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ABSTRACT 

Control-dominated systems, like controllers, are reactive 
systems often subject to real-time constraints.  The 
programming style adopted for these applications is rather 
special: event- or interrupt-driven programs involving 
complex coordination.  Imperative synchronous languages 
like Esterel have been introduced to cope with these 
applications. 
We have developed an environment to deal with control-
dominated systems. The user expresses the expected 
behavior of the controller using a synchronous formalism. 
Given this description and a configuration (inputs, 
outputs, interaction policies, …), a dedicated “execution 
machine” is generated.  
This paper presents the outline of this approach based on a 
the synchronous paradigm, and explains the role and the 
architecture of the execution machine. 
 
Keywords: synchronous programming, execution 
machine, control, implementation. 

NOMENCLATURE 

We use Courier as the font for programs and program 
objects. Boldface Courier font denotes file formats 
and extensions. 

INTRODUCTION 

Critical control systems such as avionics, life monitoring, 
and automatic control applications are becoming 
increasingly complex. Their implementations have 
evolved from mechanical devices, to electronic 
components and then to embedded computer systems. 
Designing such an application is now relevant to 
“Software Engineering”. These systems are highly 

reactive and subject to real time constraints. Their 
behavior should be fully predictable under any 
circumstances. So, there is a clear demand for  
• Well-adapted programming languages, 
• Powerful validation tools (tests and proofs), 
• Efficient and dependable implementations. 
Reactivity (ability to respond to any significant stimulus) 
and real-time constraints (ability to respond in time) give 
rise to difficult programming issues.  

Synchronous Programming 
The “synchronous languages”, introduced in the seminal 
paper of Benveniste and Berry (1991), cope with these 
kinds of problems. The synchronous approach to reactive 
and real-time system programming offers several 
advantages detailed in the Halbwachs’s book (1993): 
• Multi-style programming: either declarative, or 

imperative. 
• Textual (languages), graphical (various charts), or 

mixed descriptions. 
• Mathematical semantics based on the synchronous 

hypotheses. 
If correct, a synchronous program or chart that fully 
respects the synchronous hypotheses can be compiled into 
a semantically equivalent description written in a common 
format called dc. The heart of a dc description is a set of 
Boolean equations: Boolean expressions trigger execution 
of classical data processing. Industrial compilers and 
development platforms are now available. The interactive 
simulation with source-level debugging is an efficient way 
to check reactions to various scenarios. Because of their 
formally defined semantics, synchronous programs lend 
themselves to formal proofs of properties. Safety 
properties, which are often critical, are the simplest to 
prove, even on real-world applications (intensive use of 
BDD (Binary Decision Diagrams) computations on 
Boolean automata). 



 Several different implementations can be derived from 
the Boolean equation system associated with a 
synchronous program. In this paper, we focus on 
“software implementations” (i.e., using a classical 
language like C, C++, …). 

Input / Output Handling 
The above mentioned solutions apply well to the “heart”of 
reactive real-time systems (i.e., control and data 
processing). Few tools in synchronous development 
environments deal with the actual interactions with the 
external world. And yet, this is a key point in controller 
design. Programs that manage (real-time) inputs/outputs 
are known to be various, specific, hardware-dependent, 
and of little reusability. ROOM methodology introduced 
by Selic and al. (1994) and more recently “Real Time 
UML” proposed by Douglass (1998), advocate the use of 
objects in real-time system programming. Encapsulation 
of data and behavior leads to a more intuitive and 
powerful abstraction of acquisition and actuation. We 
have partially adopted this point of view. 

