
Variations on the Semantics of Graphical Models for Reactive Systems

Charles ANDRÉ, Jean-Paul RIGAULT

I3S Laboratory,
University of Nice Sophia Antipolis / CNRS,

BP 121, Sophia Antipolis cedex, 06903, FRANCE,
andre@unice.fr, jpr@essi.fr

Abstract— The goal of this paper is to study concepts underly-
ing graphical instant-based models. They are useful for reactive
system modeling. They should be formal models (mathematical
semantics). Some are able to express in an unambiguous and con-
cise way complex reactive behaviors. The expressiveness may be
an impediment to the readability and the intuitive understanding.
We analyze the influence of some primitives on the computation
(compilation or interpretation) of the behavior.

Keywords—Reactive system, semantics, state-transition system,
visual modeling, synchronous programming.

I. INTRODUCTION

Control-dominated systems are frequent in real time ap-
plications, especially in embedded ones (automobile, air and
space, process control, integrated manufacturing, robotics...).
They are reactive[1], which implies to deal with concurrency,
communication, and pre-emption. They have to satisfy strin-
gent constraints (correctness, response time), thus they have
better be deterministic. Finally they may be life or mission
critical and thus, they should be submitted to formal verifica-
tion and validation. As a consequence, they require formal
semantics.

The reactive nature and its consequences are the major rea-
sons why the behavior of these systems is delicate to handle.
A way of reducing the behavioral complexity is to have them
evolve through successive phases, called instants, and the cor-
responding models are qualified as instant-based. Indeed, dur-
ing an instant, the time seems to be suspended (the external
events are frozen). The so-called synchronous models[2] are
among these instant-based schemes.

The reactive systems are discrete-event systems. They are
mostly event-driven, which means that they perform little pro-
cessing on their own and that their behavior can be represented
as a sequence of reactions to stimuli.

A classical way of representing sequential evolutions is to
recurse to state-transition models. However the simplest forms
of automata are not convenient to cope with the complexity of
modern applications. Representing the behavior of such sys-
tems implies hierarchical description, support of concurrency
and synchronization, and communication between the differ-
ent parts of the system. In our approach, communication and
synchronization are unified under the concept of signals. The
stimuli that provoke reactions are associated with emission and
reception of signals. Signals are also the actors of preemption,
making it possible to suspend (to freeze) or to abort the behav-
ior of some parts of the system.

A major problem with (concurrent) reactive system is to
control their internal state changes, the duration of their transi-
tions, and the information available during the transition itself.

We use a simplifying and yet fruitful hypothesis: the system

evolves only during discrete phases (instant), with strictly de-
fined start and end marks. During one phase, only the external
events which were present at the beginning of the phase and
the internal events that occurred as a consequence of the first
ones are considered. The phase ends either when some sta-
bility (fixed-point) has been achieved or when some external
“clock” decides that it is over.

This paper focuses on instant-based and state-based models,
and variations on their semantics. In particular, we explore dif-
ferent ways of computing the fixed point. In the next section
we introduce the key notions of signal and instant. The third
section deals with the syntax of extended state-transition mod-
els while the fourth one is devoted to semantic issues.

II. SIGNALS AND INSTANTS

A. Signals

Signal is our unique abstraction for handling communica-
tion and synchronization. Emitting or receiving a signal meets
with the classical notion of event. A signal has a presence sta-
tus: present (+), absent (�), or unknown (?). It may convey
a value of a given type. If the signal can be multiply emitted
within one instant, a combination function is also required. Fi-
nally, a signal has a scope: external (input or output), or local
(bi-directional).

B. Instants

An instant, an atomic reaction phase in our model, is char-
acterized by a Begin Of Instant (BoI) and an End Of Instant
(EoI). BoI and EoI are in monotonic order and stricly alter-
nating (instants cannot intersect). The input events are frozen
at BoI; the output events are available at EoI . Between two
instants (more specifically, between EoIi and BoIi+1) noth-
ing happens. Instants define a logical time and give a clear
meaning to simultaneity (everything which happens during the
same instant), and to past and future. “Strict future” designates
the next instant(s).

