

Central Processing Unit Simulation
Version v2.5 (July 2005)

Charles André
University Nice-Sophia Antipolis

 1

1 Table of Contents
1 Table of Contents .. 3
2 Overview ... 5
3 Installation ... 7
4 The CPU Simulator (v2.0) ... 9

4.1 Launching the application... 9
4.2 Selecting .. 9
4.3 The Control Window... 10

4.3.1 Menus ... 11
4.3.2 Registers ... 12
4.3.3 Control button.. 13
4.3.4 Preferences... 13

4.4 The Memory Window ... 14
4.5 The Performance Windows .. 14
4.6 Symbol Table Window.. 15

5 Manual Execution.. 17
6 Accumulator-based Machine ... 19

6.1 Arithmetic and Logical Unit... 19
6.2 Instruction Set .. 19
6.3 Example of the gcd computation .. 20

7 Stack-based Machine .. 23
7.1 Arithmetic and Logical Unit... 23
7.2 Instruction Set .. 23

7.2.1 Example of the gcd computation ... 24

 3

2 Overview

Purpose: Educational.

• Initiation to low-level programming and CPU principles.
• Explore various architectures of CPU through their programming and their

step-by-step execution.
• Deliberate limitation: it supports elementary programs only.

Realization:

• Pure Tcl-Tk implementation.
• Requires Tcl-Tk, version 8.4 or better, and the BWidget ToolKit, version 1.7 or

better.
• Tested on Window2000, Windows XP and Linux.

Contact: Written by Charles ANDRÉ, Electrical Engineering Department, Faculty of
Sciences, University of NICE-SOPHIA ANTIPOLIS. andre@unice.fr

Caveats: The look and Feel of the widgets is dependent on the operating system.
The pictures given in this text are screen copies captured under Windows 2000, and
have been generated by version 2.0 of the software.

 5

mailto:andre@unice.fr

3 Installation
Be sure that Tcl-Tk, version 8.4 or higher, and BWidget, version 1.7 or higher are
installed.

1. If the environment variable SOFTDIR is defined, go to 5

2. Create a directory in which all software from C. André will be installed

3. Set the environment variable SOFTDIR to the path of this directory

4. Prepend your PATH environment variable with $SOFTDIR/bin (or
%SOFTDIR%\bin for Windows)

5. Copy the distribution file archi.2.x.tgz in $SOFTDIR (replace x by the current

minor version number)

6. Execute: cd $SOFTDIR

7. Execute: gunzip -c archi.2.x.tgz | tar xvfp - (overwrite existing files, if any)
This creates (or updates) the Directory tree:
$SOFTDIR

 bin
 ARCHI
 bin
 TCL
 doc
 EXAMPLES
8. For the first installation only:

execute: cd $SOFTDIR/bin
execute: platform.tcl
This copies configuration files in your home directory depending on your OS

9) optional: in $SOFTDIR/bin make a symbolic link:

CPUSimulator to ../ARCHI/bin/CPUSimulator.tcl

10) That's All Folks!

 7

4 The CPU Simulator (v2.0)

4.1 Launching the application
Execute CPUSimulator. This is a symbolic link, present in the $SOFTDIR/bin
directory and pointing to the actual application:
$SOFTDIR/ARCHI/bin/CPUSimulator.tcl.

The dialog box below appears.

Four machines are proposed:

• Manual: not a programmable machine, just an ALU and a Memory. Data are
fetched from and written to the memory by “drag-and-drop” moves. The
operation performed by the ALU is selected by the user.

• Accumulator: an accumulator-based machine. Associated assembly
language source files are suffixed by .amp (Accumulator Machine Program).

• Stack: a stack-based machine. Associated assembly language source files
are suffixed by .smp (Stack Machine Program).

• GPR: a General-Purpose-Register machine, more precisely a register-register
architecture: only load and store instructions access memory locations;
arithmetic and logical instructions are performed only on registers. Associated
assembly language source files are suffixed by .gmp (GPR Machine
Program).

Remark: GPR machine are not yet implemented.

These machines are very small machines: They have tiny memories and a limited set
of instructions. For simplicity, data memory and instruction memory are separated.