Execution Machine 
A (real-time) controller is both a “reactive kernel” and an 
“interface driver”. An effective, efficient, and dependable 
cooperation between the reactive code and the 
environment to be controlled needs special supports. We 
call “execution machine” for a synchronous program an 
executable architecture that supports this cooperation.  
The main functionalities of an execution machine are 
1. Acquisition from sensors and construction of the 

input image of the process to be controlled, 
2. Execution of reactions specified by the synchronous 

program or chart, 
3. Actuation from the output image generated by the 

reaction. 
Of course, all these operations must be done in a timely 
manner, and the overall behavior must be consistent with 
the synchronous hypotheses. 
In this paper, we report on our experience in building 
execution machines for controllers programmed in the 
Esterel synchronous language. A detailed presentation of 
this language and its environment, written by Berry 
(1997), is available on the web. We propose a general, 
generic, and flexible architecture for execution machines. 
An object-oriented approach has been adopted. The 
underlying programming language is C++.  
The use of Esterel entails a fourth functionality for the 
execution machine: the asynchronous task management. 
The reason is that Esterel introduces first class objects 
(tasks) for lasting actions (i.e., actions whose duration 
cannot be considered as negligible). These tasks run 
concurrently with the synchronous control. 

Paper Organization 
In a first section, we briefly comment the synchronous 
hypotheses. A simplified example of control illustrates the 

imperative synchronous programming style. This example 
points out what is part of a synchronous program and what 
has to be provided. The issue of “lasting actions” is also 
evoked. The second section is devoted to the architecture 
and the role of the execution machine. Its implementation 
is described in the third section. Finally, we illustrate the 
design of a controller for an ATM (Automatic Teller 
Machine) using our approach and available tools. 

SYNCHRONOUS PROGRAMMING 

Synchronous Hypotheses 
A synchronous program expresses the “reaction” that must 
be done in response to stimuli. In real-world systems, 
because of concurrency, reactions may result in intricate 
overlapping actions. The synchronous approach considers 
simplified interactions (synchronous hypotheses): 
• Inputs and outputs are manipulated as ``vectors'' of 

signals, i.e., their status and value do not change 
during a reaction. 

• Computations take no time (i.e., internal computa-
tions are 0-duration). 

• Information exchanges rely on instantaneous broad-
casting. 

From the programmer point of view, a synchronous 
program instantaneously reacts to external events. Another 
noteworthy feature introduced by the Esterel language is 
the extensive use of “preemption”, which is a first class 
concept in this language.  
Thanks to the simplifying hypotheses underlying the 
synchronous paradigm, the parallel composition defined in 
a synchronous language is fully deterministic. Another 
consequence is that sequence, concurrency, and pre-
emption are orthogonal concepts. They can be nested at 
any level, in any order. The resulting behavior is perfectly 
defined. For all these reasons synchronous formalisms are 
very good in expressing complex reactive behaviors. 
The programmer may choose either a declarative or an 
imperative style. Which one to adopt is a matter of 
convenience. Most reactive applications involve both data 
handling and control handling. Since our applications are 
control-dominated, in what follows, we adopt the impera-
tive style. 

An Example of Control 
The module below illustrates the Esterel programming 
style. This module is a control-loop. A program may be 
composed of many such modules and other modules that 
coordinate their activities. 
Control_loop applies a classical regulation algorithm 
(PID = Proportional-Integral-Differential) at each occur-
rence of Sample. The regulation takes place as soon as 
Start occurs and is aborted by Stop. 
 
1 module Control_loop: 
2  type SigType; 



3  function PID(SigType):SigType; 
4   input Start,Stop,Sample:SigType; 
5   output Cmd:SigType,RegON; 
6   await Start; 
7   abort 
8     every Sample do 
9       emit Cmd(PID(?Sample)) 
11    end every 
11    || 
12    sustain RegON 
13   when Stop 
14 end module 
 
Lines 2-5 constitute the declarative part, while lines 6-13 
express the behavior. At line 2, SigType is a user-
defined type, and PID (line 3) is a user-defined function. 
The type and the function body are not part of the 
synchronous program and they must be supplied by some 
general purpose language (usually C). With respect to the 
synchronous program, a function is an abstract action 
whose duration is 0 and a type is abstract: it is used only 
for type-checking. The reactive part is almost self-
explanatory. Just notice that ?Sample stands for the 
current value conveyed by signal Sample.  
This module is generic. In a digital discrete control 
application, there are several instances of this module. The 
run statement is used to create new instances. Optionally, 
interface items (types, functions, inputs, outputs and 
others not shown in this example) can be renamed: 
 
  run TempReg/Control_loop [ 
    type float/SigType; 
    signal Temperature/Sample, 
           Heater/Cmd ] 
 
This statement instantiates a temperature regulation loop. 
Real numbers (float) are used in the computation.  
Temperature is the signal from the temperature sensor, 
Heater refers to an actuator. Other signals not renamed 
are left unchanged. Giving a new name to the module 
(TempReg) is optional but useful in debugging. 

