
UML State Machines

(UML Statecharts)

Charles ANDRE - UNSA2

Introduction
• The StateMachine package defines a set

of concepts that can be used for modeling
discrete behavior through finite state-
transition systems.

• Two kinds of state machines:
– Behavioral state machines

used to specify behavior of various model elements
(an object-based variant of Harel statecharts)

– Protocol State machines
used to express usage protocols (they express the

legal transitions that a classifier can trigger).

Charles ANDRE - UNSA3

Behavioral State Machines
• Represents the behavior of a piece of a system using graph

notation.

Soda Machine

idle
do / display amount entered

Waiting for coins

do / display "Make selection"

Waiting for selection

Dispensing

Refunding change

Select drink / dispense drink

Pull return coin level /
Return funds

Pull return coin level /
Return funds

dispensed

Deposit coin [deposit funds >= drink cost] /
hold coins in temp bin

Deposit coin [deposit funds < drink cost] /
hold coins in temp bin

Deposit coin /
hold coin in temp bin

Initial
(pseudo) state

Final state

Simple state
with a do

activity

Charles ANDRE - UNSA4

States
• A state models a situation during which some (usually implicit)

invariant condition holds.
• The invariant may represent a static situation such as an object

waiting for some external event to occur.
• However, it can also model dynamic conditions such as the process

of performing some behavior.
• Kinds of states:

– Simple state
– Composite state
– Submachine state

lid opened [grinders.running = true] / stop grinder

entry / close dispenser door
do / grind beans
exit / open dispenser door

Grinding Coffee
Name compartment

Internal activities

Internal transition

A state with compartments

S

S

Simple state
notations

Charles ANDRE - UNSA5

Composite states
• A composite state is a state with one or more regions.
• A region is simply a container for substates.
• A composite state with two or more regions is called orthogonal.
• Decomposition compartment.

Dispensing Composite icon

Charles ANDRE - UNSA6

Composite states / regions
• Each region within a composite state executes in parallel.
• A transition to the final state of a region indicates completing the

activity for that region.
• Once all the regions have completed, the composite state triggers a

completion event and a completion transition (if one exists) triggers.

Charles ANDRE - UNSA7

Simplified State Machine meta-model

Charles ANDRE - UNSA8

Submachine states
• Submachine states are semantically equivalent to composite states

in that they are made up of internal substates and transitions.
• A way to encapsulate states and transitions so that they can be

reused.

Collect Credit Card
Information

Verify Credit Card :
CreditCardValidationSM Place Order

Display Error Message

Invalid credit card

CreditCardValidationSM

CheckCredit

[negative]

[else]

Charles ANDRE - UNSA9

Transitions
• A transition shows the relationship, or path, between two

states or pseudo states.
• Label on the transition:

trigger [guard] /effect

• Transition types:
– Compound transition

Represents change from one complete SM configuration to another.
Set of transitions, choices, forks, and joins leading to a set of target
states.

– High-level transition
A transition from a composite state.

– Internal transition
A transition between states within the same composite state.

– Completion transition
A transition from a state that has no explicit trigger. When a state

finishes its do activities, a completion event is generated.

Charles ANDRE - UNSA10

Transitions and signals
• Use of explicit icons to show signal sending, signal receipt, and

effect activities.

Releasing Drink

IR Sensor Tripped

Opening Door

Dispensing
Drink

Close Door

Idle

StartGrinder

grinders.running = true

Grinding

Signal receipt Signal sending Effects (activity)

• Time Event: occurrences linked to time

– after 10 relative to entering the current state
– at 5 refers to absolute time

Charles ANDRE - UNSA11

Semantics
• The event pool for the state machine is the event pool of the instance according to

the behaviored context classifier, or the classifier owning the behavioral feature for
which the state machine is a method.

• Event processing - run-to-completion step
– Event occurrences are detected, dispatched, and then processed by the state machine, one

at a time. The order of dequeuing is not defined, leaving open the possibility of modeling
different priority-based schemes.

– The semantics of event occurrence processing is based on the run-to-completion
assumption, interpreted as run-to-completion processing. Run-to-completion processing
means that an event occurrence can only be taken from the pool and dispatched if the
processing of the previous current occurrence is fully completed.

