
Computing SyncCharts Reactions

Charles ANDRÉ

I3S Laboratory (UMR 6070)
University of Nice Sophia Antipolis / CNRS

BP 121, Sophia Antipolis cedex, 06903, FRANCE
�andre@unice.fr�

ISRN I3S/RR-2003-09-FR��

Abstract. SYNCCHARTS are a state-based visual synchronous model. Though using a simple graphical syn-
tax, SYNCCHARTS may exhibit complex instantaneous behavior, mixing concurrent evolutions, preemptions
and state re-incarnations. This paper explains such reactions in terms of microsteps. The underlying seman-
tics is a constructive semantics, fully compatible with the ESTEREL’s semantics. The semantics is presented
in a semi-formal way, as resulting from the cooperation of concurrent reactive cells.

1 Introduction

The reactive systems are discrete-event systems. They are mostly event-driven, which means that they perform
little processing on their own and that their behavior can be represented as a sequence of reactions to stimuli.

A classical way of representing sequential evolutions is to resort to state-transition models. However the
simplest forms of automata are not convenient to cope with the complexity of modern applications. Represent-
ing the behavior of such systems implies hierarchical description, support of concurrency and synchronization,
and communication between the different parts of the system. Synchronous languages have been introduced to
address the issues of reactive system programming. In the imperative synchronous language ESTEREL[1], com-
munication and synchronization are unified under the concept of signals. The stimuli that provoke reactions are
associated with emission and reception of signals. Signals are also the actors of preemption, making it possible
to suspend (to freeze) or to abort the behavior of some parts of the system. Synchronous models have adopted a
simplifying hypothesis: the system evolves only during discrete phase (instant), the duration of which is 0. Thus,
the computation of a reaction, which may result from complex interactions among parts of the program, is sup-
posed to be instantaneous. This strong hypothesis, augmented with the hypothesis of instantaneous broadcasting
of signals, allows deterministic behaviors even in the presence of concurrency and preemption. ESTEREL excels
in expressing complex reactive behaviors, but it does not directly support specifications in terms of hierarchical
communicating finite state machines. SYNCCHARTS [2] have been introduced as a graphical form of the Esterel
language, which adopts states as first-class citizens. Being direct descendants of Esterel, SyncCharts have inher-
ited the mathematical semantics of the language, along with its advantages and its drawbacks. On the other hand,
SyncCharts owe their look (syntax) to Harel’s STATECHARTS [3]. This double inheritance may be misleading
for the beginner: a syncChart1 looks like a statechart but its behavior may be different.

Sections 2 and 3 of this paper are mostly educative. They aim at sensitizing the reader about SyncCharts
semantics through simple examples. SyncCharts—an apparently simple model—may have complex (instan-
taneous) reactions, which strictly respect the synchronous hypotheses. These reactions reflect the underlying
�� This report is an extended version of the paper presented at SLAP’03 (Synchronous Languages, Applications and Pro-

gramming), July 1st, 2003 – Porto (P) – URL: http://www.elsevier.nl/locate/entcs/volume88.html
1 SYNCCHARTS is the model. A syncChart is a particular instance of the model.

2 Charles André

semantics of SyncCharts, introduced in Section 4. The semantics is described in terms of microsteps that respect
the constructive causality: before being tested,the presence status of a signal must be determined at a prior mi-
crostep. This is the essence of the constructive semantics [4] introduced by G. Berry for the Esterel language.
This semantics is presented in a semi-formal way, heavily relying on the structure of SyncCharts. This structure
is precisely defined by an UML model. The semantics is given in an operational style (detailed in the Appendix)
suitable for simulation at the microstep level, leading to a better understanding of SyncCharts reactions.

2 A Tour of SYNCCHARTS

2.1 Illustrating Example

SYNCCHARTS consist of states and transitions for their structure, and signals for their dynamics. A typical
syncChart is drawn in Fig.1

wA

A/arm

wB

B/arm

WaitAandB

done

/ AB

dA dB

ABSync

Reset

signal arm

idle

cnt

1

arm

Detection

Inhib

Timer

2 T /
disarm

disarm

2

signal disarm

Fig. 1. A Typical SyncChart: This syncCharts specifies a detector of synchronized occurrences. Signal AB must be emitted
when A and B have occurred, in any order, but “close enough” in time. “Close enough” means that there are at most two
occurrences of T between the occurrences of A and B. Reset is a signal re-initializing signal. Finally, Inhib is a signal that
enables “time suspension”: when Inhib is present, possible occurrences of T are ignored.