Lasting Actions 
As previously stated, the execution of a  function is 
supposed to be instantaneous. So are procedure 
executions. This assumption is obviously unrealistic for 
some treatments (e.g., large matrix inversion, robot 
motion, …). Tasks were introduced in Esterel to deal with 
“lasting actions”. A task executes asynchronously with 
respect to the program. In a first approximation, an Esterel 
program launches a task by emitting, to the environment, a 
request for “starting” this task. The task, then, executes in 
this environment regardless of the synchronous program. 
When the task terminates, it sends a “return” signal to the 
Esterel program. This signal unblocks the thread that was 
awaiting this termination. 

This is a simplified view. Preemption makes the matter 
more difficult to deal with. A task may be suspended or 
aborted. For the synchronous program an aborted task no 
longer exists. And yet, in the environment, the actual task 
may still be running. It is the responsibility of the 
execution machine to ensure that the synchronous 
program receives only consistent return signals. This 
treatment must be transparent to the user. 

EXECUTION MACHINE ARCHITECTURE 

Goals 
Due to the synchronous hypotheses, introduced in the 
previous section, complex reactive behaviors can be 
expressed in clean and precise terms. This idealization of 
real-world systems is conceptually very useful. But, is this 
abstract view suitable for actual implementations? The 
execution machine is our response to bridge the gap 
between the ideal control expressed by the synchronous 
formalism and its implementation.  
Basically, an execution machine should be a “good” 
approximation of the ideal infinitely-fast machine of the 
synchronous paradigm. This is necessary but not sufficient 
to address the problem of reactive system implementation. 
In our solution, the execution machine has four main 
missions: 
1. To execute reactions so that the input / output 

behavior be consistent with the one described by the 
synchronous program, 

2. To handle incoming and outgoing flows of 
information in real-time, 

3. To manage asynchronous treatments (lasting actions) 
concurrently with the control, 

4. To preserve safety brought by the synchronous 
approach. 

In what follows, we explain how to meet these objectives. 

Reaction 
(“Mission 1” of the execution machine). 
The first issue is that the synchronous program considers a 
logical time, whereas the execution machine is subject to 
the physical time. This implies a discretisation of time. 
The execution machine proceeds through a series of non-
overlapping executions. Each execution characterizes one 
instant and must reflect a reaction of the synchronous 
model. The “beginning of an instant” must be chosen with 
care, according to the dynamics of the system to be 
controlled. 
An execution at a given instant is, of course, non 
instantaneous. In order to ensure an input/output behavior 
in accordance with the model, the changes in status and 
signals must be atomic. 
An execution proceeds in three sequential steps: 
1. Get a “snapshot” of the input signals (input image), 
2. Perform the reaction, 
3. Generate a fresh image of the output signals. 



Most programmable logical controllers run their programs 
this way. Working on steady signals (images) instead of 
on-fly signals is necessary to avoid critical races in 
sequential evolutions. Moreover, “images” simulate the 
input and output vectors used by the synchronous model. 
The difference with the synchronous reaction is that the 
output signals are available only at the end of the 
execution.  
Physical time must be considered as both a date and a 
duration. The duration of an execution must be negligible 
with respect to the smallest time-constant of the system to 
be controlled. This is a good approximation to the 0-
duration of the synchronous reactions. If this condition is 
not met, the execution machine will be unable to monitor 
and/or control the application. 
Non-overlapping atomic executions imply that two 
successive instants of reaction are at least separated by the 
duration of an execution. We have implemented two 
“activation policies”: 
• Periodic activation: The period of activation must be 

greater than the worst execution duration.  This 
solution is easy to implement but not always 
satisfactory for reactive systems with numerous 
sporadic events. 