During an instant, the various (concurrent) parts of the sys-
tem can produce and absorb signals. A signal (external as
well as local) is broadcast: its target is not explicitly desig-
nated and it is available for any process. Broadcast contrasts
with point-to-point communication where the target is well-
identified, and the information is restricted to the communi-
cation partners. Broadcast improves structural modularity: no
static structural dependency is implied between the sender and
the receiver. Another advantage is the consistent perception of
a signal throughout the system.

III. STATE-TRANSITION MODELS

A. Flat model

The simplest state-transition models are flat models, made
of states and transitions. When a transition leaving the current
state is “firable” (i.e., its triggering event has occurred), the
transition is taken and the target of the transition becomes the
new current state.

Well-known examples are Moore and Mealy machines.
With the former, the outputs depend only on the current state
whereas, with the latter, the outputs depend on the current state
and the current inputs. Synchronous models like SYNCCHA-
RTS [3] support both output associated with states and outputs
associated with transitions.

/A

p q

/B

a/Z

Fig. 1. State/transition.

Even with theses simple flat models, several synchronous
interpretations are possible. Consider a transition between
state p and q (Fig 1). Let p be the current state. Table I rep-
resents the behavior during the change of state initiated by the
occurrence of a at instant k.

At instant k, a traditional sequential machine (a mixed
Moore/Mealy model) computes its next state q, which will be
reached at the next instant. As the current state is still p, the
generated output is A (Moore behavior) and Z is also emitted
while the transition is taken (Mealy behavior).

TABLE I
CHANGE OF STATE.

instant k-1 k k+1
input a

Sequential machine p p q
A A;Z B

Synchronous model p q q
�! A A;Z;B B

Æ�! A Z;B B

�!Æ A A;Z B

Æ�!Æ A Z B

A synchronous model has a different behavior: the change
of state takes place at instant k, thus the current state be-
comes q immediately. In any case, signal Z is emitted while
the transition is taken. Other emitted signals depend on the
kind of transition (explained in Sec. III-D). Below are pos-
sible kinds of transitions, not necessarily available in all syn-
chronous models.
� weak abortion transition (�!): state p is “weakly” exited,
i.e., it finishes its current reaction (emitting A). At the same
instant q starts a reaction (emitting B).
� strong abortion transition (Æ�!): the reaction of state p is
aborted (A not emitted). q starts a reaction (emitting B).
� weak abortion with suspension of the target (�!Æ): state
p is “weakly” exited and emits A. The reaction of the new
current state q is suspended (B not emitted).

� strong abortion with suspension of the target (Æ�!Æ): p is
strongly exited, so that A is not emitted, neither is B (the new
current state q being suspended).

B. Hierarchy and Concurrency

In order to master the complexity of reactive systems, mod-
els demand a form of structural decomposition. There are two
constructs for coping with structure: refinement (hierarchy)
and concurrent composition.

This section addresses the structural point of view, through
a particular syntax (namely, SYNCCHARTS [3]). The semantic
aspects are the topic of the next section. The SYNCCHARTS

representation is based on states, which can be further decom-
posed according to the previously mentioned constructs.

B.1 Structure of SYNCCHARTS

With a syncChart is associated a unique MacroStar called
the root. A MacroStar is composed of at least one Constel-
lation. A Constellation is a set of Stars that defines a state-
transition graph. A Star has a Body and outgoing arcs of
several kinds (strong abort, weak abort, normal termination)
called Beams. The Body is either a BasicStar or a MacroStar
(recursive structure). Thus, a syncChart may also be repre-
sented as a bipartite tree, which alternates macrostars and con-
stellations. Basic stars are the leaves of the tree.

As it is classical for state-transition systems, Beams have
labels composed of three optional fields: a trigger, a guard,
and an effect.

The structure is restricted by constraints that define well-
formed SYNCCHARTS. For instance, each Constellation is a
connected graph and has at least one initial Star.

Note that according to the previous construction rules, in-
terlevel transitions, as found in Statecharts [1], are forbidden.
This improves modularity and eases composition.

2-bitBinCounter

c1

T T / c1 c1 c1

/ B0 / B1

Controlled-Counter

inhib

on

off

Fig. 2. Exemple of syncChart.

