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ABSTRACT

Reactive systems involve communication, concurrency and preemption. Few mod-
els support these three concepts, even less can correctly deal with their coexistence.
The synchronous paradigm allows a rigourous approach to this problem, crucial to
reactive systems.

This paper analyzes the underlying hypotheses of the synchronous approach. Re-
active behaviors are characterized. A new visual model (SYNCCHARTS) is then pro-
posed. This graphical model is fully compatible with the imperative synchronous lan-
guage ESTERELand is specially convenient to express complex reactive behaviors.
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1 INTRODUCTION

A reactive systemmaintains permanent interactions with its environment. Usually,
reactive systems are concurrent systems. Their global behavior results from the coop-
eration of their components (subsystems). In order to carry out an expected behavior,
the evolutions of subsystems must be coordinated. Communication (information ex-
change) plays a central role in this coordination, and consequently, reactive systems
are often viewed as communicating processes. This approach relegatespreemptionto
a position of secondary importance, which is prejudicial to many reactive applications.
Real-time operating systems, interrupt-driven systems, and more generally, control-
oriented systems heavily rely on preemption. The specification of such systems needs
preemption as a first class concept; their programming requires preemption primitives.
Few models can deal with preemption. Languages that support preemption, to some
extent, do not offer primitives tailored to reactive applications. A reason for this lack,
is that most semantics dealing with both concurrency and preemption are complex or
vague.
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Since often involved in safety critical applications, reactive systems should bepre-
dictable. The most critical parts must bereactive(i.e., they can always react to stimuli)
anddeterministic(the reaction must be unique). To ensure reactivity and determin-
ism in the presence of communication, concurrency and preemption is the challenging
problem addressed by thesynchronous approach[1, 2]. The “perfect synchrony hy-
pothesis” assumes on the one hand that cause (stimuli) and effect (reaction) are simul-
taneous, and on the other hand that information is instantaneously broadcast. These
assumptions lead to an abstract view of temporal behaviors, in which communication,
concurrency and preemption can be considered as orthogonal concepts. Within the
framework of synchronous programming, clear mathematical semantics can be given
to several forms of preemption. This point of view is advocated in a G. Berry’s paper
entitled “Preemption in Concurrent Systems” [3].

Engineers in the field of control and manufacturing systems are somewhat reluc-
tant to synchronous languages. As a rule, they prefergraphical approaches. The
GRAFCET [4] (Sequential Function Charts) is widely used for industrial logic con-
trol. STATECHARTS [5], a hierarchical visual model which is part of the STATEMATE

environment, allows design of complex reactive system and it takes advantages from
its industrial support. STATECHARTS is convenient but, as stated in a review of the
various extensions of STATECHARTS [6], its semantics has to be clarified. ARGOS[7]
is another synchronous and graphical model. It is based on a clear semantics, but it has
not been widely distributed.

In a previous paper [8] we have presented some potential applications of the syn-
chronous languages to industrial process control. The aims of the present contribution
are twofold:

� First, we shall have a closer look at the basis of the synchronous approach,

� Second, we shall introduce SYNCCHARTS1 (an acronym for Synchronous Charts)
which inherits from STATECHARTS and ARGOS.

Plan

The paper is organized as follows:

� In a first part, we propose an example of reactive system: A Cruising Speed
Controller.

� We then study the underlying hypotheses of thesynchronous approach. We char-
acterize reactive behaviors. The causality problem induced by the synchronous
approach is also analyzed.

� The third part is devoted to an informal presentation of SYNCCHARTS.

� The last part deals with the semantics of this new model.

1“SYNCCHARTS” is the name of the model; a syncChart is an instance of the model.
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2 A REACTIVE SYSTEM

A Cruising Speed Controlleris an instance of a control-dominated reactive and
real-time system. We propose a simplified version that will be used throughout this pa-
per for illustrative purpose. We adopt “Cruise Controller” as a short form of “Cruising
Speed Controller”.

2.1 The Cruise Control

Fig.1 is a blackbox view of the controller. The driver, the motor, the car, the road,
. . . compose the environment in which this controller is embedded.

TVC: 
integer

RC

BPP

APP

SET

OFF

RES

SPD:
integer

ACC:
integer

CSC

Figure 1: The Cruise Controller: Blackbox

Interface

List of sensors:

RC : Regulation Clock
BPP: Brake Pedal Pressed
APP: Accelerator Pedal Pressed
SET: SET button
OFF: OFF button
RES: RESume button
SPD: actual SPeeD
ACC: ACCelerator pedal position

Actuator: TVC: Throttle Valve Command
SPD, ACC, TVC convey integer values.