4.2 Selecting
Click on the corresponding button to select the desire machine type.

 The default sizes of the (small) memories of the machines are stored in a
configuration file (.CPUSimulator, in your home directory). This size is initially set
to 15. A dialog box proposes to change these sizes. You can answer “No”, since the
actual sizes could be enlarged later.

 9

If a modification is selected, another dialog box pops up and asks for a new value.
“Memory” applies only to Data and Instruction Memories; “Symbol” concerns the size
of the Table of Symbols; “Both” applies to both. Prefer this latter option to the
previous two choices.

4.3 The Control Window

The control window is the main panel. It offers

• a menu bar,
• various registers,
• and a control button

 10

4.3.1 Menus
The menu bar presents a set of button-like menu entries to users. When you drag
your mouse over the menu bar, the different menus are displayed. A click on a button
posts (i.e., displays) the associated menu.

File
 Load open a browser for loading
 Re-load load the previously loaded file
 Save open a browser for saving
 Exit exit the application

Command
 Reset reset the simulation (memory and register cleanup)

 Extend Memory increment the size of the data and instruction memory by 1

Option
 Preferences configure your personal environment with a dialog box

 Fonts show and select fonts

 Help font: 8pt set the size of font in balloon to 8
 Help font: 10pt set the size of font in balloon to 10
 Help font: 12pt set the size of font in balloon to 12

 11

 Step running mode: step by step (a full instruction at a time)
 Fetch/Execute running mode: separate instruction fetch and execution
 Detail running mode: details (i-fetch, decode, d-fetch, operate, store)

Window check buttons selecting windows to show/hide
 Show ALU
 Show Symbol Table
 Show Pseudo Console
 Instruction Set
 Performances
 Raise Memory

About miscellaneous information
 Author
 Address
 Version

File loading dialog box

File Saving Dialog Box
This dialog box is similar to the file loading dialog box. Contrary to the file loading
box, creating a new file is possible.

4.3.2 Registers
Registers displayed in the control window are non user-programmable registers.
They are useful for tracing program executions and understanding data paths.

 12

• The Instruction Register (IR) contains, in a symbolic form, the instruction to

be decoded and executed.
• The Memory Address Register (MAR) points either an Instruction Memory

Cell (for i-fetch), or a Data Memory Cell (for d-fetch or store).
• The Memory Buffer Register (MBR) contains data from the memory (read-

memory cycle) or to the memory (write-memory cycle).
• The Program Counter (PC) points to the current instruction. All programs

start from address 0.
• The Status Register consists of 4 individual flags:

o Zero (Z) set to 1 when the result of a logical or an arithmetic operation
is 0

o Negative (N) set to 1 when the most significant bit is 1
o Carry (C) set to 1 by addition or subtraction overflows, and by logical

shift operations.
o oVerflow (V) set to 1 in case of an algebraic overflow.

4.3.3 Control button
This button indicates what is the next thing to be done by the simulator. Its label
depends on the current running mode.

• In the step-by-step (or Atomic) mode, the label is always “Step”.
• In the Fetch/Execute (or fe) mode, the label alternates “i-fetch” and “Execute”.
• In the Detail mode, the label may be “i-fetch”, “decode”, “d-fetch”, “operate”,

“d-write”. The exact succession depends on the instruction.

4.3.4 Preferences
This dialog box allows the user to customize its environment. His/her choices are
saved in a hidden file: .CPUSimulator in his/her home directory.

 13

4.4 The Memory Window

The left side of the window represents the Data Memory, the right side the Program
Memory. The addresses are written on the left of each memory entry.
The bottom frame, entitled “Format”, allows the user to select a display format.

4.5 The Performance Windows
While a program is executed, statistics are computed. The number of steps (i.e., the
number of executed instructions), the number of Memory Accesses, and the number
of microcycles are automatically updated. All the counters are reset to 0 by the Reset
command, or by a new program loading.
The number of microcycles by instruction is computed by taking one unit for each
phase: i-fetch, decode, d-fetch, operate, d-write. This is a coarse approximation. With
modern fast CPUs, external accesses should be given a relative cost much higher
than 1.

