
EXECUTION MACHINE FOR SYNCHRONOUS LANGUAGES

Charles ANDRÉ Hédi BOUFAÏED

Laboratoire I3S, Université de Nice/CNRS
41, Bd Napoléon III

06041 NICE cedex, France
andre@i3s.unice.fr

Tel: +33 497 258 257
Fax: +33 493 212 054

ABSTRACT

Control-dominated systems, like controllers, are reactive
systems often subject to real-time constraints. The
programming style adopted for these applications is rather
special: event- or interrupt-driven programs involving
complex coordination. Imperative synchronous languages
like Esterel have been introduced to cope with these
applications.
We have developed an environment to deal with control-
dominated systems. The user expresses the expected
behavior of the controller using a synchronous formalism.
Given this description and a configuration (inputs,
outputs, interaction policies, …), a dedicated “execution
machine” is generated.
This paper presents the outline of this approach based on a
the synchronous paradigm, and explains the role and the
architecture of the execution machine.

Keywords: synchronous programming, execution
machine, control, implementation.

NOMENCLATURE

We use Courier as the font for programs and program
objects. Boldface Courier font denotes file formats
and extensions.

INTRODUCTION

Critical control systems such as avionics, life monitoring,
and automatic control applications are becoming
increasingly complex. Their implementations have
evolved from mechanical devices, to electronic
components and then to embedded computer systems.
Designing such an application is now relevant to
“Software Engineering”. These systems are highly

reactive and subject to real time constraints. Their
behavior should be fully predictable under any
circumstances. So, there is a clear demand for
• Well-adapted programming languages,
• Powerful validation tools (tests and proofs),
• Efficient and dependable implementations.
Reactivity (ability to respond to any significant stimulus)
and real-time constraints (ability to respond in time) give
rise to difficult programming issues.

Synchronous Programming
The “synchronous languages”, introduced in the seminal
paper of Benveniste and Berry (1991), cope with these
kinds of problems. The synchronous approach to reactive
and real-time system programming offers several
advantages detailed in the Halbwachs’s book (1993):
• Multi-style programming: either declarative, or

imperative.
• Textual (languages), graphical (various charts), or

mixed descriptions.
• Mathematical semantics based on the synchronous

hypotheses.
If correct, a synchronous program or chart that fully
respects the synchronous hypotheses can be compiled into
a semantically equivalent description written in a common
format called dc. The heart of a dc description is a set of
Boolean equations: Boolean expressions trigger execution
of classical data processing. Industrial compilers and
development platforms are now available. The interactive
simulation with source-level debugging is an efficient way
to check reactions to various scenarios. Because of their
formally defined semantics, synchronous programs lend
themselves to formal proofs of properties. Safety
properties, which are often critical, are the simplest to
prove, even on real-world applications (intensive use of
BDD (Binary Decision Diagrams) computations on
Boolean automata).

 Several different implementations can be derived from
the Boolean equation system associated with a
synchronous program. In this paper, we focus on
“software implementations” (i.e., using a classical
language like C, C++, …).

Input / Output Handling
The above mentioned solutions apply well to the “heart”of
reactive real-time systems (i.e., control and data
processing). Few tools in synchronous development
environments deal with the actual interactions with the
external world. And yet, this is a key point in controller
design. Programs that manage (real-time) inputs/outputs
are known to be various, specific, hardware-dependent,
and of little reusability. ROOM methodology introduced
by Selic and al. (1994) and more recently “Real Time
UML” proposed by Douglass (1998), advocate the use of
objects in real-time system programming. Encapsulation
of data and behavior leads to a more intuitive and
powerful abstraction of acquisition and actuation. We
have partially adopted this point of view.

Execution Machine
A (real-time) controller is both a “reactive kernel” and an
“interface driver”. An effective, efficient, and dependable
cooperation between the reactive code and the
environment to be controlled needs special supports. We
call “execution machine” for a synchronous program an
executable architecture that supports this cooperation.
The main functionalities of an execution machine are
1. Acquisition from sensors and construction of the

input image of the process to be controlled,
2. Execution of reactions specified by the synchronous

program or chart,
3. Actuation from the output image generated by the

reaction.
Of course, all these operations must be done in a timely
manner, and the overall behavior must be consistent with
the synchronous hypotheses.
In this paper, we report on our experience in building
execution machines for controllers programmed in the
Esterel synchronous language. A detailed presentation of
this language and its environment, written by Berry
(1997), is available on the web. We propose a general,
generic, and flexible architecture for execution machines.
An object-oriented approach has been adopted. The
underlying programming language is C++.
The use of Esterel entails a fourth functionality for the
execution machine: the asynchronous task management.
The reason is that Esterel introduces first class objects
(tasks) for lasting actions (i.e., actions whose duration
cannot be considered as negligible). These tasks run
concurrently with the synchronous control.

