
Charles André - UNSA

Reactive and Real-Time
Systems

Dura lex, sed lex

Charles André - UNSA

Computer Science and Control
System to be controlled

+
Expected behavior

Implementation
Objective

Charles André - UNSA

Computer Science and Control

Analysis
Tools

System to be controlled
+

Expected behavior

Implementation

Models
Generators

Means

Property analyses

Analysis /
Development

Platform

Charles André - UNSA

Interactions

Industrial Computer
ActuatorsSensors

measurements, events Commands, setpoints

Operator

Real-Time System

Charles André - UNSA

Interfaces

Input image

Input
Tasks

Input
Devices

Control tasks

Plant (external world)

Computer

interface

Output imageInternal image
of plant

Output
Tasks

Output
Devices

[Bennett]

Charles André - UNSA

Reactive & Real-Time Systems

• Crucial concern: Safety
• Logical correctness essential in all cases
• Temporal correctness: a further

requirement for RTS

A Reactive System= a system
that maintains a permanent

interaction with its
environment

A Real-Time Reactive
System = Reactive system

subject to externally defined
timing constraints

Charles André - UNSA

Embedded Systems
• Most of them are reactive and real-time.
• Interconnected devices that contain software

, hardware, electronics,… components.
• All in all Computing units are just another

brick in the wall. (embedded computers)
• Examples: automotive, avionics, cellular

phones, smart sensors,… complex digital
circuits (System on Chip).

Charles André - UNSA

Evolution …
Historically, reactive and real-time applications

evolved mostly from the use of analog
machines and relay circuits to the use of
microprocessors and computers. They did not
benefit from the recent progress in
programming technology as mush as did other
fields.

Although strongly technically related, the
various application fields are treated by
different groups of people having their own
methods and vocabulary, and little relation
has been established between them.

The programming tools are still often low-level
and specific. [Benveniste & Berry]

Charles André - UNSA

… Evolution
The present situation must change rapidly.

The Synchronous Approach is now recognized as
a technology of choice for modeling,
specifying, validating and implementing real-
time embedded applications.

The first part of this course is devoted to
synchronous programming and related topics.

Charles André - UNSA

Reactive & Real-Time Systems:
Main Issues (1)

Most reactive and real-time systems naturally
decompose into communicating concurrent
components.

All aspects related to concurrency are
important (qualitative aspects):
– Communication
– Synchronization
– Organization of the computational flow

Quantitative aspects, imposed by Timing
constraints, are mostly related to the speed
of computation

Charles André - UNSA

Reactive & Real-Time Systems:
Main Issues (2)

1. Use modular and formal techniques to
specify, implement, and verify
programs

2. Encompass within a single framework
all reactive aspects

3. Deal with distributed target
architectures

4. Preserve determinism whenever
possible

5. Consider issues of speed
[Benveniste & Berry]

Charles André - UNSA

Real-Time Systems

A short introduction

Charles André - UNSA

Real-Time Systems
Any system in which the time at which the output is

produced is significant. This is usually because the
input corresponds to some movement in the physical
world, and the output has to relate to the same
movement. The lag from input time to output time
must be sufficiently small for acceptable timeliness
(Oxford Dictionary of Computing)

Real-Time systems are those which must produce
correct response within a definite time limit. Should
computer responses exceed these time bounds then
performance degradation and/or malfunction results
(Cooling, Software Design for Real-Time Systems, Chapman & Hall,
1991)

A program for which the correctness of operations
depends both on the logical results of the
computation and the time at which the results are
produced.

Charles André - UNSA

Embedded Systems
Embedded computers = computer systems in

which the computer is just one functional
element of a real-time system and is not a
stand-alone computing machine.

Industrial Computer
ActuatorsSensors

measurements, events Commands, setpoints

Operator

Real-Time System

Example:

Charles André - UNSA

Classification of Real-Time
Systems (1)

A common feature of RT systems and embedded
computers is that the computer is connected to the
environment within which it is working by a wide range
of interface devices and receives and sends a variety
of stimuli.

Input tasks, output tasks, communication tasks are
connected by physical devices to processes which are
external to the computer. These external processes
all operate in their own time-scales and the computer
is said to operate in real time if actions carried out in
the computer relate to the time-scales of the
external processes.

