1 Q2 Q3

γ λ γ λ γ λ

φ 1.42 1.70 1.43 1.67 1.45 1.67

u 1.52 1.55 1.82 1.53 1.76 1.54
Table 2
Convergence order of the finite element method for test 2.

solution is unknown here.

In order to improve the poor convergence properties associated to singular
solutions, let us turn to mesh adaptation procedure. The finite element degree
is here fixed to k = 1. The refinement is done on a fixed fraction of elements
associated to the highest local Kelly error estimate value. Fig. 5 shows adapted
meshes obtained by this method. The refinement is concentrated at the vicinity
of the singularity, located at the reentrant corner of the domain. Fig. 4 reveals
that u and φ develops differently on Ω. Thus mesh adaptations based on ηu

and ηφ look different despite both concentrate on the reentrant corner. Fig. 6
presents the Kelly error estimate for u and φ as a function of the number of
degree of freedom of the finite element space N . Recall that the error estimator
behaves as h5/3 when using an uniform mesh refinement procedure. Since
N ≈ h−2, the error estimator is expected to behave as N−5/6 ≈ N−0.83. When
using the adaptive strategy, we observe that it is asymptotically improved
roughly as N−1.45.
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Figure 5. Adaptive meshes as obtained by a refinement criteria based on the Kelly
error estimator: (left) for the temperature u ; (right) for the potential φ.
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Figure 6. Acceleration of the convergence when using adapted meshes: (left) for the
temperature u; (right) for the potential φ.

Conclusion

The convergence properties of the finite element approximation of the ther-
mistor problem were investigated in this paper, both from theoretical and
numerical point of view. Based on a duality argument, a theoretical conver-
gence result was first proved under low regularity assumption. Next numerical
experiments was performed based on a decoupled algorithm and the power in-
dex of the convergence versus the mesh size was extracted. Finally, a suitable
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mesh adaptation strategy was found to improve the convergence properties
versus the mesh size on non convex domains.
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