

Behavioral Specification of a Circuit using SyncCharts:

A Case Study

Charles André, Marie-Agnès Peraldi-Frati
I3S Laboratory - University of Nice Sophia-Antipolis / CNRS

2000 route des Lucioles, BP 121
06903 Sophia Antipolis cédex - France

{andre,map}@i3s.unice.fr

Abstract

In this paper we propose a high-level description of the behavior of digital systems. Behaviors are specified with a

graphical synchronous model: “SyncCharts”. SyncCharts supports hierarchical descriptions, concurrency and preemption.
It is fully compatible with the programming environment of the Esterel synchronous language and can generate output
formats understandable by synthesis tools. Thanks to the mathematical semantics of the model, the correctness of the
design can be formally established. Taking the example of a non-trivial binary encoder/decoder, we show how our
approach makes the design easier, without loss of rigour or efficiency.

Keywords:

System specification and modeling, Validation, Synchronous programming.

Presented at:

Euromicro’2000 - Digital System Design 2000 (DSD’2000), September 5-7, 2000
Maastricht (NL)

I3S Research Report : #00-06 , May 2000

Behavioral Specification of a Circuit using SyncCharts: a Case Study 2

Behavioral Specification of a Circuit using SyncCharts: a Case Study

Charles André, Marie-Agnès Peraldi-Frati
I3S Laboratory - University of Nice Sophia-Antipolis / CNRS

2000 route des Lucioles, BP 121
06903 Sophia Antipolis cédex - France

{andre,map}@i3s.unice.fr

In this paper we propose a high-level description of the
behavior of digital systems. Behaviors are specified with
a graphical synchronous model: “SyncCharts”. Sync-
Charts supports hierarchical descriptions, concurrency
and preemption. It is fully compatible with the
programming environment of the Esterel synchronous
language and can generate output formats understandable
by synthesis tools. Thanks to the mathematical semantics
of the model, the correctness of the design can be
formally established. Taking the example of a non-trivial
binary encoder/decoder, we show how our approach
makes the design easier, without loss of rigour or
efficiency.

1. Introduction

Different approaches can be adopted in digital circuit
design. Depending on his/her scientific background, the
designer may prefer either abstract specifications
(equational or functional) or state-based specifications
with graphical representation. In both cases, there exist
pros and cons. Mathematical expressions lend themselves
to advanced compilation techniques and easy connections
to formal verification tools. Unfortunately, mathematical
formulations are often reserved to experts. A non
mathematically-inclined customer is never sure that the
proposed mathematical expression fully addresses his/her
requirements. The gap between requirements and
specifications also exists in state-based descriptions, but
to a lesser extent. Many people feel more comfortable
with graphical representations. Explicit representation of
states facilitates the understanding of behaviors; possible
animation of the model makes it still easier. A danger of
graphical representations may be a weak, or even worse,
the absence of, semantics. Too many graphical models
are semi-formal, indeed even informal. Ambiguity
disqualifies such models in digital circuit design. “State
Transition Graphs” do not suffer from weak foundations
and they are often used in the design of simple sequential
circuits. Their drawback is that they are “flat” models,
liable to explosion of the state space for complex

applications. To sum up, a mathematical approach allows
a precise and powerful expression of behaviors, and easy
connections to synthesis and verification tools. Graphical
state-based representations of behaviors may be less
abstract and thus within the reach of a larger audience.
However, complex systems may lead to huge and useless
graphs. Whatever the representation, it should be
readable, easy to extend and to maintain, with possibilities
of simulations and formal verifications.

What we propose is a behavioral description based on
a state-transition model, mathematically well-founded.
State transition graph is a low-level model not suited to
complex system design. Instead, we opt for a higher-level
model, like Statecharts [1], able to deal with hierarchy,
concurrency and pre-emption. The actual model we use is
“SyncCharts” [2], clearly inspired by Statecharts. The two
models differ in their underlying semantics. The
SyncCharts1 semantics is fully synchronous and perfectly
fits Esterel’s semantics [3]. The semantics of Statecharts,
such as the one adopted in Statemate [4], is more comp lex
(micro-step semantics). Moreover, SyncCharts offers
richer constructions for preemption. Being akin to Esterel,
SyncCharts may also include textual descriptions written
in Esterel: the designer may choose textual or graphical
descriptions for different parts of his/her design.

