
Synchronous Interface Behavior
Syntax and Semantics

Charles ANDRÉ
I3S Research Report #00–11

August 1, 2000 (Version 0.1)
December 5, 2000 (Version 0.2)

Abstract

This report presents the syntax and the semantics of “Sequential Interface Behavior” (SIBs) proposed
as a substitute for “Sequence Diagrams” of the UML. A sib expresses an input/output behavior in an
unambiguous way. It supports quantitative timing constraints useful for real-time applications. The
SIB’s semantics is defined in terms of a synchronous process algebra, detailed in this report.

Keywords: Synchronous Programming, Process algebra, Sequence Diagrams, Reactive Program-
ming.

1 Introduction

“Synchronous Interface Behavior” (SIB) extends “Sequence Diagrams” of the UML. It also borrows some
features from “Message Sequence Charts”. The novelty is in the synchronous approach adopted for SIB1.

This technical report presents a formal semantics for SIB. The semantics is defined in terms of a syn-
chronous process algebra. This technique has been successfully applied to the Esterel language [Ber93]
and to the SyncCharts [And96]. Equipped with this semantics, a sib is an unambiguous description of
an input/output behavior of a reactive system. Moreover, every sib can be translated into a semantically
equivalent Esterel program, and thus, takes advantage of the platform (compiler, debugger, model-checker)
developed for Esterel.

A sib is a special synchronous program. On the one hand, it is simpler than, say, an Esterel program.
There is no instantaneous feedback from output to input: a SIB is only an observer [Hal93]. On the other
hand, a sib offers high-level constructs dedicated to the expression of timing constraints. Last but not least,
a siballows a limited form of nondeterminism, useful in specifications.

1SIB is the model. A sib is an instance of the model.

1

2 Synchronous Interface Behavior

A sib is used to check properties of a reactive program, standing for a controller. The sib is translated
into a pure Esterel module (i.e., an Esterel program with only pure signals) with counters (i.e., with inte-
ger constants, known at compile-time, used in repetitive statements). When the controller is programmed
in Esterel, or SyncCharts, the controller program and the sib module are composed in parallel, giving a
synchronous program on which properties can be checked.

2 Notations

2.1 Integers

N denotes the set of the non negative integers. Let N 0 be the set of non negative integer augmented with !:
N

0 = N [f!g.
8n 2 N : n < ! and ! � n = !

2.2 Syntax

We use a BNF-notation. A terminal keyword is written in bold font (e.g., Observed). A terminal symbol is
written in bold font, between accents (e.g., ‘;’). Non terminals are written in slant font (e.g., list-of-signals).
Non terminals like signal, integer, . . . are defined by classical regular expressions.

3 Textual Syntax

Note that this concrete syntax is only an intermediate format, the user should use a graphical one, not yet
fully defined.

3.1 Grammar

Table 1 contains the rules for usual terms. Most rules are classical. The synchronous foundation of the
model induces specific rules:

� Simultaneous occurrences are perfectly defined in a synchronous model: all the signals present at the
same instant are simultaneous. The signal-conj non terminal denotes simultaneous occurrences.

� By default, when waiting for a signal occurrence, one waits for a strictly future occurrence. In some
cases, the possible present occurrence may be significant. The modifier immediate means awaiting a
present or future occurrence.

Table 1: Syntax of Basic SIBs

sib ::= declarations seq-of-actions

C. André – I3S RR 00-11 3

Table 1: Syntax of Basic SIBs

declarations ::= observed timebase
observed ::= Observed ‘=’ ‘{’ list-of-signals ‘}’
timebase ::= j Timebase ‘=’ ‘{’ list-of-signals ‘}’
action ::= expect j within j before j upto j parallel
seq-of-actions ::= action j seq-of-actions ‘;’ action
parallel ::= seq-of-actions ‘k’ seq-of-actions j parallel ‘k’ seq-of-actions
imm ::= j immediate
optional ::= opt