Paper Organization
In a first section, we briefly comment the synchronous
hypotheses. A simplified example of control illustrates the

imperative synchronous programming style. This example
points out what is part of a synchronous program and what
has to be provided. The issue of “lasting actions” is also
evoked. The second section is devoted to the architecture
and the role of the execution machine. Its implementation
is described in the third section. Finally, we illustrate the
design of a controller for an ATM (Automatic Teller
Machine) using our approach and available tools.

SYNCHRONOUS PROGRAMMING

Synchronous Hypotheses
A synchronous program expresses the “reaction” that must
be done in response to stimuli. In real-world systems,
because of concurrency, reactions may result in intricate
overlapping actions. The synchronous approach considers
simplified interactions (synchronous hypotheses):
• Inputs and outputs are manipulated as ``vectors'' of

signals, i.e., their status and value do not change
during a reaction.

• Computations take no time (i.e., internal computa-
tions are 0-duration).

• Information exchanges rely on instantaneous broad-
casting.

From the programmer point of view, a synchronous
program instantaneously reacts to external events. Another
noteworthy feature introduced by the Esterel language is
the extensive use of “preemption”, which is a first class
concept in this language.
Thanks to the simplifying hypotheses underlying the
synchronous paradigm, the parallel composition defined in
a synchronous language is fully deterministic. Another
consequence is that sequence, concurrency, and pre-
emption are orthogonal concepts. They can be nested at
any level, in any order. The resulting behavior is perfectly
defined. For all these reasons synchronous formalisms are
very good in expressing complex reactive behaviors.
The programmer may choose either a declarative or an
imperative style. Which one to adopt is a matter of
convenience. Most reactive applications involve both data
handling and control handling. Since our applications are
control-dominated, in what follows, we adopt the impera-
tive style.

An Example of Control
The module below illustrates the Esterel programming
style. This module is a control-loop. A program may be
composed of many such modules and other modules that
coordinate their activities.
Control_loop applies a classical regulation algorithm
(PID = Proportional-Integral-Differential) at each occur-
rence of Sample. The regulation takes place as soon as
Start occurs and is aborted by Stop.

1 module Control_loop:
2 type SigType;

3 function PID(SigType):SigType;
4 input Start,Stop,Sample:SigType;
5 output Cmd:SigType,RegON;
6 await Start;
7 abort
8 every Sample do
9 emit Cmd(PID(?Sample))
11 end every
11 ||
12 sustain RegON
13 when Stop
14 end module

Lines 2-5 constitute the declarative part, while lines 6-13
express the behavior. At line 2, SigType is a user-
defined type, and PID (line 3) is a user-defined function.
The type and the function body are not part of the
synchronous program and they must be supplied by some
general purpose language (usually C). With respect to the
synchronous program, a function is an abstract action
whose duration is 0 and a type is abstract: it is used only
for type-checking. The reactive part is almost self-
explanatory. Just notice that ?Sample stands for the
current value conveyed by signal Sample.
This module is generic. In a digital discrete control
application, there are several instances of this module. The
run statement is used to create new instances. Optionally,
interface items (types, functions, inputs, outputs and
others not shown in this example) can be renamed:

 run TempReg/Control_loop [
 type float/SigType;
 signal Temperature/Sample,
 Heater/Cmd]

This statement instantiates a temperature regulation loop.
Real numbers (float) are used in the computation.
Temperature is the signal from the temperature sensor,
Heater refers to an actuator. Other signals not renamed
are left unchanged. Giving a new name to the module
(TempReg) is optional but useful in debugging.