 14

4.6 Symbol Table Window
When your program uses symbolic names, you have to fill up the symbol table (You
do what is usually done by an assembler!).

The above table corresponds to a program that makes reservation for variables A, B,
gcd, C, and D at the respective addresses 0, 1, 2, 3, 4 in the Data memory. The
program uses symbolic labels “bcl:”, “then:”, “done:” at respective locations 2, 4, and
13 in the Program Memory.
Aliases are possible: each entry may contain a space-separated list of identifiers.

Syntactic Remark: symbolic labels are followed by a colon in their definition; the
colon is omitted in the table and in the branch instructions.

 15

5 Manual Execution
As explained above, this is not a programmable machine. The user has to drag and
drop the data, select the operation of the ALU, apply the operation and collect the
result.

 17

6 Accumulator-based Machine

6.1 Arithmetic and Logical Unit
This machine has an accumulator, used as both the first operand of the operation
performed by the ALU, and the result of the operation. The second operand, if any,
comes from the Memory or the Instruction Register (for immediate operations). The
entry named “Temp” shows the value of this operand.
The operation entry is set during the decode phase according to the contents of the
Instruction Register.

6.2 Instruction Set

 19

The (simplified) instruction set is available in the Instruction Set Window. The
semantics of each instruction is popped-up when the mouse stays over the label for a
while.

6.3 Example of the gcd computation
This program computes the Greatest Common Divider of two positive integers A and
B. This algorithm is the original one, using only subtraction, not the remainder of the
integer division.
Gcd is the result, A and B are the input data preserved during the computation. C
and D are auxiliary variables.

 load A
 store C ; C is the dynamic value of A
 load B
 store D ; D is the dynamic value of B
bcl: sub C ; D - C
 beqz done ; If Z then go to done
 bltz then ; If D < C then go to then
 store D ; D > C => B <- B - A
 bt bcl ; iterate
then: neg ; C > D; take the opposite of D - C
 store C ; C <- C - A
 load D ; Before looping, put D in the accumulator
 bt bcl ; iterate
done: load C ; Here C=D=gcd
 store gcd

The figure above shows the control window before executing the instruction at
location 5 (i.e., the contents of PC). In the Program Memory Window, the last

 20

executed instruction (bcl: sub C) is highlighted (painted red) and still present in
the Instruction Register. The Memory Address Register points to (data) memory cell
3 (i.e., the location of C, the last accessed memory cell). The Memory Buffer Register
contains the value of C (i.e., 12).
The highlighted Data Memory cell is the more recently written memory cell (Here, the
cell that stores the value of D).
Remind that correspondences between memory locations and symbolic names are
given by the Table of Symbols.

 21

7 Stack-based Machine

7.1 Arithmetic and Logical Unit
The UAL has two operands and a result. Sources and destination are the stack. The
stack itself is represented on the left of the picture. The stack grows upwards.

7.2 Instruction Set
The instruction set is available in the Instruction set Window. The semantics of each
instruction is popped-up when the mouse stays over the label for a while.

 23

7.2.1 Example of the gcd computation

 push A ; A -
 push B ; A B -
bcl : cmp ; A B - Set N and Z
 beqz done ; Branch to done if A == B
 bltz else ; Branch to else if A < B
 swap ; B A -
 over ; B A B -
 sub ; B A-B -
 bt bcl ; Branch to bcl with new A and old B
else: over ; A B A -
 sub ; A B-A -
 bt bcl ; Branch to bcl with new B and old A
done: drop ; A - Discard B
 pop gcd ; -

 24

 25

	Table of Contents
	Overview
	Installation
	The CPU Simulator (v2.0)
	Launching the application
	Selecting
	The Control Window
	Menus
	File loading dialog box
	File Saving Dialog Box

	Registers
	Control button
	Preferences

	The Memory Window
	The Performance Windows
	Symbol Table Window

	Manual Execution
	Accumulator-based Machine
	Arithmetic and Logical Unit
	Instruction Set
	Example of the gcd computation

	Stack-based Machine
	Arithmetic and Logical Unit
	Instruction Set
	Example of the gcd computation