In fact, SyncCharts is now fully integrated in the
“Esterel Studio” platform, marketed by Simulog [5]. As a
consequence, SyncCharts has direct access the whole
programming platform developed for Esterel: compilers,
simulators(XES), model-checkers (XEVE [6]) and circuit
optimizers that rely on SIS [7] and TiGeR [8] (an efficient
BDD-based tool).

SyncCharts can be used to specify the behavior of any

control-dominated discrete-event system. In this paper we
present the use of SyncCharts in the design of a binary
stream encoder/decoder. Through this example we try to
draw advantages of our approach, and contrast it with the

1 “SyncCharts” is the name of the model, whereas a

“syncChart” is an instance of the model.

3 I3S-Research Report 00-06 – May 2000

classical approach proposed in Zahnd’s book on
Sequential Machines [9].

The next section describes the encoder problem. This

small example contains several pitfalls that are analyzed.
The solution proposed in Zahnd’s book is then recalled
and commented. This is the occasion to point out
strengths and limitations of finite state machine modeling.
The next section illustrates our approach. Main features of
SyncCharts are introduced through the example. We
explain how to specify the expected behavior in a
modular way. The fifth section considers optimization
issues and formal proofs of properties.

2. Example of an Encoder/Decoder

The Encoder/Decoder system, represented on Figure 1 ,
is classical in the field of data transfer. It has been devised
for electrical transmission by wire. Even if wireless
communication has lessened the significance of this
coding technique, it is still worth studying it because it
raises several interesting algorithmic issues.

Figure 1. Encoder/decoder

Informal presentation

This encoding/decoding system is used to transmit
binary streams. Bits are encoded into a three-level valued
electrical voltage: positive (p=+U), negative (n=-U),
or null (z=0), for a given constant positive voltage U.
Two requirements are imposed:
1. The mean voltage must be 0, and at each instant the

accumulated voltage must stay between –U and +U.
This avoids electronic problems due to bias polarity.

2. The transmitted code shall never contains more than
three consecutive null values. This prevents from
clock de-synchronization and misinterpretation of a
line break as a continuous stream of z’s.

Typically these requirements are imposed for

physical/electrical reasons. The first requirement is easily
captured by a simple encoding technique: z for 0, and
either n or p, in alternation, for 1. The second requirement

is trickier: sub-sequences of four consecutive 0’s are also
encoded with n or p. In order to set apart “true” 1’s from
“false” 1’s (series of four 0’s) “Violation” of polarity is
used, instead of “Alternation”.

Formal specification

Encoding. Let X = {0,1} be the input alphabet, U =
{n,z,p} the output alphabet; the encoding function is a
mapping from X-sequences onto U-sequences:

encoding : X* → U*.
This mapping is length-preserving:

∀x ∈ X* |x| = | encoding (x) | where |x| denotes the
length of sequence x.
Let x = (x(1), x(2), …, x(n), …) be the input sequence,

where x(k) ∈ X, and u = (u(1), u(2), …, u(n), …) be the
associated encoded sequence, where u(k) ∈ U. x(1..k)

denotes the sub-sequence (x(1), x(2), …, x(k)), • the
sequence concatenation, and λ the empty sequence.
Recall that λ is neutral element for • .

The first requirement is expressed by

1

1 ()
k n

k

n u k U
=

=

∀ ≥ ≤∑

the second one by
 ∀n > 3 ¬ (u(n) = u(n-1) = u(n-2) = u(n-3) = z)

The encoding functions defined below are supposed to

respect these requirements. Establishing this property is
one of our challenge.

Encoding functions:

• Normal encoding:
encoding(0) = z and encoding(1) = either p, or n,
alternately.

• Exceptional encoding:
encoding(0000) = P•z•z•V, where P stands for
“Parity” and V for “Violation”. P,V ∈ U are
computed with the auxiliary functions Π and ∇
defined below.