2.2 Simplified Syntax of SYNCCHARTS

Structure. A state can be either a simple state, drawn as a simple circle or ellipse, or a macrostate drawn as a
rounded rectangle. A macrostate is refined: it contains other states. A simple state does not. A state may have a
name: written inside for a simple state, written in a cartouche for a macrostate.

A transition is a directed link between two states (from a source state and a target state). There are three
types of transitions: strong abortion, weak abortion, and normal termination transitions. The transition from
state wA to state dA is a strong abortion transition. The self-loop transition from state Detection to itself, and

Computing SyncCharts Reactions 3

labeled disarm is a weak abortion transition. Finally the transition from state WaitAandB to state done is a
normal termination one.

A State-Transition Graph (STG) is a connected set of states. A STG must have an initial state, graphically
denoted by an arc pointing to it. States Detection, wA, wB. . . are initial states for different STGs. A STG may
also have final states, denoted by double circles. States dA and dB are final states. STGs are necessarily contained
in a macrostate. When several STGs are in the same macrostate, they are separated by dashed lines, and they
are said to be concurrent. Note that contrary to statecharts, SYNCCHARTS respect a strict containment policy:
there is no inter-level transition. Macrostate Detection contains two concurrent STGs, and so is macrostate
WaitAandB. Outgoing transitions from a state are ordered: an integer called the priority is attached to the origin
of the transition. For instance, two transitions leave state Detection. The strong abortion transition has priority
1, while the weak abortion transition has priority 2.

The “lollipop” at the bottom of macrostate Timer is a suspension arc. A label can be associated with a
transition, an initial arc, or a suspension arc. These labels refer to signals presented in the next subsection.

Signals. Signal is our unique abstraction for handling communication and synchronization. Emitting or receiv-
ing a signal meets with the classical notion of event. A signal has a presence status: present(+), absent(-), or
unknown(�). It may convey a value of a given type. If a signal can be emitted several times within one reaction,
a combination function is also required. A signal that conveys no value is called a pure signal. Finally, a signal
has a scope: either external or local to a macrostate. External signals are further classified in input signals and
output signals. Local signals are bi-directional but used only for internal communication.

Local signals are explicitly mentioned on a syncChart: arm is signal local to macrostate Detection; disarm
is local to macrostate ABSync. External signals are not explicitly declared in the syncChart. The input signals
of the outermost macrostate are A, B, Reset, T, and Inhib. There is only one output signal: AB.

Label Associated with a Transition. The general syntax for a label is trigger [guard] / effect. A trigger may
be a single signal the presence of which is expected to fire the transition. An optional integer factor indicates that
several consecutive occurrences of the signal are expected (e.g., the trigger “2 T” of the transition in macrostate
Timer). More complex triggers are expressions on signals using logical operators (���, ��, ���). A guard is an
expression that evaluates to true or false. The expression uses values of signals and constants. An effect is a set
of (instantaneous) actions. Emitting a signal is a possible action. Trigger, guard, and effect are optional.

Label associated with a simple state. An effect can be associated with a simple state. For pure SyncCharts (i.e.,
a syncChart with pure signal only) this effect consists of a possibly empty set of emitted signals. The syntax of
the label is / effect.

2.3 Informal Semantics

Up to now, we have only presented syntactical aspects of SYNCCHARTS. Since SYNCCHARTS are intended
to represent reactive behavior, the main thing is to understand the dynamics of the model. In this section, ex-
planations are kept informal. Moreover, we focus on pure syncCharts, that is, syncCharts with pure signals
only. Reactivity has strong connection with the presence/absence of signals. Pure SYNCCHARTS are sufficient
to explain the essence of a reaction. This simplified approach has already been successfully adopted for the
ESTEREL’s semantics [4].

4 Charles André

Reaction. A syncChart, like other synchronous models, is “executed” cyclically. An evolution cycle is as fol-
lows:

1. Read the inputs: in our restricted presentation, this means “get the presence status of each input signal,
yielding an input image”.

2. Compute the reaction: according to the internal state of the syncChart and the input image, compute the new
internal state and the output image (i.e., find for each output signal its new presence status).

3. Perform the outputs (i.e., effectively deliver output signals to the environment).

This process is supposed to take no time. An instant is fully characterized by the associated reaction. Note
that the reaction must be deterministic. Thus, computing the reaction of a syncChart in a fully deterministic way
is a central problem.