seq-of-actions
end opt

expect ::= expect-and
expect-and ::= expect imm signal-conj
within ::= do

seq-of-actions
within integer positive-inf signal-conj

before ::= do
(seq-of-actions j seq-of-actions ‘;’ optional j optional j)

before integer integer signal-conj
upto ::= do

(j optional)
upto

seq-of-cases
end upto

case ::= case imm signal-conj do
(j seq-of-actions)

seq-of-cases ::= case j seq-of-cases case

signal ::= [A-Za-z][A-Za-z_0-9]*
list-of-signals ::= signal j list-of-signal ‘,’ signal
signal-conj ::= signal j signal-conj and signal
times ::= j positive
times-inf ::= j positive-inf
integer ::= [0-9]+
positive ::= [1-9][0-9]*
positive-inf ::= positive j infinity

4 Synchronous Interface Behavior

For convenience, extra rules are defined and some are modified (Table 2). Using them, makes the SIB
more concise, maybe at the price of a slight lost of legibility.

Table 2: Syntax of Extended SIBs

action ::= . . . j watchdog j repetitive
expect ::= expect-and j expect-or
expect-or ::= expect signal-disj
signal-disj ::= imm signal-conj j signal-disj or imm signal-conj
repetitive ::= repeat positive-inf times

list-of-actions
end repeat

watchdog ::= do
(seq-of-actions j seq-of-actions ‘;’ optional j optional)

watchdog integer integer signal-conj

3.2 Derived Constructs

The set of constructs in the SIB syntax is not minimal. For instance, expect can be derived from upto. In the
next section, only the primitive constructs should be given a formal semantics. Nevertheless, non primitive
constructs are useful in SIB descriptions, for they are concise forms.

3.2.1 Expect

expect is a degenerated form of upto.

Table 3: Expansions of the expect statement

expect S � do upto case S do end upto
expect immediate S � do upto case immediate S do end upto

Expect immediate: Iteration can be dangerous in synchronous programming in the case of instantaneous
statements. The immediate multiple expect must be understood as: expect immediate n S � expect
immediate S; expect n-1 S.
This point will be clarified by the formal semantics (section 5).

C. André – I3S RR 00-11 5

Expect one among several events: this is another form of the expect.

expect S1 or S2 or S3 � do
upto

case S1 do
case S2 do
case S3 do

end upto

3.2.2 Upto

The upto construct is deterministic (this is a deliberate choice of the author). When several expected events
are present, the first (textual order) matching case is taken. Thus, the order of the case-clauses indicates a
priority.

The or-list of signals in an expect with disjunction statement is commutative only because actions in the
case-clauses are void. This commutativity must not be generalized to other upto constructs.

4 Graphical Syntax

4.1 Basic Constructs

The flow of control is top-down in a sib. A vertical red line represents this flow. Expected events are denoted
by solid red dots on this line. Fig. 1 shows that a signal may be received (input) or sent (output). The
distance between two consecutive expects is meaningless, only the ordering is relevant, in accordance with
the logical time used by synchronous models.

The SIB is a structured block-oriented model. Expects are the bricks. The main construct is the sequence.
In the figures below, sequences are drawn as green vertical rectangles. A sequence is an ordered set of
actions. Expect is the simplest action. Any block described below is also an action.

s

Expect Input

s

Expect output

Figure 1: Expect.

6 Synchronous Interface Behavior

4.2 Temporal behaviors

In real-time applications, event occurrences are temporally constrained. Binding logical time to real time can
be done by relevant events (e.g., a 1 kHz physical clock that generates signal “ms”). Multi-form (discrete)
timing constraints are expressed by two special constructs: within and before (Fig. 2).