Lasting Actions
As previously stated, the execution of a function is
supposed to be instantaneous. So are procedure
executions. This assumption is obviously unrealistic for
some treatments (e.g., large matrix inversion, robot
motion, …). Tasks were introduced in Esterel to deal with
“lasting actions”. A task executes asynchronously with
respect to the program. In a first approximation, an Esterel
program launches a task by emitting, to the environment, a
request for “starting” this task. The task, then, executes in
this environment regardless of the synchronous program.
When the task terminates, it sends a “return” signal to the
Esterel program. This signal unblocks the thread that was
awaiting this termination.

This is a simplified view. Preemption makes the matter
more difficult to deal with. A task may be suspended or
aborted. For the synchronous program an aborted task no
longer exists. And yet, in the environment, the actual task
may still be running. It is the responsibility of the
execution machine to ensure that the synchronous
program receives only consistent return signals. This
treatment must be transparent to the user.

EXECUTION MACHINE ARCHITECTURE

Goals
Due to the synchronous hypotheses, introduced in the
previous section, complex reactive behaviors can be
expressed in clean and precise terms. This idealization of
real-world systems is conceptually very useful. But, is this
abstract view suitable for actual implementations? The
execution machine is our response to bridge the gap
between the ideal control expressed by the synchronous
formalism and its implementation.
Basically, an execution machine should be a “good”
approximation of the ideal infinitely-fast machine of the
synchronous paradigm. This is necessary but not sufficient
to address the problem of reactive system implementation.
In our solution, the execution machine has four main
missions:
1. To execute reactions so that the input / output

behavior be consistent with the one described by the
synchronous program,

2. To handle incoming and outgoing flows of
information in real-time,

3. To manage asynchronous treatments (lasting actions)
concurrently with the control,

4. To preserve safety brought by the synchronous
approach.

In what follows, we explain how to meet these objectives.

Reaction
(“Mission 1” of the execution machine).
The first issue is that the synchronous program considers a
logical time, whereas the execution machine is subject to
the physical time. This implies a discretisation of time.
The execution machine proceeds through a series of non-
overlapping executions. Each execution characterizes one
instant and must reflect a reaction of the synchronous
model. The “beginning of an instant” must be chosen with
care, according to the dynamics of the system to be
controlled.
An execution at a given instant is, of course, non
instantaneous. In order to ensure an input/output behavior
in accordance with the model, the changes in status and
signals must be atomic.
An execution proceeds in three sequential steps:
1. Get a “snapshot” of the input signals (input image),
2. Perform the reaction,
3. Generate a fresh image of the output signals.

Most programmable logical controllers run their programs
this way. Working on steady signals (images) instead of
on-fly signals is necessary to avoid critical races in
sequential evolutions. Moreover, “images” simulate the
input and output vectors used by the synchronous model.
The difference with the synchronous reaction is that the
output signals are available only at the end of the
execution.
Physical time must be considered as both a date and a
duration. The duration of an execution must be negligible
with respect to the smallest time-constant of the system to
be controlled. This is a good approximation to the 0-
duration of the synchronous reactions. If this condition is
not met, the execution machine will be unable to monitor
and/or control the application.
Non-overlapping atomic executions imply that two
successive instants of reaction are at least separated by the
duration of an execution. We have implemented two
“activation policies”:
• Periodic activation: The period of activation must be

greater than the worst execution duration. This
solution is easy to implement but not always
satisfactory for reactive systems with numerous
sporadic events.

• Event-triggered activation: When the machine is idle,
as soon as a change occurs in the environment, a new
execution is launched. This policy seems to match
perfectly the philosophy of reactive systems.
However, if the machine is running when a triggering
event occurs, the new execution must be postponed.

Input/Output
This subsection addresses ``Mission 2'' of the execution
machine. At the model level, since reactions are
instantaneous, no input can change during the reaction.
This is not the case for the execution machine. As
explained before, inputs (seen by the execution machine)
are steady during the execution of a reaction, while actual
inputs may change in the environment. Input handlers
implement the two facets of an input signal. Output
handlers play the same role for output signals.

Generic handlers
Handlers are generic (arbitrary types and parameters).
Input handlers support two acquisition strategies:
• On-fly: The handler samples the signal when needed,
• Interrupt-driven: Changes in the environment cause

updating of the information contained in the handler.