Communicating FSMs. A first approach is to consider a syncChart as a set of communicating finite state
machines (a state machine for each STG contained in the syncChart). “A finite state machine is a machine
specified by a finite set of conditions of existence (called states) and a likewise finite set of transitions among
states triggered by events”. This definition given by B. P. Douglass [5] applies to SYNCCHARTS, provided events
are replaced by signals. As usual, a state characterizes a condition that may persist for a significant period of
time. When in a state, the system is reactive to a set of signals and can reach (take or fire a transition to) other
states based on the signals it accepts. Suppose that states wA, wB, and idle are active in syncChart ABSync.
If A is present, then the transition from state wA to state dA is taken. The associated effect (emission of local
signal arm) is executed. Now, this signal is instantaneously broadcast. State idle was waiting for the presence
of arm. The presence of arm triggers the transition from state idle to macrostate Timer. Entering macrostate
Timer, causes the activation of the initial state of the STG in Timer. Further evolution is no longer possible in
this reaction. Therefore, signal AB is not emitted during this reaction (presence status set to absent). Thus, a
reaction appears as a sequence of instantaneous transitions or microsteps driven by causality relationship. The
global result is an instantaneous change of active states. The causality chain may be cyclic: its instantaneous
execution is obviously unacceptable. In such a case, the syncChart is rejected.

The previous reaction implies only strong abortion transitions on simple states. Strong abortion applies to
macrostates as well. When Reset is present, whatever the presence status of the other input signals, macrostate
Detection is exited without any prior internal evolution of the macrostate. The target state being the same
macrostate, Detection is re-entered during the reaction and recursively activates initial states of the enclosed
STGs. A weak abortion is performed differently: before exiting the macrostate origin of the weak abortion
transition, the internal evolutions of the macrostate are executed (see example below).

A normal termination transition has no explicit trigger. Such a transition is fired as soon as each STG of the
source macrostate is in a final state. For instance, if states dA and wB are active, and B is present, the transition
from wB to dB is taken. Now the two STGs in macrostate WaitAandB are in a final state. Instantaneously, the
normal termination transition is taken, signal AB is emitted, and state done becomes active.

We can now illustrate the firing of the unique weak abortion transition of the example. Suppose that states
dA, wB, and cnt are active. What is the reaction of the syncChart if B and T are present, and T is the second
occurrence of T since cnt has been active? The transition whose trigger is “2 T” is taken. The local signal
disarm is emitted. The weak abortion is triggered, but before exiting macrostate Detection, possible internal
evolutions must be executed. This is the case for the normal termination of macrostate WaitAandB previously
presented. Thus, signal AB is emitted. Now, no further evolution in Detection is possible; macrostate Detection
is effectively exited, and then re-entered as already explained for the strong abortion.

Note that, when several transitions issued from the same state are simultaneously eligible for firing, only
the one with the highest priority (the smallest integer value) is taken. In order to avoid inconsistent decisions,

Computing SyncCharts Reactions 5

SYNCCHARTS impose the following restriction: strong abortions have priority over weak abortions, which have
priority over a normal termination.

Normal termination is not strictly necessary: the same behavior can be obtained by a weak abortion triggered
by a conjunction of local signals (see Fig.2). We keep this convenient construct that is more readable than its
weak abortion counterpart.

done

/ AB

dA dB

signal arm
done

DA and DB /
AB

signal arm, DA, DB

dA dB/ DA / DB

Fig. 2. Normal termination can be replaced by weak abortion and local signals.

Finally, suspension is used to “freeze” evolutions within a macrostate. When Inhib is present, Timer will
ignore possible occurrences of T, and, of course, can not emit disarm.

These few examples show the complexity of a reaction, which may result from partially ordered transition
firings. In fact, communicating FSMs are not well-adapted to hierarchy, preemption, and above all, instantaneous
chaining of transition firings. Instead of communicating FSMs, we choose cooperating reactive cells as active
agents.