Classification according to the type of synchronization
between the external processes and the internal
actions (tasks).

[Bennett]

Charles André - UNSA

Interfaces

Input image

Input
Tasks

Input
Devices

Control tasks

Plant (external world)

Computer

interface

Output imageInternal image
of plant

Output
Tasks

Output
Devices

Charles André - UNSA

Classification of Real-Time
Systems (2)

Clock-based Tasks (cyclic, periodic)
– Time constants (of the controlled system)
– Sampling rate (for feedback control)
– Real-Time clock

Event-based Tasks (aperiodic)
– Response to some event
– Interrupt / Polling
– Events occur at non-deterministic intervals

Interactive systems
– The largest class of RTS
– Requirements: “…the average response time must not exceed

…”
– The system responds at a time determined by the internal

state of the computer and without any reference to the
environment.

Charles André - UNSA

Transformational
Interactive Reactive

Programs
Transformational

1

2

3

Interactive

1 1

2 2

3 3

Reactive

Who is the
boss?

Computer

Environment

Charles André - UNSA

Terms and Concepts
• Timeliness

The timeliness of an action has to do with the action
meeting time constraints such as a deadline.

The important modeling concerns of timeliness are
modeling execution time, deadline, arrival patterns,
synchronization patterns, and time sources.

• Responsiveness
Standard computing systems respond primarily to

the user. Real-time systems, on the other hand,
may interact with users, but they have more
concern for interactions with sensors and
actuators.

[Douglass]

Charles André - UNSA

Terms and Concepts (2)
• Concurrency

Concurrency is the simultaneous execution of
multiple sequential chains of actions. These
actions may execute on one processor
(pseudoconcurrency) or multiple processors
(true concurrency).

Scheduling concurrent threads, Event arrival
patterns, thread rendez-vous patterns,
sharing resources.

[Douglass]

Charles André - UNSA

Terms and Concepts (3)
• Predictability

A key aspect of many real-time systems. This is
crucial for many safety-critical and high-reliability
systems.

Memory management
• Correctness and Robustness

A system is correct when it does the right thing all
the time. Such a system is robust when it does the
right thing under novel (unplanned) circumstances,
even in the presence of unplanned failures of
portions of the system.

Deadlock, exceptional conditions, race conditions
[Douglass]

Charles André - UNSA

Terms and Concepts (4)
• Distributed systems
• Fault tolerance and safety

Many embedded systems have high
availability requirements. In such systems,
it is undesirable for the system to fail.

Many of these systems must not only be
reliable, but they must also be safe―that
is, if they do fail, they do so without
causing injury or loss of life.

Reliabilty, safety, redundancy.
[Douglass]

Charles André - UNSA

Terms and Concepts (5)
• Dealing with Resource-limited target

environments
Embedded systems ship the hardware along with the

software as part of a complete system package.
Recurring cost = per-shipped-item cost (hw)
Development, maintenance cost (sw)
Physical size, heat production, weight limitations
Often cross-platform development
Often design and write software for not yet existing

hardware

Charles André - UNSA

Real-Time Programming:
The State of the Art (1)

• Event-loop
Condition : actions (or callbacks)
(+) Simple sequential code
(-) Non deterministic

• Sequential imperative language + RTOS
(+) The most common way of doing things
(-) More or less several loosely connected programs
(--) Hard to debug and maintain
(--) Little room for clean automatic program behavior analysis
(--) Non determinism introduced by the OS

• Finite State Machine
(+) Deterministic
(-) No direct support for hierarchy and concurrency
(--) Highly sensitive to modifications
(--) Only small FSMs are humanly understandable

Charles André - UNSA

Real-Time Programming:
The State of the Art (2)

• Petri Nets
(+) support concurrency
(+) mathematical analysis
(-) little modularity
(-) usually non deterministic

• Concurrent Programming Languages
(?) ADA, OCCAM
(?) Java

Charles André - UNSA

References
• S. Bennett. “Real-Time Computer

Control – An introduction”, 2nd Ed.,
Prentice Hall, 1994.

• A. Benveniste, G. Berry. “The
Synchronous Approach to Reactive and
Real-Time Systems”, Proc. IEEE, vol 79,
pp1270-1282, Sept. 1991.

• B. P. Douglass. “Doing Hard Time”,
Addison-Wesley, 1999.