Task Management
Up to now, the execution machine seems to be idle most
of the time and busy only during reactions and
input/output handling. This is not true when there are
tasks in the synchronous program.
In Esterel, a task, say T, is declared by

task T(ref-arg)(val-arg);

where ref-arg is a list of reference arguments, val-arg is a
list of value arguments. The statement that executes a task
is the exec statement. It has the form

exec T(ref-par)(val-par) return R;
where R is the identifier of a return signal. A return signal
is a special signal emitted when the associated task
terminates.
The third mission of the execution machine is to control
the interactions between the synchronous core and the
(Esterel) tasks. The activities involved in this management
are:
• Starting a task: When an exec T … starts, it signals

to the execution machine that a fresh instance of T
should start with parameters passed by references and
by value. The execution machine forwards this
information to the underlying real-time operating
system (RTOS).

• Killing a task: An exec T… statement can be
aborted by the synchronous program. With respect to
the program, the instance of the aborted task does not
exist any more. For the RTOS this task is still alive.
The execution machine has to solve this discrepancy.

• Suspending a task: This case is similar to the previous
one, but the task is only temporarily inhibited.

• Filtering return signals: More generally, because of
the asynchronism between the synchronous core and
the RTOS, there may exist several active instances of
a unique Esterel task in the RTOS, although at most
one instance is logically running for the program. The
execution machine filters possible return signals so
that only significant returns reach the program. This
is a non-trivial treatment that requires dynamic
generation of task references.

Modular Architecture

I O

γ

B

ε

information
controlkeys:

Fig.1 Reactive box.

The execution machine is recursively made of modules. A
module is a “reactive box” (Fig.1), the brick of our
construction. A reactive box has an incoming information
flow (I), an outgoing information flow (O), and two
control flows (the command γ and the exception flows ε).
Under the control of γ, the reactive box generates
reactions O from stimuli I. B is the behavior (relationship

between sequences of I and sequences of O). ε is optional.
It is used to report particular situations.

Execution Machine as a Reactive Box
The execution machine is a reactive box (Fig.2). It is
composed of three reactive boxes: InModule,
Synchronous Process, OutModule, and two controllers:
Sequencer, Observer.

In
M

od
ul

e

O
ut

M
od

ul
e

Observer

Sequencer

physical
inputs

exceptions

control

physical
outputsinput

signals
output
signals

Synchronous
Process

data flow control flow

Fig.2 Execution Machine.

On this figure information flows from left to right, while
control flows upward. The leftmost information flow is
made of “physical signals” (sensor values, operator's
commands). The input module (InModule) derives logical
signals (the sort of input signals of the synchronous
program) from the physical signals. Outputs of the
synchronous process represents the sort of the output
signals of the synchronous program. The flow generated
by the output module (OutModule) is directed to actuators
and operator's displays.

In and Out Modules
The InModule and the OutModule are themselves refined.
Their structures are symmetrical (see Fig.3). Only the
InModule will be detailed.
IHk is an (input) handler module. It captures physical
signals and gives logical signals. The Event Builder
constructs the “input event” for the current reaction of the
synchronous process. In the simplest case, building the
input event is just aggregating the various logical signals.
The situation is not so easy when the synchronous
program contains assertions on signals. In Esterel, such
assertions are called “relations”. The programmer may
have declared

relation A # B;
which means that signals A and B are exclusive. The
Esterel compiler takes account of this relation to generate
optimized code. At run-time, if it happens that A and B are
simultaneously present, then an exception is generated on
ε and the Event Builder must take a decision. The type of
decision (ignore both, give priority to either A or B, delay

for one instant the occurrence of either A or B, …) is a
strategy parameter passed at the instantiation of the Event
Builder. Note that a sequencer and an observer are also
present in the module.

IH1

IH2

IHn

Ev
en

t B
ui

ld
er

InModule

OH1

OH2

OHm

D
is

pa
tc

he
r

OutModule
Fig.3 In and Out Modules.

Handler Modules
A handler is a terminal reactive box (i.e., with no further
refinement). Input handler modules differ on the way they
capture physical signals (sampling, interrupt-triggered)
and they derive logical signals. Derivation possibilities are
numerous. We just mention two typical examples:
• Rising Edge Detection: The physical input is a 2-

valued sensor; The logical signal is a pure signal
whose presence denotes a change from 0 to 1 of the
sensor value.