Reactive Cell. In SYNCCHARTS, the default behavior is to stay in a state for ever. A state can be exited only
by firing an abortion transition (recall that normal termination is a special case of weak abortion), or indirectly
by exiting a containing macrostate. Thus, active agents in a syncChart are states with their outgoing transitions.
We call reactive cell a state with its outgoing transitions. A reactive cell can be active (alive) or idle (doing
nothing at all). An active reactive cell is permanently testing the triggers associated with its transitions. As
soon as a transition can be taken, the reactive cell is deactivated and the reactive cell target of the transition is
activated. A reaction now appears as a propagation of activations/deactivations among a collection of cells. This
execution model has been inspired by Boussinot’s reactive objects [6], though reactive objects address distributed
applications, and are not subject to strict synchronous hypotheses.

Reactive Cells will be used in our more formal presentation of the model (Sec.4).

3 Advanced Features

3.1 Immediate Preemption

When entering state wA in macrostate WaitAandB, if A is present at this very instant, the outgoing transition
is not taken. This is the usual behavior: a trigger waits for a strictly future occurrence. This default behavior
can be modified using the immediate qualifier for a transition (denoted by the # symbol prefixing the trigger).
With immediate transitions some states can possibly become transient, that is, activated and then deactivated
during the same reaction. Note that they are still genuine states, because the control can stay in them, under
some circumstances. Immediate reaction combined with preemption results in different behaviors, as illustrated
by Fig.3. Note that, in this example, the immediate strong abortion makes state q to be bypassed.

6 Charles André

p q r

/ A / B / C

a/b t
transition t new state emitted signals

�
�� ��� �� �
��

��� ��� �� ���

Æ
��

��� ��� �� �

Fig. 3. Immediate Reactions: Behavior according to the type of preemption applied to state q, when p is active, and a occurs.

3.2 Re-incarnation

Loop, immediate preemptions, and priority can lead to amazing, but perfectly consistent behaviors. Fig.4 shows
an example especially devised to illustrate these complex interactions. For this example, we use valued signals
for a better traceability, but the succession of microsteps would have been the same with pure signals. The
signal v is an integer with the multiplication as the combination function. The value emitted by each transition
is a different prime number, so that, the value conveyed by v faithfully reflects the transitions fired during the
reaction2.

s1

a / v[3]

1

s2

b / v[5]

innerMacro

/ v[2]

c / v[7] s3

d / v[11]

2

1 2

signal v:=1: combine integer with *

reincarnation

Fig. 4. State Reincarnation.

Suppose state s1 is active. If signals a, b, c, and d are present, then v is present and its value is ����� �
� � � � �� � � � ��. The new active state is s3. This reaction can be informally decomposed as follows:

1. Macrostate innerMacro must be weakly aborted by the transition labeled c, which has priority over the one
labeled by d.

2. Before firing the transition, the inside of the macrostate must be executed. Inside, it is the strong abortion
triggered by a that is taken, emitting v(3).

3. State s1 is the target, so s1 is re-entered. In fact, this is a fresh instance (re-incarnation) of s1.

2 The ordering cannot be preserved by a combination function, which must be commutative!

Computing SyncCharts Reactions 7

4. This fresh instance is receptive to a strictly future occurrence of a, and to a present or future occurrence of
b. Hence, the transition triggered by b is taken, and v is emitted with 5. State s2 is activated.

5. Since state s2 has no outgoing transition, no more evolution is possible in innerMacro. The transition
triggered by c is then fired. v is emitted with value 7.

6. The target of the transition is macrostate innerMacro, which is re-entered. Again, it is a re-incarnation. This
fresh instance is receptive to strictly future occurrences of c, and to a present or future occurrence of d. The
weak abortion triggered by d is then to be taken, but before, the inside of innerMacro must react.

7. The execution of innerMacro starts with emitting v with value 2 (initial arc) and enters state s1.
8. This fresh instance of s1 is receptive to a strictly future occurrence of a, and to a present or future occurrence

of b. Hence, the transition triggered by b is taken, and v is emitted with 5. State s2 is activated.
9. Since state s2 has no outgoing transition, no more evolution is possible in innerMacro. The transition

triggered by d is then fired. v is emitted with value 11.
10. State s3 is activated, and the reaction stops.

Hence, v conveys the value � � � � � � � � � � ��. To recapitulate, a fully explainable behavior, all but obvious.

4 Formal Presentation of SYNCCHARTS

SYNCCHARTS are based on states and instants. Usually, the semantics of instant-based models is given as the
set of possible stimuli/reaction sequence pairs (input sequences / output sequences). This set is given implicitly
by an acceptation procedure or by an inductive construction mechanism. In this paper, we choose the latter. So,
we need a formal definition of the structure of a syncChart (Sec.4.1). Then, we have to characterize the state
of a syncChart and of its environment. For this, the concepts of configuration and signal context are defined
(Sec.4.2). Finally, we have to give a semantics: in Sec.4.3, we introduce an operational constructive semantics.