Expected Behavior

When the Cruise Control is “off” , the throttle is controlled by the accelerator pedal
through a function A : integer�!integer, where the argument is the accelerator
pedal position and the result is the throttle valve command. When the Cruise Control
is operational, the throttle is controlled either by the accelerator pedal through A or by
the regulator through the function R : integer � integer�!integer, where the two
arguments are the actual speed and the desired speed.
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The Cruise Control is switched on by pressing the SET button. The value of the
current speed is assigned to the reference speed variable. It is switchted off by pressing
the OFF button.

When the Cruise Control is operational:

� pressing the brake pedal suspends the speed regulation which can be reactivated
by pressing the RES button.

� each acceleration (APP = 1) suspends the speed regulation which is automatically
reactivated when the accelerator pedal is released.

� at any time, the reference speed can be set to the current speed by pressing the
SET button.

Of course, this informal specification does not constitute a complete specification.

2.2 Reactive System Modeling

Even if the Cruise Controller is ultimately to be implemented on a single processor,
it is convenient to describe it as a set of cooperating processes.

From this example, we draw the main needs for reactive system modeling.

Hierarchy

Obviously, there are two functioning modes:

� The Throttle control when the Cruise Control is not operational,

� The Throttle control when the Cruise Control is operational.

The latter can be further decomposed into the “Brake Watching” and the “CSC
Active” processes. In turn, “CSC Active” can be refined into sub-processes.

Communication

Communication with the environment is performed with the help of the sensors (incom-
ing information) and the actuator (outgoing information). Communication between
processes is also necessary, e.g., the Brake Watching process must inform the CSC
Active process that the brake pedal has been pressed.

Concurrency

The two processes Brake Watching and CSC Active perform almost independently:
they are concurrent.

Preemption

Coordinationis most important for reactive systems. Processes may coordinate with
each other by information exchange (communication, synchronization). Preemption is
another way to ensure coordination. “Process preemption. . . consists in denying the
right to work to a process, either permanently (abortion) or temporarily (suspension)”
(G. Berry [3]).
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In our controller, the CSC Active process is suspended by action on the brake. As
for abortion, it is applied when switching from a mode to the other.

A model for reactive system must support hierarchy, communication, concurrency
and preemption. Moreover, the behavior must be reactiveand deterministic. Combin-
ing communication, concurrency and preemption in a deterministic way is challenging.
The synchronous approach, studied below, propose a solution to this issue.

3 THE SYNCHRONOUS PARADIGM

3.1 Hypotheses

The synchronous approach adopts an abstract, indeed even ideal, view of real sys-
tems. In this section, we have a closer look at the hypotheses underlying the syn-
chronous approach. ESTEREL is the oldest synchronous language. Quoting N. Halb-
wachs [2] it is “the best language to highlight the specificity of the synchronous ap-
proach”. In what follows, we liberally borrow from ESTEREL.

Signals

Interactions between a reactive system and its environment take on the most varied
forms [9]: sensors or actuators, discrete or continuous information, collection by polling
or by interruption, . . . .

A first simplification is to consider a unique way of exchanging information. A
reactive system and its environment maintain permanent interactions by means of sig-
nals: the system receives input signalsand emits output signals.

A signal conveys two pieces of information: its presence status(a signal is either
presentor absent) and its valuesof a given type (e.g., TVC is an output signal, its value
is an integer).

The presence status is transient (pulsed), whereas the value is persistent. The value
of a signal may change only when the signal is present. Pure signals and sensors are
special cases. A pure signalhas no value, it is used to signal that some condition has
become true (e.g., APP is a pure signal whose presence indicates that the accelerator
pedal has just been pressed). A sensorhas no presence status; it is set by the envi-
ronment, the reactive system can only read the value of a sensor (e.g., SPD is a sensor
bearing an integer value imposed by physical laws).

Global Perception

Inputs to a reactive system are numerous and may change sporadically. The syn-
chronous approach assumes that all input signals can be perceived simultaneously and
that this perception is objective. The same assumption is made for output signals. So,
the synchronous model deals with tuples of signals. We call this hypothesis “ the perfect
samplinghypothesis” .

The Logical Time

A reactive system is idle most of the time, excepted when prompted by a stimulus to
which it must react instantly.
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The synchronous approach to reactive system considers that the system is kept
aware of “ time passing” by the flow of inputs, more precisely, by the pulsed presence
status of input signals. So, the synchronous model does not rely on the physical time,
it uses a logical timeinstead. This allows to capture the notion of multiform time: any
input signal may be taken as a time reference, be it linked to a physical clock or to any
other physical phenomenon.