Let Π : U*× Nat → Boolean, such that

Π(u,k) = (card({u(j) | (u(j) ≠ z)∧(1 ≤ j ≤ k) }) = 0 mod 2).
Given a U-sequence u and an index k , this function
returns the (even) parity of the number of u(j) components
before or at index k , which are different from z.

Transmitter Receiv er
Bin Bout

+U

-U
0

z p n z z n z p z

010000010 010000010

time

Behavioral Specification of a Circuit using SyncCharts: a Case Study 4

Let ∇: U*× Nat → Nat, such that
∇(u,k) =Max{j | (1≤ j≤k)∧(u(j)≠z)} if defined, 0 otherwise.
Given a U-sequence u and an index k , this function
returns the index j of the nearest U-component, before or
at index k such that u(j) is different from z.

By convention, we assume that u(0) = n , Π(λ,0) = true
and encoding(λ)=λ.
Let – be a unary operation on U, such that -n = p , -p = n ,
-z = z.
Standard encoding is such that :

∀ x(1..k) such that ¬ (x(k) = x(k-1) = x(k-2) = x(k-3) = 0)
let y = x(1..k-1), v = encoding(y), and u = encoding(x)

u = encoding (y•0) = v • z
u = encoding (y•1) = v • –v(∇(v,k-1)) (Alternation)

Exceptional encoding is such that :
∀ x ending with 0000 , x(k) = x(k-1) = x(k-2) = x(k-3) = 0
let y = x(1..k-4), v = encoding (y), and ϖ = v(∇(v,k-4))
u = encoding (y•0•0•0•0) = v•P•z•z•V where

P = if Π(v,k-4) then z else –ϖ
and V = if Π(v,k-4) then ϖ else –ϖ (Violation)

For a U-sequence u(1..k) , a violation occurs when u(k) =

u(∇(u,k-1)), an alternation when u(k) = −u(∇(u,k-1)).
So, P is z if Parity is even, or Alternation if odd; whereas
V is always a Violation.

This formal description is all but obvious (recursion
and case separations). It needs some familiarity with
notations, mathematics, and above all, the links between
the requirements and this specification have to be
justified. This is definitely beyond the scope of this paper.
A solution to the implementation of such an encoder
should be a compiler that directly generates a circuit from
this mathematical specification. What is great with
mathematics is that the satisfaction of the requirements
might be automatically checked. We did not do that for
two reasons: 1) we do not have access to such checkers,
2) we adopt another approach, less formal, albeit rigorous.

Table 1. Encoding example

Table 1 illustrates the encoding of a sequence. The
different lines of the array represent from top to bottom:
the instant (k), the input sequence (x), the encoded output
sequence (u), the Parity status, the Violation and
Alternation occurrences, the accumulated value of the
voltage on the wire showing that requirement 1 is
fulfilled. Last line indicates N(ormal) or E(xceptional)
encoding. Bold 0’s highlight “exceptional” sub-sequences.

Causality. The specification shows that the value of
u(k) depends on values of x(k), but also of x(k+1), x(k+2),
x(k+3), that is, on the future. Therefore, this system is not
causal, and so, it cannot be realized, as such, by a
sequential machine. The classical solution to make a
system causal, is to introduce a bounded delay (a 3-delay
is needed in this application). Figure 2 shows the classical
solution. The synthesis effort is then in the design of a
standard Mealy machine (box on the right in Figure 2). u’
is the new output signal, such that ∀ k, u’(k) = u(k-3). Of
course the first three values of u’ are meaningless.

Figure 2. Solving the causality problem.

Decoding. The decoding problem is analogous to the

encoding one. Due to the symmetry of the problem,
decoding requires 3 delays to make the system causal and
the algorithm is a bit simpler than for encoding: Parity has
not to be taken into account. Detailed design of the
decoder is omitted in this presentation.

3. A classical solution

In his book, Zahnd chose a Mealy machine as a model
to represent the encoder example. Figure 3 specifies the
behavior of the Mealy machine whose inputs are d and f,
and output u’.

Graphical representation may have a great explanatory
power. What is difficult is to choose a “good” layout. The
one in Figure 3 , is specially effective.

Annotations (text, dashed lines and line thickness) may

be very useful to improve understanding:
• Two dashed lines delimit 4 quadrants. The vertical

line is associated with “Parity”, the horizontal line
with “Violation”.