• Event-triggered activation: When the machine is idle, 
as soon as a change occurs in the environment, a new 
execution is launched. This policy seems to match 
perfectly the philosophy of reactive systems. 
However, if the machine is running when a triggering 
event occurs, the new execution must be postponed. 

Input/Output 
This subsection addresses ``Mission 2'' of the execution 
machine. At the model level, since reactions are 
instantaneous, no input can change during the reaction. 
This is not the case for the execution machine. As 
explained before, inputs (seen by the execution machine) 
are steady during the execution of a reaction, while actual 
inputs may change in the environment. Input handlers 
implement the two facets of an input signal. Output 
handlers play the same role for output signals. 

Generic handlers 
Handlers are generic (arbitrary types and parameters). 
Input handlers support two acquisition strategies: 
• On-fly: The handler samples the signal when needed, 
• Interrupt-driven: Changes in the environment cause 

updating of the information contained in the handler. 

Task Management 
Up to now, the execution machine seems to be idle most 
of the time and busy only during reactions and 
input/output handling. This is not true when there are 
tasks in the synchronous program.  
In Esterel, a task, say T, is declared by 

task T(ref-arg)(val-arg); 

where ref-arg is a list of reference arguments, val-arg is a 
list of value arguments. The statement that executes a task 
is the exec statement. It has the form 

exec T(ref-par)(val-par) return R; 
where R is the identifier of a return signal. A return signal 
is a special signal emitted when the associated task 
terminates. 
The third mission of the execution machine is to control 
the interactions between the synchronous core and the 
(Esterel) tasks. The activities involved in this management 
are: 
• Starting a task: When an exec T … starts, it signals 

to the execution machine that a fresh instance of T 
should start with parameters passed by references and 
by value. The execution machine forwards this 
information to the underlying real-time operating 
system (RTOS).  

• Killing a task: An exec T… statement can be 
aborted by the synchronous program. With respect to 
the program, the instance of the aborted task does not 
exist any more. For the RTOS this task is still alive. 
The execution machine has to solve this discrepancy. 

• Suspending a task: This case is similar to the previous 
one, but the task is only temporarily inhibited. 

• Filtering return signals: More generally, because of 
the asynchronism between the synchronous core and 
the RTOS, there may exist several active instances of 
a unique Esterel task in the RTOS, although at most 
one instance is logically running for the program. The 
execution machine filters possible return signals so 
that only significant returns reach the program. This 
is a non-trivial treatment that requires dynamic 
generation of task references. 

Modular Architecture 
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Fig.1  Reactive box. 

 
The execution machine is recursively made of modules. A 
module is a “reactive box” (Fig.1), the brick of our 
construction. A reactive box has an incoming information 
flow (I), an outgoing information flow (O), and two 
control flows (the command γ and the exception flows ε). 
Under the control of γ, the reactive box generates 
reactions O from stimuli I. B is the behavior (relationship 



between sequences of I and sequences of O). ε is optional. 
It is used to report particular situations. 

Execution Machine as a Reactive Box 
The execution machine is a reactive box (Fig.2). It is 
composed of three reactive boxes: InModule, 
Synchronous Process, OutModule, and two controllers: 
Sequencer, Observer. 
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Fig.2  Execution Machine. 
 
On this figure information flows from left to right, while 
control flows upward. The leftmost information flow is 
made of “physical signals” (sensor values, operator's 
commands). The input module (InModule) derives logical 
signals (the sort of input signals of the synchronous 
program) from the  physical signals. Outputs of the 
synchronous process represents the sort of the output 
signals of the synchronous program. The flow generated 
by the output module (OutModule) is directed to actuators 
and operator's displays. 