Fig. 2 presents an example of syncChart. The root is the
macrostar named Controlled-Counter. It is itself com-
posed of only one contellation made of a basic star (the ini-
tial state) and another macrostar (2-bitBinCounter). The
latter comprises two constellations, each one containing basic
stars only.

Other features are represented on the figure: A star may be
“suspendable”, which is denoted by a suspension arc (as for
the star whose body is the 2-bitBinCounter macrostar);
Local signals may be declared within a macrostar (signal c1).

Some features are not represented: A star may be final,
denoted by a double-line border; Optional instantaneous ac-
tions (entry and exit) are associated with stars; Guards are
Boolean expressions between square brackets.

B.2 Status of a SyncChart

The activity status of a syncChart is structurally and recur-
sively defined. A basic star is either Active or Idle. A con-
stellation is Active if and only if one of its component stars is
Active. A macrostar is Active if and only if all its component
constellations are Active.

C. Communication and Concurrency

As previously mentioned (Sec. II-A) communication is sup-
ported by signals only. Signal scopes are defined at the
MacroStar level. A MacroStar or a BasicStar may have in-
put, output, and local signals. The respective sets (inputs,
outputs, locals) are disjoint. They must satisfy the sig-
nal consistency rules: Let m be a MacroStar and m0 be a
MacroStar or a BasicStar directly contained in m:

m
0
:inputs � m:inputs [m:locals

m
0
:outputs � m:outputs [m:locals

8� 2 m
0:inputs [m

0:outputs :

type of � in m0 = type of � in m

At the uppermost level of the hierarchy, for a syncChart sc,
sc:root:inputs � sc:inputs, and sc:root:outputs �
sc:outputs. Note that the environment has only to know
about the syncChart’s input and output sets.

Communication implies concurrency. The concurrent struc-
tural elements are the constellations. The communication is
possible only through the signals that are in the scope of the
immediately enclosing MacroStar.

D. Preemptions

Preemption [4] is the ability for a star to forbid the execu-
tion of another star, either definitely (abortion) or temporarily
(suspension). In synchronous models, preemption is an effi-
cient and usual mechanism for synchronization, not necessar-
ily bound to exceptional behaviors.

Abortion is the standard way of leaving a star. An abortion
is qualified as strong when the “killed” star is forbidden to ex-
ecute any reaction when aborted, whereas with weak abortion
the star is allowed to terminate its current reaction before be-
ing exited. The normal termination is also a form of weak
abortion, due to inner termination of the star’s body. saBeams
(waBeams, ntBeam, respectively) denotes the possibly empty
ordered set of strong abortion beams (weak abortion beams,
normal termination beam, respectively). ntBeam is a singleton
set.

Suspending (or freezing) a star activity is made possible by a
suspension beam (member of the optional singleton set named
suspension). Whenever the trigger of the suspension beam
evaluates to true, the star is suspended.
Remark: when several triggers are simultaneously asserted,
the behavior is kept fully deterministic thanks to the strict
priority associated with each beam of a star (ordered sets of
beams).

IV. SEMANTICS

A. Generality

For the sake of simplicity, this paper focuses on pure mod-
els (i.e., models with neither valued signal, nor variable). The

fixed point computation of the next state and of each signal
status, which is central to the synchronous semantics, is well-
addressed by pure models. Taking account of values is relevant
of more classical semantics. Note that, in pure models, transi-
tions are triggered but not guarded.

Usually the semantics of instant-based models is given as
the set of possible stimuli/reaction sequence pairs (input se-
quences / output sequences). This set is given implicitly by an
acceptation procedure or by an inductive construction mecha-
nism.

B. Reactivity, Determinism

A system is said to be reactive when, given an initial state,
for any input sequence there exists at least one output se-
quence. A system is said to be deterministic when there ex-
ists at most one output sequence for each input sequence. A
syncChart which is both reactive and deterministic is said to
be logically correct.

Even if syntactically correct, a (well-formed) syncChart,
which is not logically correct must be rejected.