• Tcl-Tk “sensor”: The “physical” signal is produced
by a Tcl-Tk widget. This widget contains an entry in
which the user types a number. The content of this
entry is validated by a “carriage-return”. The
derivation consists in interpreting the entered string as
an integer.

Tcl-Tk sensors or actuators are very useful in human-
machine interface applications and also in debugging.

IMPLEMENTATION

For portability, reusability and maintainability reasons, we
have adopted an object-oriented approach, but it is
transparent to the user. Figure 4 outlines the compilation
chain. The user has to provide:
• A reactive program that expresses the behavior of the

controller to be developed,
• The transformational part of the application (types,

functions, procedures, tasks, …)
• A configuration of the execution machine.
The reactive program is usually written in Esterel. The
transformational part is written in C or C++. The
configuration is given by an “execution machine
description file” (format xmdf). This description contains

• The lists of physical signals (sensors, actuators);
• The instances of handlers. (the libIO library offers

predefined classes of handlers, this library may be
extended by the user);

• The instances of the Event Builder and the
Dispatcher;

• The synchronous process as a synchronous object
(see below);

• The interconnections between these objects.

Transformational
part

foo.H
prog_foo.C

taskBody.H
taskBody.C

g++ g++

Expected
Behavior

foo.strl

esterel

foo.H
foo.C

g++

foo.o

Configuration

appl.xmdf

xmdf2c++

g++

appl.H
appl.C

main.C

g++g++

taskMod.H
taskMod.C

prog_foo.o taskBody.o taskMod.o appl.o main.o

libvsys.a

libIO.a

libMex.ald

Executable

optional

library

compiler

Keys:

Fig.4 Compilation Chain.

Several run-time modules from the execution machine
library (libMex) and the virtual machine library
(libvsys) are linked with the application-dependent
modules.

Application

Machine Control

Virtual RTOS

RTOS

libMex

libIO libvsys

threads

libsync

Fig.5 Layers.

Logically, an execution machine is composed of four
layers (see Fig.5). Objects of a layer call services of the
immediately below layer.
• The RTOS layer: It is the real-time operating system

running on the target. Solaris 2 was used for our
implementations.

• The virtual RTOS layer: (application-independent but
RTOS-dependent). Classes of libvsys behave like
a virtual RTOS. Classes of libIO provide input /
output facilities.

• The machine control layer: (application-independent).
Classes of libMex perform coordination of reactive
boxes.

• The application layer: is made of the application-
dependent objects.

Synchronous Objects
Object technology is standard. What is not standard is the
combination of synchronous and object programming. We
briefly present the “synchronous objects” introduced by
Boulanger (1993) to address this problem. His idea was to
encapsulate the synchronous code into objects and then
manipulate these objects as classical ones.
The synchronous code is a compiled version of a
synchronous description. A synchronous class is
associated with each synchronous code. All the
synchronous classes derive from an abstract class named
“Synchronous” that defines the basic protocol of any
synchronous object. The behavior (dynamic model in
Objet Modeling Technology) of the objects of a class is
defined in an unambiguous way by the associated
synchronous description. This description is more precise
and more flexible than statecharts adopted in object-
oriented approaches to reactive systems like ROOM or
real-time UML.
The Synchronous class has virtual methods to access to
interface signals (e.g.,resetOutputs(), setInputs()).
The actual code of these methods is application-
dependent. The react method deserves a special
attention: It allows the object to react according to the
synchronous semantics. react() disables all output
signals (resetOuputs()), updates all input signals
(setInputs()), and calls activate(), a method that
performs the reaction (internal state and output signals
updating).
A synchronous object can communicate with another
synchronous object either synchronously or
asynchronously. A synchronous object can only
communicate asynchronously with a regular object.
Synchronous communication imposes that objects share
the same notion of instant. Instances of the Clock class
capture this notion. Each clock determines a scheduling of
the objects it manages, so that interconnection of
synchronous objects may have a “synchronous” behavior.

Classes
Fig.6 shows relationships between classes, using the OMT
notation. execMachine is an aggregation of
• An InputModule and an OutputModule for

interfacing,
• A Synchronous for the reaction itself,
• An execManager for tasks.
Note that InputModule and OutputModule derive from
Synchronous, which is the cornerstone of our
implementation.

execController

OutputModule OutputControllerInputModuleSampler
Handler

InputController

IOController

execManagerexecMachine

Synchronous

Fig.6 Classes.