In and Out Modules 
The InModule and the OutModule are themselves refined. 
Their structures are symmetrical (see Fig.3). Only the 
InModule will be detailed. 
IHk is an (input) handler module. It captures physical 
signals and gives logical signals. The Event Builder 
constructs the “input event” for the current reaction of the 
synchronous process. In the simplest case, building the 
input event is just aggregating the various logical signals. 
The situation is not so easy when the synchronous 
program contains assertions on signals. In Esterel, such 
assertions are called “relations”. The programmer may 
have declared 

relation A # B; 
which means that signals A and B are exclusive. The 
Esterel compiler takes account of this relation to generate 
optimized code. At run-time, if it happens that A and B are 
simultaneously present, then an exception is generated on 
ε and the Event Builder must take a decision. The type of 
decision (ignore both, give priority to either A or B, delay 

for one instant the occurrence of either A or B, …) is a 
strategy parameter passed at the instantiation of the Event 
Builder. Note that a sequencer and an observer are also 
present in the module. 

IH1

IH2

IHn

Ev
en

t B
ui

ld
er

InModule

OH1

OH2

OHm

D
is

pa
tc

he
r

OutModule  
Fig.3  In and Out Modules. 

Handler Modules 
A handler is a terminal reactive box (i.e., with no further 
refinement). Input handler modules differ on the way they 
capture physical signals (sampling, interrupt-triggered) 
and they derive logical signals. Derivation possibilities are 
numerous. We just mention two typical examples: 
• Rising Edge Detection: The physical input is a 2-

valued sensor; The logical signal is a pure signal 
whose presence denotes a change from 0 to 1 of the 
sensor value. 

• Tcl-Tk “sensor”: The “physical” signal is produced 
by a Tcl-Tk widget. This widget contains an entry in 
which the user types a number. The content of this 
entry is validated by a “carriage-return”. The 
derivation consists in interpreting the entered string as 
an integer. 

Tcl-Tk sensors or actuators are very useful in human-
machine interface applications and also in debugging. 

IMPLEMENTATION 

For portability, reusability and maintainability reasons, we 
have adopted an object-oriented approach, but it is 
transparent to the user. Figure 4 outlines the compilation 
chain. The user has to provide: 
• A reactive program that expresses the behavior of the 

controller to be developed, 
• The transformational part of the application (types, 

functions, procedures, tasks, …) 
• A configuration of the execution machine. 
The reactive program is usually written in Esterel. The 
transformational part is written in C or C++. The 
configuration is given by an “execution machine 
description file” (format xmdf). This description contains 



• The lists of physical signals (sensors, actuators); 
• The instances of handlers. (the libIO library offers 

predefined classes of handlers, this library may be 
extended by the user); 

• The instances of the Event Builder and the 
Dispatcher; 

• The synchronous process as a synchronous object 
(see below); 

• The interconnections between these objects. 
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Fig.4  Compilation Chain. 

 
Several run-time modules from the execution machine 
library (libMex) and the virtual machine library 
(libvsys) are linked with the application-dependent 
modules. 
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Fig.5  Layers. 

 
Logically, an execution machine is composed of four 
layers (see Fig.5). Objects of a layer call services of the 
immediately below layer. 
• The RTOS layer: It is the real-time operating system 

running on the target. Solaris 2 was used for our 
implementations. 

• The virtual RTOS layer: (application-independent but 
RTOS-dependent). Classes of libvsys behave like 
a virtual RTOS. Classes of libIO provide input / 
output facilities. 

• The machine control layer: (application-independent). 
Classes of libMex perform coordination of reactive 
boxes. 

• The application layer: is made of the application-
dependent objects. 