Basically, to be accepted, a sequence of actions must be completely matched within a temporal window
for the within construct, and before a deadline for the before construct. These constraints can be too
restrictive for high-level specifications. So, we weaken them. First, we introduce a slack in the deadline
occurrence: the deadline can occur at random within a given interval. Second, we permit departure from
the rule of full matching of the sequence of actions. The trailing part of the sequence can be optional, that
is, when the deadline occurs, not fully matching the sequence in the optional part does not make the sib not
applicable. Graphically, the optional part of the sequence is denoted by a dashed control flow line. Fig. 2
shows the graphical notation for the within and the before constructs. Below are examples with their
(informal) semantics.

� “do p within 1 .. 4 ms” says that the sequence actions “p” must take place between the
first and the fourth future occurrence of ms. Note that replacing ms with meter is semantically per-
fectly correct and allows generalized forms of time constraints: “stop_the_car within 20
.. 30 meter”.

� “do p before 8 .. 10 ms” expresses another behavior: the sequence of actions “p” must
terminate before a delay of 8, 9 or 10 occurrences of ms has elapsed. The deadline is clearly denoted
by an (implicit) expect, at the exit of the before block. Taking a lower bound different from the upper
bound of the delay is a way to introduce a restricted form of non determinism. At each instant between
the lower and the upper bound, the deadline can or cannot occur, arbitrarily.

4.3 Synchronous specific constructs

Since instants are discrete, one can expect a stricly future occurrence of an event, or consider a possible
present occurrence.

Synchronous modeling induces subtle issues, generally irrelevant to traditional approaches. Since simul-
taneous occurrences are possible, one can expect a conjunction of event occurrences.

Our notation captures these nuances (see Fig. 3).

4.4 Advanced constructs

A strict sequential representation of concurrent evolutions needs interleaving of events and induces “para-
sitic” ordering. A parallel construct is better at expressing partial ordering. Fig. 4 shows the parallel
construct made of at least two sequences. This is a restricted form of concurrency (fork-join).

The upto construct, in Fig. 4, expresses alternative: One out of several sequences is taken. The taken
sequence is the one whose guarding event occurs first. If several guarding events occurs at the same instant,

C. André – I3S RR 00-11 7

Within

m .. M s

Before

m .. M s

Figure 2: Temporal constraints.

which is perfectly possible in a synchronous model, the left-most opened sequence is taken. Thus, we have
a deterministic choice. This construct has been called upto, because before the occurrence of the selecting
event, the sib was awaiting in an optional sequence, and stays there up to the occurrence of a selecting event.

Like with MCS, subsequences can be iterated. The repeat construct (Fig. 5) allows folding of se-
quences. This is only “syntactic sugar” that denotes the unfolding of the loop.

A last construct is also very useful, especially in real-time systems and in protocols. We call it the
watchdog construct (Fig. 5). This block is left on the occurrence of a deadline event, the solid red dot
on the exit of the block. As suggested by the picture, the watchdog construct is akin to the before block.
The difference is that the former uses a disarming of the deadline: if the sequence in the watchdog block
terminates before the deadline, then, the deadline is “re-armed”. For flexibility, the number of occurrences
may vary within an interval, and the sequence may have one optional part.

Expect immediate Conjunctive expect

s s3 s1

s2

Figure 3: Variants of Expect.

8 Synchronous Interface Behavior

Parallel Upto

Figure 4: Advanced SIB (1).

5 Process Algebra

5.1 Reactions

Let I be the set of signals seen by the application (i.e., the controller). I � Observed [Timebase. The set
of output signals is O = fActive, Accepted, Not_Applicableg.