The model proceeds in successive reactions, one at each logical instant. At each
instant, the reaction is computed using the current (tuple of) input signals (and some
internal information).

The Zero-Delay Hypothesis

A drastic simplification is braught by the Zero-Delay hypothesis: Internal operations
are supposed to be done in zero-delay with respect to all external time units. A conse-
quence is that the outputs are synchronous with the inputs that cause them.

Broadcasting

Up to now signals are involved in communication between the reactive system and its
environment. Local signalscan be used as well. They allow communication among
subsystems: they are hidden from the external observation but they participate to the
behavior of the system.

The synchronous approach assumes that signals are instantaneously broadcast. A
consequence is that all the signals (including the output signals) have to be taken into
account in order to determine the output signals to be emitted. This may induce sur-
prising behaviors (see Section 3.3).

Summary of the Synchronous Hypotheses

Synchronous Hypotheses
1-Signal(support of communication)
2-Perfect sampling(tuples of signals)
3-Logical time(instant)
4-Zero-delay(instantaneous internal operations)
5-Instantaneous broadcasting

These hypotheses, even if not stated in the same terms, are shared with other mod-
els. Abstract Machinesare one of them, especially combinationaland sequentialma-
chines which are not restricted to binary variables (e.g., see J. Zahnd’s book, entitled
“Machines séquentielles” [10]). In Sec.3.3, we shall use Mealy machines to express
the behavior of some ESTEREL programs.

3.2 Reactive Behaviors

In Sec.2.2, we saw that communication, concurrency and preemption were three
major concepts in reactive systems. According to G. Berry [3], they have to be orthog-
onal. ESTEREL reflects this choice and so will do SYNCCHARTS.

Only the presence of a signal may trigger a reaction, so, presence and absence of
signals play a central role in reactive behaviors. It what follows we restrict our attention
to reactive systems with pure signals only. This entails no loss of reactive properties
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and makes explainations easier. PURE ESTEREL is a “kernel” ESTEREL with pure
signals only.

In this part, we recall how the PURE ESTEREL language expresses these concepts;
its primitives are given enclosed in [ ]. Preemption which is typical of reactive behav-
iors deserves a special attention.

Communication

Communication is done by signal broadcasting. Recall that a signal must be either
present or absent at an instant. A signal must be declared as an input signal [input
Ident], an output signal [output Ident], or a local signal with a scope [signal Ident
in stat end signal].

An output or local signal can be emitted by a reaction [emit Ident]. Any signal can
be tested. [present Identthen stat 1 else stat2 end present]. The emission
and the test of a signal take no time.

Concurrency and other control structures

Two processes may execute in an orderly way, independently or exclusively. ESTEREL,
as an imperative language, provides control structures for the sequence[stat 1 ; stat2],
the conditional[present Identthen stat 1 else stat2 end present], and the
infinite iteration [loop stat end loop]. The parallel execution is also supported
[stat1 || stat2]. For all structures, the control passing management takes no time,
in accordance with the Zero-Delay hypothesis. For instance, for “stat 1 ; stat2” , at
the very instant when stat 1 terminates, stat2 begins its execution. Note that parallel
statements start at the same instant, and the parallel terminates when both components
terminate.

Preemption

Preemption either kills the process or suspends it temporarily. Suspensionis forced
as long as a given signal is present [suspend stat when Ident]. Abortionhas two
forms: a weak and a strong one. The strong abortionkills the process as soon as
a given signal is present; the killed process is not even allowed to execute its “ last
wishes” when the abortion occurs [do stat watching Ident]. The weak abortion
differs from the previous one in the fact that the killed process executes its reaction at
the current instant, before getting killed. There is no dedicated primitive for the weak
abortion in the current version of the ESTEREL language. Instead, one has to use an
escape mechanism [exit Ident] and concurrency within a trap [trap . . .end trap].

A preemption is always triggered by the presence of a signal. The default option
is to wait for the first strict future instantwhen the signal becomes present. Immediate
preemptiontakes account of the possible presence of the triggering signal at the current
instant [immediate Ident].