D D D

f

d

u’

x 3-delayed x

f = 1 iff 4 consecutive 0

k 1 2 3 4 5 6 7 8 9 10 11
x 0 1 0 0 0 0 1 0 0 0 0
u z p n z z n p z z z p
Π t f t t t f t t t t f
A/V A A V A V
Acc 0 +U 0 0 0 -U 0 0 0 0 +U
N/E N N E E E E N E E E E

k: instant; x: input; u: output ; Π: Π(u,k);

A/V: Alternation/Violation; Acc: Accumulated value;
N/E: Normal/Exception.

5 I3S-Research Report 00-06 – May 2000

• Transitions that cross the horizontal line correspond
to violations.

• In states on the left-side of the vertical line, parity is
even; in states on the right-side, parity is odd. All
transitions between states in the two upper quadrants,
or the two lower quadrants correspond to
alternations.

• Exceptional sub-sequences are distinguished by
thicker lines.

Figure 3. Mealy machine of the Encoder

In spite of its qualities this graph has several
drawbacks:
• The graph is not the state graph of the encoder, but

only of a part. The actual graph is a composition of
this one with a 3-delay machine. Besides its number
of states too large to be reasonably displayed on a
single sheet, we did not succeed in drawing an “easy-
to-interpret” graph.

• The graph Figure 3 may be misleading: variables f
and d are not independent inputs: f = 1 implies d = 0.
A careless user should believe that, according to the
graph, a sequence of 4 consecutive inputs df = 00 lets
the machine in the initial state, which violates
requirement 2.

• Even a small change in the specifications could
jeopardize this bright design. This is a well-known
problem with automata. This is a serious impediment
to incremental design.

4. The SyncCharts Approach

We illustrate the use of SyncCharts through the
“Encoder” example. A detailed presentation of the syntax
and the semantics of SyncCharts has been published
elsewhere [2].

Signals

In synchronous modeling, communications are
abstracted as “signals”. With each signal is associated a
presence attribute and optionally a value attribute. A
signal that conveys a value is said to be a “valued
signal”, otherwise it is a “pure signal”. For binary circuit,
Boolean valued signals can be used. A better choice is to
use pure signals with the convention that a present signal
is “true”, an absent signal is “false”. Since this is a matter
of interpretation, the designer is free to assign a different
meaning to the presence status. Having only pure signals
is important when we plan to use symbolic model-
checkers like XEVE.

With respect to the environment two kinds of signals
are distinguished: input signals that convey information
to the controller, and output signals that export
information.

For the Encoder, we have :
• input Bin;
• output Minus , Zero, Plus;

There is a third kind of signals: the local signals. They
are not visible to the outside, they convey internal
information and are used in synchronization.

1

3

2

Legend:
d f / u’

10/n

10/p

01/z

4

0-/z

5

0-/z

01/n

Violation

67

8

9

10

0-/p0-/p

0-/n

0-/z

0-/z

01/z 10/n

10/p

01/p

00/z 00/z

00/z00/z

(even) Parity (odd)

Behavioral Specification of a Circuit using SyncCharts: a Case Study 6

Agents

The Encoder is decomposed into several cooperating
agents. Each agent has a simple and well-defined mission.
For the Encoder, we chose 4 agents (Figure 4):

• The detector of 4 consecutive 0’s (DETECTOR),
• The parity manager (PARITY),
• The output manager that decides to emit either

Plus or Minus (NONZERO),
• The sequence manager that is the core of the

encoding algorithm (SEQUENCER).

Figure.4: SyncChart of the encoder (level 0)

In SyncCharts, the behavior of an agent is specified

with a macro-state. A macro-state is translated into a
module in Esterel. A macro-state is drawn as a rounded-
corner rectangle. It is advisable to give a name to a
macro-state. An icon at the upper right corner of a macro-
state indicates the type of macro-state (@ stands for
reference, i.e., the body of the macro-state is defined
elsewhere; the icon in SEQUENCER says that the graphical
representation is defined “in-place”; a third icon, not used
in Figure 4, indicates a textual body, directly written in
Esterel). Dashed lines mean that all the macro-states are
composed in parallel.