C. Communication

Since reactions in SYNCCHARTS may result from instanta-
neous cooperation of several subsystems, signals, which sup-
port communication, are the cornerstone in the SYNCCHARTS

semantics.
With each reaction is associated a set of signalsE called the

context. E is partitioned into two blocks: E+ and E� (i.e.,
E = E+ [E� and E+ \ E� = ;). E+ is the set of the
signals certainly present at the current instant, E� the set of
the signals certainly absent. During an instant, a signal must
be either present or absent. When computing a reaction, only
input signals, which are imposed by the environment, have a
definite status; The presence status of all other signals must be
determined. Like in the Esterel language[5], we assume that
a non-input signal is present if and only if it is emitted during
the instant.

D. Boolean Models

Giving a syncChart, the problem is to compute, for any
reachable state and for any input, the next state and the pres-
ence status of all the signals. Since our model is deterministic,
this is equivalent to finding two functions: a next-state function
Æ and an output function !.

Insofar as only logically correct solutions are acceptable,
a Boolean characterization of the solution is possible. The
presence of signals and the activity of states are considered
as Booleans.

D.1 Mealy machines

In subsection III-A Moore and Mealy machines were men-
tioned as flat models. The behavior of a (deterministic) Mealy
machine is characterized by two systems of Boolean equa-
tions: X 0 = Æ(X; I) and O = !(X; I), where X , I , O,
and X0 are Boolean vectors.

With this model, the output sequence corresponding to a
given input sequence is computed by induction.

D.2 Synchronous Point of View

The same approach can be used to implicitly define “syn-
chronous” behavior. Let 8X denote the previous state (i.e.,

the state before the reaction). The “swiftness” of synchronous
models might be captured by the Boolean equation systems:
X = Æ(8X; I) and O = !(8X; I).

This is not sufficient to express the possible influence of
output signals on the reaction. Taking account of outputs for
computing the next state and the actual outputs leads to two
different models:
Delayed effect: In this approach, an emitted signal never
causes changes during the current instant but can be used dur-
ing the next reaction. This avoids unstable situations. The
equations become X = Æ(8X; I;8 O) and O = !(8X; I;8O).
The arguments passed to the functions that compute X and
O are given and fixed at each instant. They are the previous
state 8X , the input signals I imposed by the environment for
the whole reaction, and the previous output signals 8O. This
is the point of view adopted in the STATEMATE semantics of
Statecharts [6]
Immediate effect: Another solution is to take account of output
signals (and local signals) at the very instant they are emitted.
Boolean vectors are linked by equations: X = Æ(X; I;O; L),
L = �(X; I;O; L), and O = !(X; I;O; L) where L stands
for local signal status.

Vectors X , L, and O being in both sides, we have to solve
a fixed point problem, given I and 8X . The existence of the
fixed point solution is not guaranteed. Even if a (logically cor-
rect) solution exists, it may be counter-intuitive because it may
violate causality. This point is studied in the subsection on
“constructive semantics”. Beforehand, we make a digression
on the usefulness of immediate reactions.
Examples of immediate reaction: Immediate reactions are use-
ful to prevent from undesirable transient states. A first example
is given with macrostar 2-bitBinCounter in Fig.2. In this
model of a synchronous binary counter, the immediate reac-
tion to local signal c1 makes it possible to move from state 01
to state 10 without passing through state 00.

p q r

/ A / B / C

a/b t

Fig. 3. Immediate reactions.

Immediate reactions may also be explicit. Usually when
entering a star, the triggers of the outgoing beams are not
checked: only (strictly) future occurrences are considered. In
SYNCCHARTS, the immediate consideration of a trigger can
be enforced by the] symbol (read “immediate”) prefixing a
trigger. Immediate reaction combined with preemption results
in different behaviors, as illustrated by Fig.3. Table II gives the
behavior at the instant when a occurs, according to the type of
preemption for star q. Note that, in this example, the immedi-
ate strong abortion makes star q to be bypassed.

E. Constructive Semantics

E.1 Principle

As previously mentioned (Sec. IV-B) a logically correct so-
lution may lead to counter-intuitive solution (i.e., a solution
that defeats causality). To address this problem, instead of
dealing with Boolean values, we recurse to a Scott Boolean
domain B? = f?;�;+g where ? < + and ? < �.