Charles ANDRE - UNSA12

Run-to-completion step
– The processing of a single event occurrence by a state machine is known as a run-to-

completion step. Before commencing on a run-to-completion step, a state machine is in a
stable state configuration with all entry/exit/internal activities (but not necessarily state (do)
activities) completed. The same conditions apply after the run-to-completion step is
completed. Thus, an event occurrence will never be processed while the state machine is in
some intermediate and inconsistent situation. The run-to-completion step is the passage
between two state configurations of the state machine.

– When an event occurrence is detected and dispatched, it may result in one or more
transitions being enabled for firing. If no transition is enabled and the event (type) is not in
the deferred event list of the current state configuration, the event occurrence is discarded
and the run-to-completion step is completed.

– In the presence of orthogonal regions it is possible to fire multiple transitions as a result of
the same event occurrence — as many as one transition in each region in the current state
configuration. In case where one or more transitions are enabled, the state machine selects
a subset and fires them. Which of the enabled transitions actually fire is determined by the
transition selection algorithm described below.

– During a transition, a number of actions may be executed. If such an action is a synchronous
operation invocation on an object executing a state machine, then the transition step is not
completed until the invoked object completes its run-to-completion step.

• Conflicting transitions
– It was already noted that it is possible for more than one transition to be enabled within a

state machine. If that happens, then such transitions may be in conflict with each other. For
example, consider the case of two transitions originating from the same state, triggered by
the same event, but with different guards. If that event occurs and both guard conditions are
true, then only one transition will fire. In other words, in case of conflicting transitions, only
one of them will fire in a single run-to-completion step.

– Two transitions are said to conflict if they both exit the same state, or, more precisely, that
the intersection of the set of states they exit is non-empty. Only transitions that occur in
mutually orthogonal regions may be fired simultaneously. This constraint guarantees that the
new active state configuration resulting from executing the set of transitions is well formed.

Charles ANDRE - UNSA13

Run-to-completion (cnt’d)
• Firing priority

– In situations where there are conflicting transitions, the selection of
which transitions will fire is based in part on an implicit priority. These
priorities resolve some transition conflicts, but not all of them. The
priorities of conflicting transitions are based on their relative position in
the state hierarchy. By definition, a transition originating from a substate
has higher priority than a conflicting transition originating from any of its
containing states (Note: It is the converse in SyncCharts in case of
strong abortion)

– The priority of a transition is defined based on its source state. The
priority of joined transitions is based on the priority of the transition with
the most transitively nested source state.

• Transition selection algorithm
– The set of transitions that will fire is a maximal set of transitions that

satisfies the following conditions:
• All transitions in the set are enabled.
• There are no conflicting transitions within the set.
• There is no transition outside the set that has higher priority than a transition

in the set (that is, enabled transitions with highest priorities are in the set
while conflicting transitions with lower priorities are left out).

Charles ANDRE - UNSA14

Other cases

exit / p

X

S

entry / q

Y

T
f / d

Execution ordering: p; d; q

Charles ANDRE - UNSA15

Example of behavioral SM

Idle

do / play message

Time-out

do / play dial tone

DialTone
Dialing

dial digit(n)

Connecting

dial digit(n) [valid]
/ connect

do / play busy tone

Busy busy

do / play ringing
tone

Ringing

connected

dial digit(n)
[incomplete]after(15s) after(15s)

do / play message

Invalid dial digit(n)
[invalid]

Pinned

Talking

callee answers /
enable speech

callee
answer

callee
hangs up

ActiveactiveEntry

lift receiver /
get dial tone

caller hangs up
/ disconnect

abort

aborted

terminate

Charles ANDRE - UNSA16

Protocol State Machines
• A protocol state machine is always defined in the context of a classifier.
• It specifies which operations of the classifier can be called in which state and under which

condition, thus specifying the allowed call sequences on the classifier’s operations.
• Differences with behavioral SMs:

– No entry, exit, and do activities
– States can have invariants (in square brackets under the state name)
– The keyword {protocol} placed after the SM name
– Transitions in PSM have a precondition, the trigger and a postcondition:

• [precondition] name [postcondition]
• [precondition] name(param-list) [postcondition]

– Each transition is associated with 0 or 1 operation on the owning classifier
– No effect activity

Tells only what state the protocol implementation will be in, not what it does to
get there.

Opened
create/

Closed

Lock

lock/ unlock/

open/

[doorway->isEmpty]
close/

Door {protocol}

Charles ANDRE - UNSA17

Notations Summary