At the j th instant, let Ij be the current input event: Ij � I such that

8S 2 I; S 2 Ij () S is present at instant j

For a given sequence of input events I1 ; I2 ; � � � , the behavior of a SIB “p” is defined by a sequence of
reactions:

p = p0
O17�!
I1

p1
O27�!
I2

� � �
On7�!
In

pn
;
7�!
In+1

0
;
7�!
In+2

0 � � �

for some n 2 N 0 ;

and O 2 ffAcceptedg ; fNot_Applicableg ; fActivegg :

If n is finite, the execution of p is said to terminate at instant n.
A reaction is computed by induction on the structure of the term. For this, we use an auxiliary relation

(structural transition) defined by conditional rewriting rules. A structural transition is denoted by:

C. André – I3S RR 00-11 9

Repeat

n

Watchdog

m..M s

Figure 5: Advanced SIB (2).

p
A;k;b
���!
E

p0

where p is a term of the algebra, E the signal environment (the set of present signals), A the set of signals
accepted by p under E. k is either an integer or !, called the termination code, b is a Boolean that indicates
whether the transition has been done in an optional process, or not. p0 is the residue of p after the rewriting.
k = ! means that p has got through a deadline.

pj
Oj

7�!
Ij

pj+1 iff there exists a rewriting pj
A;k;b
���!
Ij

pj+1

Oj and the continuation depends on A and k. Let I 0j = Ij \ Observed be the set of present signals at
instant j restricted to the set of Observed signals.

Oj = fNot_Applicableg and the execution terminates if

(I 0j n A 6= ;) _ (k = !)

Oj = fAcceptedg and the execution terminates if

(I 0j n A = ;) ^ (k = 0)

Oj = fActiveg and the execution pauses till the next instant, otherwise

10 Synchronous Interface Behavior

5.2 Process

Instead of refering to the syntactic constructs of SIB, the process algebra adopts a terse notation. Some
operators are already known to readers familiar with the process algebra of the Esterel language [Ber93].
Others are specific to SIB, they are mentioned in the lower part of the table.

Remark 1: Some classical Esterel constructs like the suspend are not used. The trap construct of
Esterel, and its algebraic notation fpg is not directly available. It is used to express the semantics of some
derived statements. The same remark applies to the signal hiding (p n S).

Remark 2: This set of terms is not minimal.

Table 4: Algebraic Terms

0 nothing pass the control instantly
1 pause wait for the next instant
!S emit S 62 Observed [Timebase
S?p; q presence test the presence of S

and execute either p, or q
p ; q sequence
p j q parallel
p� loop
fpg trap
" p shift
p n S hiding of signal
k exit where k > 2
p < S strong abortion
p� n repeat finite iteration
[p] optional optional process
p @ SM

m within p in within [m::M [S
py SM

m before p before k 2 [m::M] S
pti21::nl(Si ; qi) upto

5.3 Auxiliary rules

In the following rules, assume m �M .

C. André – I3S RR 00-11 11

5.3.1 Classical rules

These rules are given without comments, see Esterel or SyncCharts semantics for details.

Terminaison :

k
;;k;ff
���!

E
0 (term)

Emit :

!S
fSg;0;ff
����!

E
0 (term)

Presence :

S 2 E p
Ap;k;bp
����!

E
p0

S?p; q
Ap;k;bp
����!

E
p0

(pres+)

S 62 E q
Aq;k;bq
����!

E
q0

S?p; q
Aq;k;bq
����!

E
q0

(pres-)

Sequence :

p
Ap;0;bp
����!

E
p0 q

Aq;k;bq
����!

E
q0

p ; q
Ap[Aq ;k;bq
������!

E
q0

(seq1)

p
Ap;k;bp
����!

E
p0 k 6= 0

p ; q
Ap;k;bp
����!

E
p0 ; q

(seq2)

Parallel :

p
Ap;kp;bp
�����!

E
p0 q

Aq ;kq;bq
����!

E
q0

p j q
Ap[Aq ;maxfkp;kqg;bp^bq
��������������!

E
p0 j q0

(par)

12 Synchronous Interface Behavior

Loop :

p
Ap;k;bp
����!

E
p0 k 6= 0

p�
Ap;k;bp
����!

E
p0 ; p�

(loop)

Trap :

p
Ap;k;bp
����!