TABLE II
IMMEDIATE REACTIONS.

transition t new state emitted signals
b
�! fqg b; B
#b

��! frg b; B;C

Æ
#b

��! frg b; C

The technique adopted for determining the context E is to
propagate facts and build the solution incrementally, if one ex-
ists. The computation relies on monotonic functions. The or-
der relation is defined by

E � E
0 () E

+ � E
0+ ^ E� � E

0�

Let �+ (resp., ��) denotes the fact that signal � is present
(resp., absent) at the current instant. �? means that the pres-
ence status of � is not (yet) known. When computing a reac-
tion all non-input signals are first set to the unknown presence
status ?. According to propagated facts, they are then pro-
gressively set to either + or �, and therefore they enrich the
context E.

An obvious consistency rule is that:

8� : (� 2 E+ , �
+) ^ (� 2 E� , �

�)

This approach is the one advocated by G. Berry[7], [8] for
the Esterel language. He named it the constructive semantics
in reference to the fact that values are computed by explicit
proofs, not by a “trial and error” procedure.

Signals are combined in so-called signal expressions used,
for instance, in triggers. A signal expression is an expression
similar to a Boolean expression, made of signals, operators
(‘not ’, ‘or ’, ‘and ’), and parentheses.

Given a context E, a signal expression evaluates inB?: For
� ::= � (for a signal �) j not � j � or j � and . A signal
expression � is evaluated as follows:

eval(�;E) = + if � 2 E+

� if � 2 E�

?; otherwise

eval(not �;E) = not eval (�;E)

eval(� or ;E) = eval (�;E) or eval (;E)

where operators not and or are defined in the Table below,
and � and = not

�
(not �) or (not)

�
.

not or ? - +
? ? ? ? ? +
- + - ? - +
+ - + + + +

E.2 Computation of a Reaction

The computation of a reaction is a complex process. In this
paper, we choose to explain this computation by a dynamic
process: a syncChart is seen as a collection of reactive ob-
jects[9]. A logical thread is associated with each constellation,
and all the threads cooperate to find the fixed point solution.
We use the adjective “logical” because the threads are concep-
tual: there are used to explain the semantics.

The threads execute concurrently. A thread suspends its ex-
ecution whenever it needs a signal whose presence status is
unknown. Other (still running) threads may emit the awaited
signal, so that the suspended thread can resume. The process
stops when all the threads have terminated their reaction or
are suspended. What is done in the latter case depends on the
chosen semantics. Some semantic variants will be described
below. Beforehand, we explain how logical threads are man-
aged.
Recursive Execution: At the beginning of an instant, the
react() method of the syncChart is called. This method
makes recursive calls to the react() method of its compo-
nents, till stability or deadlock is reached. react() methods
return either TERM, or FSTOP, or STOP. These values are or-
dered: TERM < FSTOP < STOP.

SyncChart::react()
read inputs
for all s in outputs do
s.reset()

done
root.react()

The reset() method, when applied to a signal, sets its pres-
ence status to ?.

MacroStar::react()
for all s in locals do
s.reset()

done
parallel for all c in constels do
r[k] = c.react()

done
return Max(r)

The reaction of a macrostar may fork several logical threads
(one for each child constellation).

Constellation::react()
if curState==null then
curState = initialStar

endif
while (r=curStar.react())==TERM do
curStar = nextStar

done
return r

The react() method of a constellation calls the react()
method of its current active star. Note that several stars can be
passed through, in a strictly sequential order, during the one
instant.

For the react() method of a star, see Fig. 4. Note that the
behavior is different at the first instant and at the following in-
stants. The kill() method makes recursive depth-first kills:
stars enter their IDLE state, and constellations forget their cur-
rent star.