STG

SimpleState
+isFinal : boolean

StrongAbort

SyncChart

NormalTerm

InitialArc

SuspArcWeakAbort

MacroState

State

ReactiveCell

InstantAction

0..1+top 1

+body

1

+stgs

1..*

+watrans 0..*
{ordered}

+suspension0..10..1
+effect 0..1

+nttran
0..1

0..1

+exit
0..1

+initial

1

+rcells 1..*

0..1

+entry
0..1

+satrans 0..*
{ordered}

Fig. 5. SYNCCHARTS’s Metamodel: States.

4.1 Metamodel

The abstract syntax for SYNCCHARTS is expressed using the standard UML notations. Figs.5 and 6 cover all
basic concepts. A ReactiveCell consists of a body and possibly empty sets of outgoing transitions. The body is

8 Charles André

a state: either a Macrostate or a SimpleState. satrans is the set of strong abortion transitions; watrans the set
of weak abortion transitions; nttran is a the set of normal termination transitions that contains one transition at
most.

Well-formed SyncCharts must also respect a few constraints:

– An STG must be a connected graph.
– A Transition links two reactive cells in the same STG.
– A SimpleState, which is final, has neither outgoing transition nor associated effect.

The structure of a syncChart can be represented by a tree that reflects the state containment hierarchy. More
precisely, a macrostate contains STGs, a STG contains reactive cells, a reactive cell contains one and only one
state. In the tree, a ReactiveCell has one and only one successor. It can be omitted without loss of information
about the structure. The resulting tree has two types of nodes (state and STG) that alternate on any path of the
tree. Fig. 7 gives our notation and the tree associated with ABSync. Note that solid circles, which represent
states, have three variants: macrostate without suspension, macrostate with suspension, and simple state.

Transition
+isImmediate : boolean
+priority : int

SignalExpressionInstantAction

PseudoTrans AbortTrans

Constraint

ReactiveCell

SuspArcInitialArc StrongAbortWeakAbortNormalTerm

0..1
+guard 0..1

1..*

+target

1
0..1

+effect 0..1
0..1

+trigger 0..1

+in

Fig. 6. SYNCCHARTS’s Metamodel: Transitions.

4.2 Configuration and Signal Context

Configuration. Harel and Naamad [7] defined a configuration as a maximal set of states that could be simulta-
neously active. This definition must be adapted to take account of suspensions.

Let T be the top macrostate associated with a syncChart. A configuration C for T (and thus, for the syncChart)
must satisfy the following rules:

1. T is in C.
2. If a macrostate without suspension M is in C, then C must also contain for each STG G directly contained

in M, exactly one state directly contained in G.

Computing SyncCharts Reactions 9

Timer

cnt

idle

ABSync

Detection

WaitAandB

dAwA dBwB

done

Macrostate without suspension

STG

Macrostate with suspension

Simple state

Legend

identifier identifier

Fig. 7. Tree associated with a syncChart.

3. If a macrostate with suspension M is in C, then
– Either C must not contain state descendant of M,
– Or C must also contain for each STG G directly contained in M, exactly one state directly contained in

G.
4. C contains only states satisfying rules 1 to 3.

Configurations can be derived from the tree associated with the syncChart. This tree has to be considered as a
AND/OR tree, where AND-nodes are solid circles (states) and OR-nodes are hollow circles (STGs). �ABSync,
Detector, WaitAandB, wA, wB, idle�, �ABSync, Detector, WaitAandB, wA, wB, Timer�, and �ABSync,
Detector, WaitAandB, wA, wB, Timer, cnt� are instances of configurations of syncChart ABSync.

Signal Context. Since reactions in SYNCCHARTS may result from instantaneous cooperation of several sub-
systems, signals, which support communication, are the cornerstone in the SYNCCHARTS semantics.

With each reaction is associated a set of signals � called the signal context. � is partitioned into two blocks:
�� and �� (i.e.,� � �� ��� and �� ��� � �)3. �� is the set of the present signals at the current instant,
�� the set of the absent signals. During an instant, a signal must be either present or absent. When computing
a reaction, only input signals, which are imposed by the environment, have a definite status. The presence status
of all other signals must be determined. Like in the ESTEREL language, we assume that a non-input signal is
present if and only if it is emitted during the instant.