There exists a special process that does nothing for ever [halt]. Of course, this
process takes time! Waiting for the next future presence of a signal [await Ident]
is nothing else that preempting the halt process by this signal [do halt watching
Ident].
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3.3 Causality

Reactive Systems and Circuits

0

a

b

d

c

γ2γ1

Logical  
Time await a

present b then
emit c

else
emit d

end present

;

Figure 2: Circuit Representation

Given an ESTEREL program, it is possible to derive a circuit which exhibits the
same input/output behavior [11]. And besides, the ESTEREL’s compiler version 4 relies
on this fact [12]. Other synchronous languages like LUSTRE, have straight translation
into hardware implementation (see [13] for Boolean LUSTRE).

Fig.2 represents a circuit associated with the following ESTEREL program:

module example:
input a, b;
output c, d;

await a;
present b then emit c else emit d end

end module

A ‘1’ (a ‘0’ ) on a wire is interpreted as the presence (the absence) of the associ-
ated signal. Zero-Delay statements are represented by combinational circuits (e.g., the
rightmost sub-circuit stands for the present . . .end statement). Waiting for a sig-
nal presence involves registers, i.e., sequential circuits. The two registers are initially
reset. Note that the succession of instants is imposed by a control line, external to the
program.

Statements with concurrency and preemption imply more complex circuits, but they
are still made of gates and registers.

Paradoxal Behaviors

Since signals are instantaneously broadcast they may cause “ feedback” wires in cir-
cuits. Let M1 and M2 be two circuits associated with two reactive modules m1 and
m2. If we compose m1 and m2 in parallel and if they have common signals, then we
get a circuit with loops (Fig.3). An input connected to an output becomes unreachable
from the environment. Therefore, the new set of inputs X is a subset of X 1 [ X2,
whereas Z = Z1 [ Z2. The leftmost sub-circuit is an interconnection network.

Assume that M1 and M2 are (deterministic) combinational circuits defined by the
Boolean functions F1 and F2. Connections are expressed by two Boolean functions C1
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M2

M1

M1X1 Z1 X2 Z2M2

X’1

X’2

X1

X2

X Z

Figure 3: Circuit with loops

and C2. The new input to M1 (M2) is X1
0 = C1(X;Z1; Z2) (X2

0 = C2(X;Z1; Z2),
respectively); thus:

Z1 = F1(X1
0) = F1 Æ C1(X;Z1; Z2)

Z2 = F2(X2
0) = F2 Æ C2(X;Z1; Z2)

i.e, Z = F (X;Z). For an input x, the output z must be a solution of z = M(x; z), i.e.,
z must be a fixpointof �y:F (x; y). Because F is not always monotonic, there may be
zero, one or several minimal solutions. A more formal presentation of this statement,
including sequential circuits, can be found in [14]. This is not a new result: It is
known that interconnections of combinational circuits may lead to non combinational
circuits [10].

We use this result to introduce “causality cycles” .

b

c

a

γ

(A)

c

(a)

γ

(B)
γ

(b)
c

(a)

(C)

Figure 4: Causality cycles

Circuit Fig.4.A corresponds to the ESTEREL statement: present a then emit
c else emit b end.  is a control line. Obviously, b = :a and c = :a

Consider now, the statement:

signal a in
present a then emit c else emit a end

end signal
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The associated circuit (Fig.4.B) is cyclic. a is hidden from the outside (local signal).
We have a system of two equations: a = :a and c = :a. If  = 0 then, a = c = 0 is
a solution. If  = 1 then there is no solution since a should be equal to a. The program
is not reactive, and by the way, rejected by the ESTEREL’s compiler.

Fig.4.C is the translation of the following program:

signal a, b in
present a then emit b else emit c end
||
present b then emit a end

end signal

It is easy to see that this circuit is non deterministic. There exist two different
solutions when  = 1: either a = b = 0 and c = 1, or a = b = 1 and c = 0. I.e.,
the program may emit c or not. This non deterministicbehavior is also rejected by the
compiler.

Non determinism and/or non reactivity due to feedback loops are often referred to
as “causality cycles”because an effect (an output) may affect its cause (an input). We
have found the same problems in another synchronous model: the Sequential Func-
tion Charts[15]. Causality problems are somewhat disconcerting for programmers
especially since some correct programs may be rejected by the compiler (Fortunately,
incorrect ones are always rejected).

Some avoid the problem by imposing restrictions: e.g., the synchronous language
SL [16] adds a delay before any negative test (i.e., conditionned by the absence of a
signal). Others adapt the semantics in order to accept any syntaxically correct pro-
grams (see the many semantics of STATECHARTS [6]). The forthcoming version 5
of the ESTEREL’s compiler is about to bring a natural and practical solution to this
problem [17].