E
p0 k = 0 or k = 2

fpg
Ap;0;bp
����!

E
0

(trap1)

p
Ap;k;bp
����!

E
p0 k = 1 or k > 2

fpg
Ap;#k;bp
�����!

E
fp0g

(trap2)

p
Ap;k;bp
����!

E
p0

" p
Ap;"k;bp
�����!

E
" p0

(shift)

Signal hiding : Without loss of generality, we assume that the signal name S is not used elsewhere. Apply
a renaming of signals if it is not the case.

p
Ap[fSg;k;bp
�������!

E[fSg
p0

p n S
Ap;k;bp
����!

E
p0 n S

(sig+)

p
ApnfSg;k;bp
�������!

EnfSg
p0

p n S
Ap;k;bp
����!

E
p0 n S

(sig-)

5.3.2 SIB specific rules

Up to here, we have only consider the presence or the absence of signals. This is sufficient for “pure” Esterel
programs or “pure” SyncCharts. Now, we introduce counters. Counters are integer-valued variables used
for the control of the program. Note that signals remain pure signals.

C. André – I3S RR 00-11 13

Repeat : This statement expresses finite iteration.

n > 1 p
Ap;k;b
���!

E
p0 k 6= 0

p� n
Ap;k;b
���!

E
p0 ; p� (n� 1)

(rep)

By convention, p� 1 � p.

Optional : remind that optional sequences need not being fully matched when preempted.

p
Ap;0;bp
����!

E
p0

[p]
Ap;0;tt
����!

E
0

(opt1)

p
Ap;k;bp
����!

E
p0 k 6= 0

[p]
Ap;k;tt
����!

E
[p0]

(opt2)

within :

m > 0 S 62 E

p @ SM
m

;;1;ff
���!

E
p @ SM

m

(win1)

m > 0 S 2 E

p @ SM
m

;;1;ff
���!

E
p @ SM�1

m�1

(win2)

M > 0 p
Ap;0;bp
����!

E
p0

p @ SM
0

Ap;0;bp
����!

E
0

(win3)

M > 0 S 62 E p
Ap;k;bp
����!

E
p0 k 6= 0

p @ SM
0

Ap;k;bp
����!

E
p0 @ SM

0

(win4)

M > 1 S 2 E p
Ap;k;bp
����!

E
p0 k 6= 0

p @ SM
0

Ap;k;bp
����!

E
p0 @ SM�1

0

(win5)

M > 1 S 2 E p
Ap;k;bp
����!

E
p0 k 6= 0

p @ SM
0

Ap;!;bp
����!

E
0

(win5’)

14 Synchronous Interface Behavior

S 2 E p
Ap;k;bp
����!

E
p0 k 6= 0

p @ S1
0

Ap;!;ff
����!

E
0

(win6)

Comments :

� (win1): Not in the execution window. p should not react.

� (win2): Not in the execution window. p should not react. Since S 2 E, decrement the bounds.

� (win3): Within the window. p terminates, so does the within.

� (win4): Within the window. p does not terminate.

� (win5): Within the window. Since S 2 E, the deadline can occur. Here, the deadline is postponed.
Let p react and decrement M .

� (win5’): Within the window. Since S 2 E, the deadline can occur. Here, the deadline occurs. Let p
react and terminate with a deadline violation (k = !).

� (win6)Within the window. Since S 2 E and M = 1, the deadline must occur. Let p react and
terminate with a deadline violation (k = !).

Before : this construct leaves the block when the deadline occurs.

S 62 E p
Ap;k;bp
����!

E
p0

py SM
m

Ap;k;bp
����!

E
p0 y SM

m

(bef1)

m > 0 S 2 E p
Ap;k;bp
����!

E
p0

py SM
m

Ap;k;bp
����!

E
p0 y SM�1

m�1

(bef2)

S 2 E p
Ap;k;bp
����!