4.3 Introduction to Constructive Semantics

Problem: Given a pure syncChart, one of its configuration, and the presence status of all its input signals,
compute the reaction, (i.e., the next configuration, and the presence status of all output signals).

3 In ESTEREL, the set of present input signals is called an input event. We avoid this term, usually associated with occurrence
of a single signal.

10 Charles André

Principle of the Computation of a Reaction. We consider the syncChart as a collection of interacting reactive
cells. Each cell receives signals that trigger evolutions, which possibly emit new signals. All the signals are
instantaneously broadcast.

Conceptually, reactive cells run concurrently. Each active reactive cell locally determines its behavior (i.e.,
performs actions, takes a transition and thus becoming idle, or staying active). The presence status of the signals
is the deciding information. To ensure the determinism of the reaction of the syncChart, all reactive cells must
agree on the actual presence status of each signal. This suppose finding a fixpoint solution through dialogs.

To solve this problem, we propose that each reactive cell suspends its evolution when in doubt about the value
of a triggering signal expression. The corresponding evaluation is left pending. When a still running concurrent
cell emits a signal, this fact about the presence status of the emitted signal is broadcast to other cells. This reliable
fresh information may assert or refute a pending evaluation, and thus resume the evolution of a cell. This process
is applied till stability, when each active cell has terminated its evolutions, or is suspended. What is done in the
latter case depends on the chosen semantics. Some semantic variants will be described below. Beforehand, we
have to precisely define the interpretation of signal expression.

Remark: This approach is akin to the one advocated by G. Berry [4] for the ESTEREL language. He named it
the constructive semantics in reference to the fact that values are computed by explicit proofs, not by a “trial and
error” procedure.

Signal Algebra. The partition of the signal context in present and absent signals is effective when the reaction
has been successfully computed. However, during the computation itself, the presence status of a signal can be
unknown. Now, �� is the set of the certainly present signals at the current instant, �� the set of the certainly
absent signals, and �� the set of signals, the status of which is not yet known. Instead of dealing with Boolean
values, we resort to a Scott Boolean domain �� � ������� where� � � and� � �.

The technique adopted for determining the context � is to propagate facts and build the solution incremen-
tally, if one exists. The computation relies on monotonic functions. The order relation is defined by

� 	 ��
� �� � ��� �� � ���

Signals are combined in signal expressions used, for instance, in triggers. A signal expression is an expression
similar to a Boolean expression, made of signals, operators (��� , �� , ���), and parentheses.

Given a signal context�, a signal expression � evaluates in ��:
For � 		� �
for a signal �� � ��� � � � �� � � � ��� �. � is evaluated as follows:

eval
���� � � � � � ��� � � � � ��� � ���������

eval
��� ���� � ��� eval
����

eval
� �� ���� � eval
���� �� eval
����

where operators ��� , �� , and ��� are defined in the tables below.

not or � - + and � - +
� � � � � + � � - �
- + - � - + - - - -
+ - + + + + + � - +

Computing SyncCharts Reactions 11

Reaction of Reactive Cells. The reaction of a reactive cell relies on the reaction of its components. A re-
act() method is defined for the different classes. This method returns a termination status taking values in the
enumeration ���	
, �
��, ���
�.

Returning ��	
means that the object has terminated its reaction and has nothing left to do at the next instant.
Returning ���
means that its reaction is over for the current instant, but will proceed at the next instant. Finally,
�
��means that the object has terminated its reaction and has nothing left to do at the next instant except waiting
for a normal termination. Once entered in a final state, react() returns �
�� till the effective normal termination.

The pseudo-code for the react() methods and comments are presented in the appendix. Note that, our objec-
tive is not to make an efficient compilation of SyncCharts, but only to explain microsteps. Our solution heavily
relies on concurrent executions, while most compilations (of ESTEREL programs) try to serialize concurrent
evolutions (e.g., see S. Edwards’s compiler [8], and SAXO-RT [9]).