Interactions

According to the synchronous hypotheses, communi-
cations among agents are modeled by instantaneous
broadcasting of signals. Local signals DelayedX, Alterna-
tion, Violation, FourZeros, PlusOrMinus have been intro-
duced to support communications among the Encoder’s
agents. The text at the bottom of the macro-state Figure 4
is a declaration of these local signals.

Agents’ behavior

Macro-states are recursive structures: the body of a
macro-state is itself a syncChart. That is a way to deal
with hierarchy. SyncCharts also applies the “Write Once,
Read Many” principle: a macro-state defined once, can be
re-used several times with possible signal renamings.

To leave a macro-state, SyncCharts uses pre-emptions.
Pre-emption is the possibility for an agent to prevent other
agents from executing. A pre-emption may be temporary
(suspension) or definitive (abortion). In imperative
synchronous programming, pre-emption is used for
synchronization. There exist two kinds of abortion: weak
and strong, and also a special form called “normal
termination”. SyncCharts supports all of them. The shape
of the transition reflects the type of pre-emption: a simple
arrow stands for weak abortion, an arrow with a small
circle at the end is a strong abortion, and an arrow ending
with a triangle is a normal termination. As in Statecharts,
arrows are labeled with triggering events (signals whose
presence causes the transition), effects (signals emitted
during the transition) and possibly a guard (pre-condition
for the transition to be fired).

Figure 5. SyncChart of the Detector.

Figure 5 is the syncChart for the DETECTOR. The 3-

stage shift register is made by the parallel composition of
three instances of the DELAY macro-state (the DELAY
macro-state and the renamings of the DELAY instances are
omitted). The detection is made by a textual macro-state:
the Esterel code says that signal FourZeros is emitted
whenever all 4 bits (Bit0, …, Bit3) are absent. Note that
Bit1 and Bit2 are local signals. Bit0 is renamed as Bin (the
input of the Encoder) and Bit3 as DelayedX.

Figure 6 is the syncChart for the SEQUENCER. This
syncChart expresses the algorithm. The two cases are set
apart; The treatment in each case is clearly identified.
Switching from mode “Normal” to mode “Exception” is
instantaneous: as soon as FourZeros is present (this signal

@DETECTOR[..] @

SEQUENCER

@PARITY @

@NONZERO @

signal DelayedX, Alternation, Violation, FourZeros, PlusOrMinus

ENCODER

D0@DELAY[..] @ D1@DELAY[..] @ D2@DELAY[..] @

loop
 present Bit0 or Bit1 or Bit2 or Bit3 else
 emit FourZeros
 end present
each tick

signal Bit1, Bit2

@DETECTOR [signal Bin/Bit0, DelayedX/Bit3]

7 I3S-Research Report 00-06 – May 2000

is emitted by DETECTOR) the control leaves the NORMAL
macro-state to enter the EXCEPTION macro-state by a
strong pre-emption. When the exceptional sequence is
finished, spontaneously (normal termination) the control
returns to the NORMAL macro-state.

Compilation

The outlines of the compilation chain are:
• SyncCharts compiler: From a syncChart to a

semantically equivalent Esterel program;
• Esterel compiler: From an Esterel program to output

code:
• C programs for simulation with XES
• Blif description for optimization (with SIS) and

verification (XEVE).
Blif (Berkeley Logic Interchange Format) is a textual
representation of a circuit. It is an input format to
SIS.

Figure 6. SyncChart of the sequencer

5. Validation and Performance

To validate the design, we proceed in two steps:
simulation and formal verification.

Test of scenarios

XES is an interactive simulator, which is part of the
Esterel distribution. Given an Esterel program, XES
automatically builds simulation panels that show the
status of input signals (set by the user) and output signals
(set by the program under test). Execution is traced in the
source program, so that the user can visualize concurrent
evolutions and pre-emptions. This possibility is now
extended to SyncCharts. “Esterel Studio” can do the
animation of the syncChart of the controller. Active
macro-state are colored red, fired transitions are colored
green. This is an invaluable aid to the understanding of
the behavior. A software “tape recorder” allows the user
to record and play sequences of inputs (scenarios).
Testing of scenarios reveals many misconceptions. Since

SyncCharts is a high-level description of the behavior, it
is often easy to find out the bug and correct it.