The heart of the computation is the testP (test presence)
function that evaluates a signal expression. This function is
executed by a thread that waits until the signal expression eval-
uates to either + or -.

boolean testP(expr,E)
wait (r=eval(expr,E)) != ?
return (r == +)

This function is used in trigger evaluations (capsules with
gray background in Fig.4). Given an ordered set of beams
B and a context E, testBeams returns the first firable beam
(i.e., the first beam whose trigger evaluates to true), if any, or
null, otherwise.

t = testSA (true)

c.nextState = t.target
t.effect ()
return TERM

[t != null]

firstInstant = true
entry ()

t = testSUSP (firstInstant)

[t == null]

b = STOP b = body.react ()

[t == null][t != null]

t =testWA (firstInstant)

t = normTerm

[t == null]

return STOP

[b == FSTOP]

[b != FSTOP][t != null]

[t == null] [t != null]

body.kill ()
c.nextState = t.target
exit ()
t.effect ()
return TERM

firstInstant = false

t = testSA (false)

IDLE ACTIVE

return FSTOP

[isFinal]

[! isFinal]

Fig. 4. Star Reaction.

Beam testBeams(B,E)
for (b:Beam=B’first to B’last) do
if testP(b.trigger,E) then
return b

end if
end for
return null

Function testSA() (testWA(), testSUSP(), testNT(),
respectively) used in Star :: react() is a special case of
testBeams, where parameter B is the set of the strong abortion
(weak abortion, suspension, normal termination, respectively)
beams.

There are different ways to resume execution of suspended
threads when executing testP(). This leads to different se-
mantics described in what follows.

E.3 Propagating Positive Facts Only

In this approach, a thread checking a trigger is allowed
to proceed only if testP method returns true (a positive
fact). Thus, only positive facts are propagated during the in-
stant, making it possible to chain several instantaneous ac-
tions. When all the threads are suspended, signal emission
is no longer possible and there is no way to resume thread ex-
ecutions. All signals still with unknown presence status are
set to absent. The end of the reaction is enforced. Only at the
next instant will all the pending threads resume and execute
the continuation associated with the outcome of testP().

This interpretation is easy to understand and compute. Since
only positive facts (certainties) are propagated, there is no risk

of causality violation. Unfortunately this semantics severely
restricts the use of strong abortion, suspension, and priority.

E.4 Use of a Potential Function

The idea is now to propagate negative facts as well as pos-
itive ones. A negative fact may be the certainty that a given
signal cannot be emitted during a reaction. To know that a sig-
nal shall not be emitted seems to be relevant of clairvoyance.
In fact, we construct a monotonic decreasing set of potentially
emitted signals, called the potential. Any signal not in this set
will certainly not be emitted, provided that this set is correct
(i.e., all signals possibly emitted are in the potential). When
all the threads are terminated or suspended, the context is en-
riched with negative facts, so that some threads possibly re-
sume. When the fixed point is reached, if any signal is still in
the unknown presence status, then the syncChart is rejected as
non-constructive.

The potential is a superset of the signals effectively emit-
ted during the reaction. Overestimated potentials are easier to
compute but they slow the convergence down and may restrict
the class of accepted (i.e., semantically correct) syncCharts.
Various potential functions for the Esterel language have been
analyzed by F. Boussinot[10].

SYNCCHARTS used in the Esterel-Studio environment [11]
adhere to a strong semantics, fully compatible with the one
adopted for the Esterel language; There is no restriction on the
use of the various forms of preemption. A drawback of this
expressiveness is that a novice user may design a syncChart
with causality cycles not easy to understand and correct.

E.5 Other Possible Relaxations

If we adopt a SYNCCHARTS semantics like the one pre-
sented in Sec.IV-E.3, we have no causality problem but most
of the expressiveness of the model is lost. On the other hand,
the behavior of standard SYNCCHARTS is not always easy to
understand and debug. There is room between these two so-
lutions for “simpler” SYNCCHARTS. The main issue when
simplifying a model is to know what is gained and what is
lost. Possible criteria are: legibility (number and complexity
of primitive graphical elements), understandability (simplicity
of underlying concepts and composition rules), efficiency (cost
for computing reactions), and expressiveness of the model for
some application domain.

Fig.4 may help in choosing the simplifications. For in-
stance, if you decide to remove strong abortion and use only
the weak form, all the parts related to testSA() are erased in
the graph. Forbidding explicit immediate triggers is another
possible variant. In this case, the upper left loop in the graph
can be deleted since not trigger can be satisfied when entering
a star. Tailoring a potential function is another way to improve
efficiency.