Use of a Potential Function. If the recursive computation returns, then the syncChart is now in a new config-
uration, and all signals used during the reaction have been given a definite presence status. By default, all other
signals are set to absent. The computation of the reaction is successful. However, the computation may stall with
suspended reactive cells. For ESTEREL programs and reactive objects, F. Boussinot [10] has studied different
ways to resume the computation. These ideas apply to SYNCCHARTS as well. The more drastic solution, in use
in reactive objects, is to set to absent all not yet assigned signals, to resume the evaluation of pending expres-
sions, and to defer the issue of the decisions to the next instant. SYNCCHARTS, like ESTEREL does not defer
decisions. Instead, they try to enrich their knowledge about the signal context. A most interesting information is
about signals that are certainly absent (cannot be emitted) during the reaction. To know whether a signal shall
not be emitted seems to be relevant of clairvoyance. In fact, using the structure (syntactic analysis), we construct
a monotonic decreasing set of potentially emitted signals, called the potential. Any signal not in this set will
certainly not be emitted, provided that this set is correct (i.e., all signals possibly emitted are in the potential).

Taking account of the potential, a stalled reaction may resume, proceed by microsteps, and then stall again.
This process is repeated, and eventually, either the process stops with all presence status defined, or there still
exists suspended evaluation and the potential cannot help the pending evaluations. In the first case, the reaction
completes successfully. In the latter case the syncChart is rejected as non constructive. The choice of the potential
function is critical. A rough potential is easy to compute but leads to many unjustified rejections of syncCharts;
a fine potential is difficult to construct but accepts a large class of SYNCCHARTS.

The commercial version of SYNCCHARTS used in Esterel Studio [11] translates the syncChart into an equiv-
alent Esterel program, which is then compiled. Thus the potential function is the one used in the Esterel V5
compiler, based on the “must” and “cannot” sets [4]. Research on efficient potential functions exploiting the
structure of the syncCharts are still in progress.

5 Conclusion and Perspectives

This paper has shown that the apparent simplicity of SYNCCHARTS may hide complex behavior. In fact, SYNC-
CHARTS are the graphical counterpart of ESTEREL, a textual language. Any syncChart can be translated into
an equivalent ESTEREL program, and this is the usual way to compile SYNCCHARTS. For people familiar with
the semantics of ESTEREL, the behavior of SYNCCHARTS is easy to understand. For instance, the amazing state
re-incarnation example can be seen as a simple graphical variant of the ESTEREL signal re-incarnation.

Instead of exploiting this close relationship between SYNCCHARTS and ESTEREL, we have chosen to present
SYNCCHARTS as an independent state-based synchronous model. The structure of SYNCCHARTS has been
formally defined by a metamodel, using the UML notations. The computation of a reaction has been explained

12 Charles André

in terms of cooperating reactive cells. The principles of the constructive semantics have been also explained, but
not formalized4.

We believe that a graphical model like SYNCCHARTS may be a good introduction to synchronous program-
ming for many engineers more familiar with state graph models than with programming languages. However,
being as expressive as the ESTEREL language, SYNCCHARTS may be too powerful for “standard” users. The
re-incarnation example is a bright illustration. Moreover, even advanced users, may use only a subset of the
SYNCCHARTS possibilities.

We plan to develop a platform dedicated to SYNCCHARTS that will allow the user

– to select the set of constructs he/she wants to use (customizing),
– to trace microstep execution (understanding semantics),
– to trace reactions (simulating).

Thus, the user could adapt his/her model to his/her needs. A simpler model is, of course, easier to learn,
and may lead to more efficient compilations. Fig.8 is a good starting point for selecting constructs and see
the possible simplifications. For instance, the immediate modifier is very interesting for instantaneous dialogs,
but it may easily introduce causality cycles. Discarding immediate makes the first instant reaction far simpler:
neither strong nor weak abortion can occur on a just-entered state. Other possibilities, not presented on the
figure, concern the choice of a potential function. It is even possible to introduce variations on signal handling:
In some circumstances, for example to eliminate a causality cycle, it would be convenient to differ the emission
of some signals to the next instant, as it is done in Statecharts. All those variations are easily formalized and
implemented. Additional constraints are added to the metamodel (syntax). As for semantics, it is sufficient to
modify the react() methods.

References

1. G. Berry. The foundations of Esterel. In C. Stirling G. Plotkin and M. Tofte, editors, Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

2. C. André. Representation and analysis of reactive behaviors: A synchronous approach. In Computational Engineering
in Systems Applications (CESA), pages 19–29, Lille (F), July 1996. IEEE-SMC.

3. D. Harel. STATECHARTS: A visual formalism for complex systems. Science of computer programming, 8:231–274,
1987.

4. G. Berry. The Constructive Semantics of pure Esterel. (revision 1999), available on the web, www.esterel-
technologies.com, Sophia Antipolis (F), July 1999.