Safety properties

Even if the design passes successfully all the tests, it is
not sure that all the cases have been covered. In order to
establish a safety property, we have to check this property
in all reachable states of the controller. The size of the
actual reachability set can make the analysis untractable.
Fortunately, there exist symbolic computations of the
reachability set that allow for state abstraction without
loss of exhaustivity. XEVE, a symbolic model-checker
available in the Esterel platform, is able to compute
(symbolically) the state space of a given program. XEVE
can formally establish whether or not a safety property is
satisfied. Safety properties can be expressed by temporal
logic formulas. We prefer to use the same formalism to
express both behaviors and properties: a property is given
as an Esterel module or a syncChart.

The principle of the proof is to associate an observer
with the property and compose this observer in parallel
with the controller to check. An observer is a reactive
agent that “observes” input and output signals of the
program and emits a “violation signal” as soon as the
property is not satisfied. XEVE symbolically executes the
program composed with the observer. If the violation
signal is never emitted, then the property is satisfied,
otherwise XEVE returns a sequence leading to the
counter-example. This is a very effective way to find out
deeply hidden errors. Of course, several properties can be
checked at once if you use several observers. Note that
the safety property observers are used during the
verification phase (i.e., the symbolic execution of the
controller augmented with the observers). There are
needless at run-tine for a guaranteed property.

Figure 7. Observer for requirement 1

For the Encoder, a simple state transition graph (a

special case of SyncCharts) is sufficient to prove that
requirement 1 is satisfied (see Figure 7). For requirement
2, a syncChart with a strong abortion is more suitable (see
Figure 8).

present Even then
 emit Zero
else
 emit Alternation
end present ; pause;
emit Zero ; pause;
emit Zero ; pause;
emit Violation ; pause

EXCEPTION

loop
 present DelayedX
then
 emit Alternation
 else
 emit Zero
 end present
each tick

NORMAL

FourZeros

SEQUENCER

TooNegative

n n n

p p p

-U 0 +U

TooPositive

OBSERVER_R1

Behavioral Specification of a Circuit using SyncCharts: a Case Study 8

Figure 8. Observer for requirement 2

Other interesting safety properties:
A first property concerns the behavior of the encoder: at
each instant one and only one signal out of n, z, p is
emitted. This kind of property is expressed by a
combinatorial formula, easily captured by a textual
Esterel module.

module OBSERVER_EXCLUSION :

input n, z, p; % emitted by the controller
output non_exclusive; % violation signal

loop

present (n and not z and not p)
 or (not n and z and not p)
 or (not n and not z and p)

 else
 emit non_exclusive
 end present
each tick

end module

Figure 9. Observer for sequence preserving

Another essential property to prove is that the pair
“Encoder Decoder” works correctly. This property is a
safety property, too. You compose in parallel the
syncChart of the Encoder, and the syncChart of the
Decoder. Then you build an observer that compares the
input of the Encoder (signal Bin) with the output of the
Decoder (signal Bout). They should be identical, up to
some delay (here a 6 instant delay). The observer puts Bin
as input to a 6-stage shift register (see the DETECTOR) and

compares the output of the shift register with Bout.
Fortunately the property is satisfied. Figure 9 outlines the
solution and clearly shows that an observer modifies in no
way the behavior of the controller

Performance

The translation from SyncCharts to Esterel is
structural: The translation is fully automatic but not
always clever. In many cases an expert in Esterel
language, can find more efficient translations. However,
this is not a problem because there exist tools able to
optimize the generated code, at the circuit level.

 Efficiency must be assessed for the whole process,
from the requirements to the implementation.

Examples
Encoder || Observer for requirement 1: reachability set:
159 states.
Encoder || Observer for requirement 2: reachability set:
175 states.
Encoder: reachability set: 105 states.
But Encoder and optimization with SIS: 35 states, that is
what you obtain with much effort using the classical
approach.
Decoder and optimization with SIS: 31 states.
Encoder || Decoder || Observer for identical bit streams:
623 states.