4 SYNCCHARTS

SYNCCHARTS2 is a new graphical model dedicated to Reactive System Model-
ing. Many features are inherited from STATECHARTS. A special care is taken in the
representation of preemption.

4.1 A Simple Example

Fig.5 is a watchdog system. set activates the Counter which counts up the
occurrences of T from 0. If Counter reaches 5 then Alarm is emitted. At any time,
reset disables the counting or the alarm.

The example is used to illustrate the definitions of SYNCCHARTS components.
References to this example are given enclosed in [ ].

4.2 Elements of Syntax

Fig.6 gathers the graphical elements of SYNCCHARTS. SYNCCHARTS is a state-
based description of the reactive behaviors. It supports states, hierarchy of states,

2A comprehensive presentation of this model (syntax and semantics) is available [18] as a technical
report.
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TT/c1
c1

c1/c2c2c2

c1, c2

Counter

Alarm

set

reset

isON

Watchdog

Figure 5: SYNCCHARTS of a Watchdog

concurrency, transitions of several types and even textual annotations. Roughly, a
macrostate is either an ESTEREL module or a parallel composition of state-graphs.
Each state graph is a collection of one or several interconnected states, with initial, and
possibly, final states. In turn, a macrostate can be substituted for a state. Instead of
this top-down approach to SYNCCHARTS, we adopt a bottom-up presentation of the
various components.

Star (Fig.6.B)

The graphical basic block is the state. In fact, this block is not only the expression of
some local invariant behavior (its body) but also a full description of the ways to leave
this state (preemptions). So, the basic block is both a classical state and its outgoing
arcs. We would rather call it a star (with outgoing arcs seen as beams). A star is drawn
as a rounded rectangle with its “beams” . Arcs are numbered according to a priority
ordering (the less, the highest priority). The weak abortionis expressed by a plain
arrow (�!). The normal termination, i.e., leaving the star because its body terminates,
is drawn as an arrow with a leading triangle (�!) [leaving Counter when the count
is reached]. The suspensionis denoted by a special dangling incoming arc with a
circle head ((). The strong abortionwhich is a combination of weak abortion and
suspension, is specified by an hybrid arrow (Æ!) [leaving isON triggered by reset].
A star with n outgoing arcs (n beams) is said to be a n-star. There exists a special kind
of star with no beam. It is a 0-star. There is no way to leave a 0-star but by a higher
level abortion.

Constellation (Fig.6.C)

Stars are interconnected to make a constellation. Fig.6.C shows an instance of a con-
stellation with two initial stars and one final star. There may be 0, 1 or several final
stars. Final stars are distinguished by double-line rounded rectangles. There must
be at least one initial star. Initial stars are identified by a dangling incoming arrow
[Counter is composed of 3 constellations]. A constellation need not be a connected
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strong abortion

weak abortion

Ident

L

C1 Cn

(A) Firmament

1

2

3
normal termination

priority

@body

s/e

w/f

i

/h

trigger
effect

(B) Star

2

3

1

initial stars

final star

b

a/s1 /s2

c

c d

a

star1

star4

star2 star3

# c/s0

(C) Constellation

1 2

local signals

name

constellations

suspension

Figure 6: SYNCCHARTS: Elements of Syntax

graph. A constellation can be made of a single 0-star which is implicitly an initial star.
A constellation made of n stars is said to be a n-constellation.

Macrostate (Fig.6.A)

A parallel composition of constellations is a firmamentor a macrostate. The compo-
nents are delimited by dashed lines. There may be a single constellation in a macrostate.
In this case, dashed lines are omitted. A macrostate may have local signals [c1 and c2
are local to Counter]. A macrostate is drawn as a rounded rectangle with a headerin
which the optional name is written. A macrostate with n orthogonal constellations is
said to be a n-macrostate.

Note that a macrostate terminates when each of its components is in a steady final
star [For Counter when the binary code is 101, i.e., 5].

4.3 Communication

Signals

Three sets of signals (the input set Ip, the output set Op, the local set Lp) are asso-
ciated with each star, constellation, macrostate p [ICounter = fTg;LCounter =
fc1, c2g;OCounter = ;]. Of course, signals may appear in ESTEREL modules.
They are also present in labels (see Arc labeling) and in some states (see Terminal
stars).