Synchronous Objects 
Object technology is standard. What is not standard is the 
combination of synchronous and object programming. We 
briefly present the “synchronous objects” introduced by 
Boulanger (1993) to address this problem. His idea was to 
encapsulate the synchronous code into objects and then 
manipulate these objects as classical ones. 
The synchronous code is a compiled version of a 
synchronous description. A synchronous class is 
associated with each synchronous code. All the 
synchronous classes derive from an abstract class named 
“Synchronous” that defines the basic protocol of any 
synchronous object. The behavior (dynamic model in 
Objet Modeling Technology) of the objects of a class is 
defined in an unambiguous way by the associated 
synchronous description. This description is more precise 
and more flexible than statecharts adopted in object-
oriented approaches to reactive systems like ROOM or 
real-time UML. 
The Synchronous class has virtual methods to access to 
interface signals (e.g.,resetOutputs(), setInputs()). 
The actual code of these methods is application-
dependent. The react method deserves a special 
attention: It allows the object to react according to the 
synchronous semantics. react() disables all output 
signals (resetOuputs()), updates all input signals 
(setInputs()), and calls activate(), a method that 
performs the reaction (internal state and output signals 
updating). 
A synchronous object can communicate with another 
synchronous object either synchronously or 
asynchronously. A synchronous object can only 
communicate asynchronously with a regular object. 
Synchronous communication imposes that objects share 
the same notion of instant. Instances of the Clock class 
capture this notion. Each clock determines a scheduling of 
the objects it manages, so that interconnection of 
synchronous objects may have a “synchronous” behavior. 

Classes 
Fig.6 shows relationships between classes, using the OMT 
notation. execMachine is an aggregation of 
• An InputModule and an OutputModule for 

interfacing, 
• A Synchronous for the reaction itself, 
• An execManager for tasks. 
Note that InputModule and OutputModule derive from 
Synchronous, which is the cornerstone of our 
implementation.  
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Fig.6  Classes. 

 

A COMPREHENSIVE SESSION 

We choose to present the outlines of the design of the 
controller of an ATM. It is a usual application, the 
specification of which is known, in its broad lines, to 
every body. The ATM exhibits reactive behaviors and 
involves various interfaces. It is a “soft real-time” system 
(no harsh time constraints) with strict safety properties 
(undesirable situations should never occur) The same 
example has been studied by Rumbaugh (1991) using 
OMT. In what follows, we explain how our synchronous 
approach has been applied to the design of an ATM's 
controller. More details are available in Boufaïed's thesis 
(1998). In comparison with OMT, we go further in 
expressing behaviors, interfacing and validation. 

Abstraction 
Like OMT, ROOM and real-time UML, we start with 
scenarios and collaboration diagrams to describe the 
interactions between the ATM and its environment. Here, 
the environment is composed of the customer and the 
bank (a remote computer that manages accounts). From 
the scenarios we identify events and expected behaviors. 
Events are abstracted to signals (e.g., the action of asking 
for an amount of money is associated with an input signal 
amount, valued by integers; the event of keeping a card 
in case of fraudulent use is associated with the pure output 
signal CARDKept; …). Sometimes, signals are not the 
best abstraction. For instance, the connection between the 
ATM and the bank is better expressed by a task taking 
parameters and returning at the completion of the 
connection. The expected behavior of the ATM has been 
expressed by a 1-page synchronous chart (a graphical 
form of Esterel). This model appears to be very 
convenient for expressing preemptions. In the ATM 
behavior specification the cancellation of a transaction is a 
delicate issue. Pressing the Cancel button must be 
ignored during the money delivery or after three 
consecutive erroneous confidential codes. A synchronous 
chart can clearly specify such behaviors. 

Transformational Part 
In the ATM program, we use a user's defined type: Card. 
This type could have been defined as a structure in C. 

Since access to the fields of the record are necessary, a 
C++ class has been developed. This is a standard 
implementation of an abstract data type. More interesting 
is the choice of tasks. As already mentioned, connect is 
a task dedicated to the connection phase between the 
ATM and the host; disconnect is the corresponding 
task for the disconnection. getAndCheckCode is a 
more specialized task. Its prototype is 

task getAndCheckCode()(integer); 
The value argument is the card number. The invocation of 
this task is 
exec getAndCheckCode()(ncard)return CodeOK; 
where CodeOK is a Boolean return signal. The task gets 
the code from the keyboard without echo, then calls a 
Perl's script that applies the Unix password encoding 
algorithm, and finally compares the result with the 
expected code. The task returns with true if and only if the 
code is correct. This task does a complex job that surely 
takes time! This is a convincing example of the usefulness 
of tasks. 