E
p0 (k = 0) _ (bp = tt)

py S1
0

Ap;0;ff
����!

E
0

(bef3)

S 2 E p
Ap;k;bp
����!

E
p0 k 6= 0 bp = ff

py S1
0

;;!;ff
���!

E
0

(bef3’)

C. André – I3S RR 00-11 15

M > 1 S 2 E p
Ap;k;bp
����!

E
p0

py SM
0

Ap;k;bp
����!

E
p0 y SM�1

0

(bef4)

M > 1 S 2 E p
Ap;k;bp
����!

E
p0 (k = 0) _ (bp = tt)

py SM
0

Ap;0;bp
����!

E
0

(bef5)

M > 1 S 2 E p
Ap;k;ff
����!

E
p0 k 6= 0

py SM
0

Ap;!;ff
����!

E
0

(bef5’)

Comments :

� (bef 1): The deadline cannot occur (The time base signal is absent). Reaction of p only.

� (bef2): The deadline cannot occur (m > 0), but the time base signal is present: p reacts and bounds
are decremented.

� (bef3): The deadline must occur (m = 0;M = 1, and the time base signal is present). p terminates or
was in an optional sequence: The process terminates.

� (bef3’): The deadline must occur (m = 0;M = 1, and the time base signal is present). p does not
terminates and was not in an optional sequence. Then the kill termination is set.

� (bef4): The deadline can occur (m = 0;M > 1, and the time base signal is present). The deadline is
delayed, p reacts and M is deceremented.

� (bef5): The deadline can occur (m = 0;M > 1, and the time base signal is present). The deadline
actually occurs, p reacts and terminates or was in a optional sequence. The process terminates

� (bef5’): The deadline can occur (m = 0;M > 1, and the time base signal is present). The deadline ac-
tually occurs, p reacts and does not terminate and was not in a optional sequence. The kill termination
code is set.

Upto : An optional sequence must be preempted by guarding signals. The choice is deterministic.
The general form is pti21::n C (Si ; qi), where C2 fl; <g. We write rules for the immediate form only

(l). Transforming a delayed guarding signal (<) into an immediate can be done with local signals:

p < S ; q � f(((pl S 0 ; q) ; 2) j (1 ; (S?!S 0; 1)�)) n S 0g

Let S = fS1; � � � ; Sng.

16 Synchronous Interface Behavior

E \ S = ; p
Ap;k;bp
����!

E
p0

ptj21::n(lSj ; qj)
Ap;k;bp
����!

E
p0 tj21::n(lSj ; qj)

(upt1)

9l � n Sl 2 E ^ (8i < l Si 62 E) p
Ap;k;bp
����!

E
p0

ptj21::n(lSj ; qj)
(E\S)[Ap;0;ff
��������!

E
ql

(upt2)

Comments :

� (upt1): No guarding signal is present. Let p react.

� (upt2): At least one guarding signal is present. Let Sl the left-most (the one with the highest priority).
Let p react, and terminate. Possible deadline violation in p is “forgiven” since executed in the optional
sequence of the upto construct.

The shift operator :

k =

8><
>:

0 if k = 0 or k = 2

1 if k = 1

k � 1 if k > 2

" k =

(
k if k = 0 or k = 1

k + 1 if k > 1

Watchdog :

The watchdog statement is not a primitive. “do p watchdog m::MS” can be expressed by

ff(p ; 2y SM
m) ; 3g�g

References

[And96] C. André. Representation and analysis of reactive behaviors: A synchronous approach. In Com-
putational Engineering in Systems Applications (CESA), pages 19–29, Lille (F), July 1996. IEEE-
SMC.

C. André – I3S RR 00-11 17

[Ber93] G. Berry. Preemption in concurrent systems. In W. Brauer, editor, FSTTCS 93, volume 761 of
Lecture Notes in Computer Science, pages 72–93. Springer-Verlag, 1993.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Publishers,
Amsterdam, 1993.