Let S be a set of signals. Signals may be combined into compound signals, we use
disjunction ‘+’ , conjunction ‘ �’ and negation ‘ ’ (Refer to [18] for details).
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Terminal stars

In a Moore machine, outputs are associated with states. In our synchronous approach
we have to emit these signals at each instant. Moore-like states are special stars whose
body is a simple process that emits all the signals in S at each instant, where S � S.
For convenience, we introduce a short hand notation: an oval with the set of the signals
to be emitted written inside [Alarm].

Arc labeling

An arc is labeled by a pair composed of a compound signal and a subset of signals. The
first component is the trigger, the second component is the effect. They are separated
by a “ /” . One or both components can be omitted. Note that normal termination (�!
arcs) has not explicit trigger.

The label can be prefixed by the symbol “#” . In this case, we use immediatepre-
emption, instead of delayedpreemption which is the default option.

The signals in “effect” can be output or local events. Local events are often used for
synchronization [in Counter, c1 is emitted every other occurrence of T. c1 triggers
a preemption of the middle constellation in Counter].

4.4 Speed Controller

Fig.7 is a syncChart for the Cruise Controller. It is self explanatory. We add only
a few comments. The constellation, in CSC Active, in charge of accelerations, has
two initial stars because, when activating the automatic control, the accelerator pedal
can be either pressed, or not. The former is the normal situation. Note the concise-
ness of the expression of the periodic computation of the regulation algorithm (when
allowed to execute): It is a terminal star strongly aborted and immediatly restarted at
each occurrence of RC (Regulation Clock). The body of the star is the halt pro-
cess. Each preemption triggered by RC, causes the evaluation of R(?SPD,?REF) and
the emission of the result conveyed by the signal TVC. Recall that, in ESTEREL, the
question mark applied to a signal, returns its current value.

5 SEMANTICS OF SYNCCHARTS

In this section we introduce a process algebraic characterization of reactive behav-
iors. This approach takes root in Robin Milner’s works about “synchronous process
algebras” [19]. G. Berry has integrated the preemption in the calculus [3]. We choose
the terse algebraic presentation because it allows precise and concise expression of
complex behaviors. Note that, like in PURE ESTEREL, we restrict SYNCCHARTS to
pure signals.

5.1 Events and Processes

Let I be a set of (pure) input signals i1; i2; � � �, andO a set of (pure) output signals
o1; o2; � � � An input eventis a subset I of I and an output eventis a subset O of O.
All the signals in an event are simultaneously present. The sequence of input events
I1; I2; � � � ; In; � � � at logical instants 1; 2; � � � ; n; � � � is called an input history. The se-
quence of output events O1; O2; � � � ; On; � � � at the same instants is an output history.
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Cruising Speed Controller

TVC(A(?SPD))

CSC Operational

Sleep

RES

CSC Active

# Sleep
RC / TVC(R(?SPD,?REF))

/REF(?SPD)

#R_susp

APP
1

# APP
2

# APP

APP

R_susp

TVC(A(?SPD))
APP

Sleep

#BPP

R_susp, REF: integer

SET OFF
1

SET

2

Regulation

Figure 7: SYNCCHARTS of the Cruise Controller

A synchronous model of sort fI;Og maps an input history into an output history:

B : I��!O�

Let S be a set of signals and ? be a distinguished element of S ; ? stands for a
signal which is never present(the never occurring signal).

Definition 1 (Process) Let p; n; q be processes onS; s; t 2 S, ands0 2 (S� f?g).
Then

1. 0 is a process on S (null)

2. s0 is a process on S (emission)

3. p j q is a process on S (parallel)

4. p� is a process on S (loop)

5. p n s0 is a process on S (restriction)

6. p [t=s0] is a process on S (renaming)

7. s�� p is a process on S (suspension)

8. s% p� n; q is a process on S (abortion)

The first process is useful to build derived constructors. The next four constructors
are classical imperative constructors. The sixth constructor is usual in process calculus.
Note that ? cannot be renamed, but any signal can be renamed into ?. The last two
constructors are typically reactive.

With each process p, we associate three disjoint subsets of S : Ip;Op;Lp respec-
tively called the input, the output, the local sorts of p. See Annex.A for details.