5. B. P. Douglass. Real-Time Design Patterns. Object Technology Series. Addison-Wesley, Reading, Massachusetts, 2003.
6. F. Boussinot, G. Doumenc, and J-B. Stefani. Reactive objects. Ann. Telecommunication, 51(9–10):459–473, 1996.
7. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Trans. Soft. Eng. Method., 5(4):477–498,

October 1996.
8. Stephen A. Edwards. An esterel compiler for large control-dominated systems. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 21(2):169–183, 2002.
9. E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil. SAXO-RT: Interpreting ESTEREL semantics on a sequential

execution structure. In Electronic Notes in Theoretical Computer Science, volume 65 (5), Grenoble (F), 2002. Slap’2002,
Synchronous Languages, Applications and Programming.

10. F. Boussinot. Sugarcubes implementation of causality. Technical Report 3487, INRIA, September 1998.
11. Esterel Technologies, Guyancourt (F), //www.esterel-technologies.com. Esterel Studio, V4, 2002. Refer-

ence Manual.
12. Charles André. Synccharts: a visual representation of reactive behaviors. Technical Report RR 95–52, rev. RR (96–56),

I3S, Sophia-Antipolis, France, Rev. April 1996.

4 There exists a technical report [12] about a behavioral semantics of SYNCCHARTS (early version).

Computing SyncCharts Reactions 13

6 Appendix: Computation of a Reaction (Details)

6.1 SyncChart Reaction

SyncChart::react()
read inputs
for all s in outputs do
s.reset()

done
top.react()

The �����
� method, when applied to a signal, sets its presence status to �.

6.2 MacroState Reaction

The constants of the enumeration that type the termination status are ordered: �
�� � ���
. This order is
used to characterize the return of parallel executions of STGs in a MacroState. The ����� method applied to a
macrostate returns either �
�� or ���
.

MacroState::react()
for all s in locals do
s.reset()

done
parallel for all g in stgs do
r[k] = g.react()

done
return Max(r)

6.3 STG Reaction

STG::react()
if curCell==null then
curCell = initialCell

endif
while (r=curCell.react()) == DONE do
curCell = nextCell

done
return r

The �����
� method of an STG calls the �����
� method of its current active reactive cell. This method
returns either �
�� or ���
. Note that several reactive cells can be passed through, in a strictly sequential
order, during the one instant.

6.4 SimpleState Reaction

This is a trivial case.

14 Charles André

SimpleState::react()
if isFinal then
return DEAD

else
perform effect
return PAUSE

endif

6.5 ReactiveCell Reaction

T = testSA (true)

c.nextState = T.target
T.effect ()
return DONE

firstInstant = true
entry ()

T = testSUSP (firstInstant)

B = PAUSE B = body.react ()

T = testWA (firstInstant)

T = normTerm

return PAUSE
body.kill ()
c.nextState = T.target
exit ()
T.effect ()
return DONE

firstInstant = false

T = testSA (false)

IDLE ACTIVE

T==null

T==null

T==null

T==null

B==DEAD

Fig. 8. ReactiveCell Reaction: ReactiveCell::react() method.

Computing SyncCharts Reactions 15

For the �����
� method of a ReactiveCell, see Fig. 8. Note that the behavior is different at the first instant
and at the following instants. The ����
� method makes recursive depth-first kills: ReactiveCells enter their
���
 state, and STGs forget their current ReactiveCell.

The heart of the computation is the ����� (test presence) function that evaluates a signal expression. This
function is executed by a thread that waits until the signal expression evaluates to either + or -.

boolean testP(expr,E)
wait (r=eval(expr,E)) != �
return (r == +)

This function is used in trigger evolutions (capsules with colored background in Fig.8). Given an ordered
set of transitions S and a signal context E, ��������� returns the first firable transition (i.e., the first transition
whose trigger evaluates to ����), if any, or ����, otherwise.

Transition testTrans(S,E)
for (t:AbortTran=S’first to S’last) do
if testP(t.trigger,E) then
return t

endif
endfor
return null

Function ������
� (������
�, �������
�, respectively) used in ������������ 		 �����
� is a special
case of ���������, where parameter S is the set of the strong abortion (weak abortion, suspension, respectively)
transitions. These functions have a Boolean argument to indicate whether the evaluation concerns the first instant
or not. At the first instant, all not immediate transitions are ignored.