Interactive Simulation 
A scenario is a sequence of events. An Esterel program 
covers lots of possible scenarios. An interactive 
simulation of the program allows the designer to check 
his/her model against expected behaviors. XES (X Esterel 
Simultor) is a tool, provided with the Esterel compiler, 
dedicated to the interactive execution of an Esterel 
program. XES uses Tcl-Tk interfaces and allows for 
source-level debugging. Moreover, sequences of stimuli 
can be recorded and replayed. The phase of interactive 
simulation reveals unexpected behaviors early in the 
design process and therefore is almost unavoidable. With 
our environment, the designer may select Tcl-Tk-based 
handlers to make his/her simulation more realistic. 

Formal Validation 
Interactive simulation does not pretend to be exhaustive. 
Since safety properties must be ensured under any 
circumstances, we need a way to cover all possible 
evolutions. The XEVE model checker, designed by Bouali 
(1997) performs such analyses. XEVE performs a 
symbolic execution of the program and can say for this 
program whether a signal is potentially emitted (i.e., there 
exists a reachable state in which the signal is present) or 
not. The task of the designer is to associate an observer 
with each safety property to check. This observer, which 
is a reactive module, emits a distinguished signal in case 
of violation of the property to be proved.  A property is 
satisfied if and only if XEVE finds that the violation 
signal is never emitted by the (controller) program 
composed in parallel with the associated observer. 
Remark: These observers are conceptual and used only in 
debugging. They do not appear in the final code, contrary 
to the observers in reactive boxes that monitor the 
execution. 



In our environment, we also propose simplified models of 
handler behaviors. They can be composed with the 
controller in order to establish “end to end” safety 
properties (i.e., properties between physical input signals 
and physical output signals). Due to the explosion of the 
state space, the model checking may become untractable. 
Fortunately, for the ATM (about 106 states) we stay within 
the capabilities of the current version of XEVE. 

Actual Implementation 
When the synchronous program has successfully got 
through the interactive simulation and the property 
checking phases, the designer has to adapt its input/output 
modules. Actual handlers are then instantiated and the 
application is recompiled. libIO supports serial/parallel 
ports, and sockets. The synchronous program has not to be 
modified since its interface to the input/output modules is 
unchanged. “Logical” handlers used in simulation and 
“physical” handlers are different implementations of the 
same classes. 

CONCLUSION 

The synchronous paradigm was introduced in the mid-
80’s and has been developed in the 90’s. It is now a 
credible approach to real-time reactive system 
programming. 
Theoretical issues (semantics, validation) have been 
intensively studied. In order to transfer the synchronous 
technology from academic research to the industrial 
world, compilation techniques have been tremendously 
improved and languages made more user-friendly. 
Commercial supports for synchronous languages are now 
available. The European project called “Synchron” aims at 
developing a common platform for synchronous 
programming. The concept of execution machine, 
presented in this paper, is a contribution to this objective. 
The role of an execution machine for synchronous 
programs is to reduce the gap between the “ideal” 
synchronous world and the real-world. We have adopted a 
pragmatic approach that combines synchronous and 
asynchronous programming. An execution machine is 
made of cooperating objects, is programmed in a widely 
used (asynchronous) language and relies on a standard 
real-time operating system. This is, however, transparent 
to the user. The user has  
• To express the expected behavior in a synchronous 

formalism, 
• To program the transformational part of the 

application in a sequential language like C or C++, 
• And to configure the application (i.e., to give the 

relationships between physical and logical signals). 
The architecture of an execution machine is modular. The 
building block is the reactive box. A reactive box is 
characterized by its inputs, its outputs, and its behavior. 
Predefined generic reactive boxes are available for input 

and output processing. The coordination of the reactive 
boxes is ensured by controllers automatically instantiated 
during the compilation. 
Our execution machine have been developed for controller 
implementations. It could be applied, as well, to not “hard 
real-time” but highly reactive applications like Human-
Machine Interfaces. 
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