Definition 2 (Event) An eventE is a subset ofSwithout the never occurring signal:
E � S�f?g. Given a processp onS , I � Ip is an input event,O � Op is an output
event.
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5.2 Semantics

The semantics is expressed by a behavioral semantics. The behavior of a pro-
cess is a deterministic mapping from input sequences to output sequences. A reac-
tion is interpreted as a process rewriting. Given a process p and an input sequence
I1; I2; � � � ; In; � � �, the output sequence O1; O2; � � � ; On; � � � is computed as a chain of
individual reactions:

p = p1
I17�!
O1

p2
I27�!
O2

� � � pn
In7�!
On

pn+1 � � �

A transition pn
In7�!
On

pn+1 represents a single reaction. The p
I
7�!
O

p0 relation is de-

fined using an auxiliary relation p
Ep; b

���!
E

p0 defined by structural induction over p. E is

the set of signals that p sees as being present, Ep is the set of signals that p emits when
receiving E, and b is a Boolean (termination bit) such that b = tt if p terminates and
b = ff otherwise (p is said to wait).

The broadcasting invariantEp � E must be maintained during all the derivations.
Given a process p, an input event I :

p
O
7�!
I

p0 iff p
O; b
��!
I[O

p0 for some b

Rewriting rules associated with the basic processes are given in Annex.B.

Remark: Our set of operators is not minimal. For instance, “0” could have been
defined as “(s n s)” . However, taking 0 as a primitive is simpler than deriving it from
the somewhat complex restriction.

5.3 Derived Constructors

For convenience and for compatibility with ESTEREL, new constructors are derived
from the previous ones:

Derived Imperative Constructors

1 (pause)
p; q (sequence)
s?p; q (conditional)

They can be defined as:

1 � (s j (s�� 0)) n s

p; q � ? % p� q; 0

s?p; q � s% (s�� 0)� q; p

1 waits for the next instant. p; q executes p and then q, in sequence. The conditional
s?p; q executes either p or q according to the presence or the absence of s.
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Derived Reactive Constructors

They stand for specific preemptions.

p : sm q � s% p� 0; q (weak abortion)
p : sm> q � (s�� p) : sm q (strong abortion)
s)� p � (1�) : sm p (trigger)

Comments: The strong abortion is derived from both suspension (��) and weak abor-
tion (m). That is the reason why, in SYNCCHARTS, we have chosen the symbol (Æ!)
for strong abortion; it is an hybrid of( (suspension) and �! (weak abortion). Be-
cause of the suspension of p by s, the strong abortion prevents p from executing at the
instant when it is preempted.

Delayed operators

Up to now, we have considered immediate and future occurrences of signals, often
only strict future occurrences are desired. Suspension and abortion operators have
their “delayed” counterparts:

Æds �
�
1; (s?d; 0)

�
�

s) p � 1; (s)� p)

s � p �

���
((d�� p) ; t) j Æds

�
n d
�

: tm 0

�
n t

p : s > q �

���
(s) d) : dm 0

�
j (p : d)

�
: dm q

�
n d

p : s� q � (s � p) : s > q

Starting with the above mentioned operators, it is possible to derive new ones,
easier to use and with a strictly defined semantics. For example, we have introduced
the generalized termination[18]: A process can be aborted in several ways, leading to
different processes. In order to preserve a deterministic behavior, triggering conditions
are evaluated according to a priority ordering. We denote the generalized termination
of p by: “p : �1 �1 q1; � � � ; �n �n qn” where p; q1; � � � ; qn are processes, �1; � � � ; �n are
compound signals, and �1; � � � ; �n 2 fm; >;m>;�g. For at most one j, �j �j qj may
be replaced by � qj , standing for the normal termination. The priority is decreasing
from left to right.

The behavior of every component of SYNCCHARTS has been expressed with the
above algebra. For instance, the generalized termination has been used to formally
characterize the way of leaving a star. Interested readers are urged to refer to the tech-
nical report devoted to SYNCCHARTS [18].

6 CONCLUSION

In this paper, we have addressed the problem of Reactive System Modeling. We
have focused on the control-dominated systems, and we have advocated the use of the
Synchronous Approach.
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The Synchronous Approach

The synchronous paradigm leads to an elegant, rigourous and powerful abstraction
of reactive behaviors. The Zero-Delayhypothesis is the cornerstone of this approach.
Augmented with other hypotheses, like the instantaneous broadcasting of signals, syn-
chrony is very convenient to deal with (logical) time. The notion of preemption, often
ignored or, at best, poorly treated by the classical approaches, is raised to the rank of
a first-class concept, orthogonal to communication and concurrency. Thanks to the
synchronous hypotheses, reactive models compose very well in a deterministic way.
Instantaneity of reactions may induce some surprising behaviors. We have explained
them by analogy with logical circuits.