6. Conclusion

State transition graphs are often used to express the
behavior of sequential systems. They are understandable
even by non-specialists, but this flat model is not suitable
for complex systems. Moreover, state machine
descriptions are very sensitive to small changes in the
specifications. This is detrimental to incremental design.
Since systems involve more and more concurrency and
exceptional behaviors, there is a demand for hierarchical
models, dealing with concurrency and pre-emption. In
this paper, we have proposed SyncCharts, a model
derived from Statecharts, to address this problem.

SyncCharts allows high-level specification of reactive
behaviors. It is a synchronous model, fully compatible
with the Esterel language, so that, a syncChart can mix
graphical and textual descriptions sharing a common
semantics.

Taking an example of Binary stream Encoder/Decoder
we have shown how SyncCharts favors decomposition of
the system into interacting agents. These agents are
tightly coupled. Because synchronous operations compose
well, the emergent behavior remains tractable.

Encoder Decoder
z
p

n

6_stage_shift_register

Bin Bout

Violation

OBSERVER

z z

p or n

OBSERVER_R2

z

TooManyZ

z

9 I3S-Research Report 00-06 – May 2000

SyncCharts takes advantage from the programming
environment developed for Esterel. Given a syncChart, an
interactive simulator can be automatically built. This
simulator is used to test scenarios. Moreover,
programming facilities allows the user to visualize the
execution at the source level, i.e., by animation of the
syncChart.

The mathematically defined semantics of the model
makes it easy to conduct formal verifications on
SyncCharts. Safety properties are checked by symbolic
model-checking. The expression of the properties can be
made in SyncCharts itself, or in Esterel.

Finally, we consider the possibility to use SyncCharts
as a language for the design of digital circuits. After
compilation, a subclass of syncChart can be compiled into
a circuit (blif file) and therefore be further optimized. The
results obtained with the Encoder/Decoder are
encouraging, since after optimization, our high-level
approach gives the result that could have been obtained
by hand-coding, but at the price of much effort. Moreover
the design was proven correct.

We have, now, to tackle larger designs, for which
hand-coding is ruled out. The Esterel compiler, on which
SyncCharts indirectly relies, has been developed to cope
with large problems. In order to improve the efficiency of
the circuit design we plan to explore two ways:
• First, better structural translations of SyncCharts into

Esterel without any change in the Esterel language
itself,

• Second, cooperative development2 of SyncCharts
translator and Esterel compiler so that behavioral
information present in SyncCharts can be directly
used by the Esterel compiler (e.g., mutual exclusion
between sub-systems, sequential execution of sub-
systems…).

References

[1] D. Harel. “Statecharts: a Visual Formalism for Complex
Systems”, Science of Computer programming, 1987, vol 8, pp
231-274.

[2] C. André. “Representation and Analysis of Reactive
Behaviors: A Synchronous Approach” IEEE-SMC
Computational Engineering in Systems Applications (CESA),
Lille (F), July 1996, pp 19—29.

[3] G. Berry, G. Gonthier. “The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation” Science
of Computer Programming, 1992, vol. 19, n°2, pp 87-152.
(current version of Esterel v5_21:
 http://www.inria.fr/meije/verification/esterel)

2 Both are developed at Sophia-Antipolis (France).

[4] I-Logix, “Statemate MAGNUM”, http://www.ilogix.com

[5] Simulog. “Esterel Studio”, http://www.simulog.fr

[6] A.Bouali. “Xeve: an Esterel Verification Environement”,
Int'l Conference on Computer-Aided Verification (CAV'98),
june/july 1998, Vancouver, BC Canada. Also available as a
technical report INRIA RT-214, 1997.

[7] E.M Sentovitch, K.J Singh, et al. “SIS: a System for
sequential circuit synthesis”. Technical report, UCB/ERL
M92/41, U.C. Berkeley, May 1992.

[8] O. Coudert, J.C Madre, H. Touati. “TiGeR version 1.0, User
Guide”, Digital Paris Research Lab. Dec 93, commercialized by
Xorix.

[9] J. Zahnd. “Machines séquentielles“. Presses Polytechniques
Romandes. 1987.