V. CONCLUSION

This paper demonstrates how to describe complex reactive
systems in a modular way owing to the notion of instant com-
bined with states. Graphical notations expressively support the
corresponding model. The presentation aspect is highly useful.
It is not sufficient, though, to cope with the stringent require-
ments of the application domains of reactive systems. Math-
ematical foundation is needed. Fortunately, the instant-based

model lends itself to simple semantics, yet realistic and ex-
pressive. The so-called synchronous languages have pioneered
this approach and introduced the concept of pure synchrony as
their semantic basis. Models like SYNCCHARTS stricly follow
this line.

However, the pure synchrony hypothesis sometimes makes
the task of the user difficult; moreover it not necessary, nor
suitable for all applications. We have unveiled several tracks to
relax this hypothesis without jeopardizing the semantic sound-
ness. This is delicate work since it is not always easy to char-
acterize the class of correct models that result from weaken-
ing pure synchrony. For instance, several attempts have been
made to improve the efficiency of the Esterel compiler: Ed-
wards[12] only considers a subset of acceptable programs; the
SAXO-RT[13] compiler generates even more efficient C code
but the class of accepted programs is not clearly characterized.

Much work has still to be done in order to find the relaxing
assumptions suitable for coping with particular kinds of appli-
cation. Tools are required to assess the impact of an assump-
tion. Of course, they must comply with the current software
practice. In particular, we have undertaken the integration of
such tools, the graphical notation, and their semantic variants
into the UML[14].

REFERENCES

[1] D. Harel and A. Pnueli, “On the development of reactive systems
in logic and models of concurrent systems,” NATO ASI Series,
K.R Apt Ed., Springer-Verlag, vol. 13, pp. 477–498, 1985.

[2] N. Halbwachs, Synchronous Programming of Reactive Systems.
Amsterdam: Kluwer Academic Publishers, 1993.

[3] C. André, “Representation and analysis of reactive behaviors: A
synchronous approach,” in Computational Engineering in Sys-
tems Applications (CESA), (Lille (F)), pp. 19–29, IEEE-SMC,
July 1996.

[4] G. Berry, “Preemption in concurrent systems,” Proc FSTTCS,
Lecture notes in Computer Science, vol. 761, pp. 72–93, 1992.

[5] F. Boussinot and R. De Simone, “The ESTEREL language,” Pro-
ceeding of the IEEE, vol. 79, pp. 1293–1304, September 1991.

[6] D. Harel and A. Naamad, “The STATEMATE semantics of stat-
echarts,” ACM Trans. Soft. Eng. Method., vol. 5, pp. 477–498,
October 1996.

[7] G. Berry, The Constructive Semantics of pure Esterel. Sophia
Antipolis (F): not yet published, available on the web,
www.inria.fr/equipes/meije/esterel, 1996.

[8] G. Berry, “The foundations of Esterel,” in Proof, Language and
Interaction: Essays in Honour of Robin Milner (C. S. G. Plotkin
and M. Tofte, eds.), MIT Press, 2000.

[9] F. Boussinot, G. Doumenc, and J.-B. Stefani, “Reactive objects,”
Ann. Telecommunication, vol. 51, no. 9–10, pp. 459–473, 1996.

[10] F. Boussinot, “Sugarcubes implementation of causality,” Tech.
Rep. 3487, INRIA, September 1998.

[11] Esterel Technologies, Guyancourt (F), Esterel Studio, V3.1,
September 2001. Reference Manual.

[12] S. A. Edwards, “An ESTEREL compiler for large control-
dominated systems,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 2, pp. 169–183,
2002.

[13] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil, “SAXO-
RT: Efficient compilation of ESTEREL for real-time embedded
systems,” (Bucarest (Romania)), IWACT, 2001.

[14] C. André, M.-A. Peraldi-Frati, and J.-P. Rigault, “Integrating
the Synchronous Paradigm into UML: Application to Control-
Dominated Systems,” in UML � 2002 �, (Dresden (D)),
Springer-Verlag, October 2002.