A synchronous description may be textual or graphical. The second goal of our
contribution was to introduce a new synchronous graphical model: SYNCCHARTS.
This model adopts many features of STATECHARTS. SYNCCHARTS has been espe-
cially tailored to support the various forms of preemption in an unambiguous way,
what STATECHARTS cannot easily do. The semantics of SYNCCHARTS relies on a
process algebra, fully compatible with that of ESTEREL. Thus, SYNCCHARTS allows
insertion of ESTEREL code as annotations, and can be automatically translated into
ESTEREL programs.

Applications of SYNCCHARTS

We have used SYNCCHARTS in specification and in effective programming of small
applications. Our applications are mostly control-dominated systems. For instance,
we have specified the behavior of a part of a F.M.S [20]: A syncChart expresses the
changes in functioning modes (a fully operational pipe-lined operating mode, and a
degraded sequential mode). Modechart [21] and augmented StateCharts introduced
in [22] would have been used, as well. The former is a specification language for
real-time systems that emphasizes the specification of absolute properties of systems.
The latter addresses the requirements specification for process-control systems. Both
are ambitious projects, applied to large scale systems. Both rely on enhanced STATE-
CHARTS, but none deals with preemptions in a so precise way as SYNCCHARTS does.

Another potential use of SYNCCHARTS is in object-oriented systems. Harel and
Gery [23] specify the behavior of a class in an O-chart (a hierarchical OMT-like repre-
sentation) by a controlling statechart. We have used SYNCCHARTS in the same pur-
pose [24].

Perpectives

SYNCCHARTS is at the prototype stage: if its semantics is well-founded, its envi-
ronment is still to be implemented. Many research groups in Europe participate to the
Synchronproject which aims at developing the “synchronous platform” . This platform
supports synchronous languages and models, interfaces to model checkers, simulator
generators, and code generators. Our team “ SPORTS” (Synchronous Programming Of
Real Time Systems) has already contributed to this objective by providing tools dedi-
cated to Sequential Function Charts [25]. SYNCCHARTS should be our next contribu-
tion.
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A Sort Transformations

Let p be a process on S. Let Ip;Op;Lp be its input, output, and local sorts. Two
auxiliary sets are introduced:

Xp = Ip [ Op and Sp = Ip [Op [ Lp

Xp is the interface set of p, Sp is the sort of p. These sets are defined inductively as
follows:

For each operation:

Lpp = if pp = p n s then Lp [ fsg else ;

Ipp = Xpp �Opp and Spp = Xpp [ Lpp

pp Xpp Opp

0 ; ;
s fsg fsg
p j q Xp [ Xq Op [ Oq

p� Xp Op

p n s Xp � fsg Op � fsg
p [t=s] (s 2 Xp) Xp [t=s] Op [t=s]
s�� p Xp [ fsg Op

s% p� n; q Xp [ Xq [ Xn [ fsg Op [ Oq [ On

Note that our renaming is restrictive: only an input or output signal of a process
can be renamed, not a local signal.

B Rewriting Rules

0
;;tt
���!

E
0 (null)
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s
fsg;tt
����!

E
0 (emission)

p
Ep; bp
���!

E
p0 q

Eq; bq
���!

E
q0

p j q
Ep[Eq; bp^bq
��������!

E
p0 j q0

(parallel)

p
Ep;ff
����!

E
p0

p �
Ep;ff
����!

E
?% p0 � (p�); 0

(loop)

p
Ep; b

����!
E[fsg

p0 s 2 Ep

p n s
Ep�fsg; b
������!

E
p0 n s

(restr1)

p
Ep; b

����!
E�fsg

p0 s 62 Ep

p n s
Ep; b

���!
E

p0 n s

(restr2)

p
Ep; b

���!
E

p0 s 2 Xp

p [t=s]
Ep [t=s]; b

������!
E [t=s]

p0 [t=s]

(renam)

s 2 E

s�� p
;;ff
���!

E
s�� p

(susp1)

s 62 E p
Ep;tt
����!

E
p0

s�� p
Ep;tt
����!

E
0

(susp2)

s 62 E p
Ep;ff
����!

E
p0

s�� p
Ep;ff
����!

E
s�� p0

(susp3)

p
Ep;tt
����!

E
p0 n

En; b
���!

E
n0

s% p� n; q
Ep[En; b

�����!
E

n0
(abort1)

s 2 E p
Ep;ff
����!

E
p0 q

Eq; b

��!
E

q0

s% p� n; q
Ep[Eq; b

�����!
E

q0
(abort2)
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s 62 E p
Ep;ff
����!

E
p0

s% p� n; q
Ep;ff
����!

E
s% p0 � n; q

(abort3)