A COMPREHENSIVE SESSION

We choose to present the outlines of the design of the
controller of an ATM. It is a usual application, the
specification of which is known, in its broad lines, to
every body. The ATM exhibits reactive behaviors and
involves various interfaces. It is a “soft real-time” system
(no harsh time constraints) with strict safety properties
(undesirable situations should never occur) The same
example has been studied by Rumbaugh (1991) using
OMT. In what follows, we explain how our synchronous
approach has been applied to the design of an ATM's
controller. More details are available in Boufaïed's thesis
(1998). In comparison with OMT, we go further in
expressing behaviors, interfacing and validation.

Abstraction
Like OMT, ROOM and real-time UML, we start with
scenarios and collaboration diagrams to describe the
interactions between the ATM and its environment. Here,
the environment is composed of the customer and the
bank (a remote computer that manages accounts). From
the scenarios we identify events and expected behaviors.
Events are abstracted to signals (e.g., the action of asking
for an amount of money is associated with an input signal
amount, valued by integers; the event of keeping a card
in case of fraudulent use is associated with the pure output
signal CARDKept; …). Sometimes, signals are not the
best abstraction. For instance, the connection between the
ATM and the bank is better expressed by a task taking
parameters and returning at the completion of the
connection. The expected behavior of the ATM has been
expressed by a 1-page synchronous chart (a graphical
form of Esterel). This model appears to be very
convenient for expressing preemptions. In the ATM
behavior specification the cancellation of a transaction is a
delicate issue. Pressing the Cancel button must be
ignored during the money delivery or after three
consecutive erroneous confidential codes. A synchronous
chart can clearly specify such behaviors.

Transformational Part
In the ATM program, we use a user's defined type: Card.
This type could have been defined as a structure in C.

Since access to the fields of the record are necessary, a
C++ class has been developed. This is a standard
implementation of an abstract data type. More interesting
is the choice of tasks. As already mentioned, connect is
a task dedicated to the connection phase between the
ATM and the host; disconnect is the corresponding
task for the disconnection. getAndCheckCode is a
more specialized task. Its prototype is

task getAndCheckCode()(integer);
The value argument is the card number. The invocation of
this task is
exec getAndCheckCode()(ncard)return CodeOK;
where CodeOK is a Boolean return signal. The task gets
the code from the keyboard without echo, then calls a
Perl's script that applies the Unix password encoding
algorithm, and finally compares the result with the
expected code. The task returns with true if and only if the
code is correct. This task does a complex job that surely
takes time! This is a convincing example of the usefulness
of tasks.

Interactive Simulation
A scenario is a sequence of events. An Esterel program
covers lots of possible scenarios. An interactive
simulation of the program allows the designer to check
his/her model against expected behaviors. XES (X Esterel
Simultor) is a tool, provided with the Esterel compiler,
dedicated to the interactive execution of an Esterel
program. XES uses Tcl-Tk interfaces and allows for
source-level debugging. Moreover, sequences of stimuli
can be recorded and replayed. The phase of interactive
simulation reveals unexpected behaviors early in the
design process and therefore is almost unavoidable. With
our environment, the designer may select Tcl-Tk-based
handlers to make his/her simulation more realistic.

Formal Validation
Interactive simulation does not pretend to be exhaustive.
Since safety properties must be ensured under any
circumstances, we need a way to cover all possible
evolutions. The XEVE model checker, designed by Bouali
(1997) performs such analyses. XEVE performs a
symbolic execution of the program and can say for this
program whether a signal is potentially emitted (i.e., there
exists a reachable state in which the signal is present) or
not. The task of the designer is to associate an observer
with each safety property to check. This observer, which
is a reactive module, emits a distinguished signal in case
of violation of the property to be proved. A property is
satisfied if and only if XEVE finds that the violation
signal is never emitted by the (controller) program
composed in parallel with the associated observer.
Remark: These observers are conceptual and used only in
debugging. They do not appear in the final code, contrary
to the observers in reactive boxes that monitor the
execution.

In our environment, we also propose simplified models of
handler behaviors. They can be composed with the
controller in order to establish “end to end” safety
properties (i.e., properties between physical input signals
and physical output signals). Due to the explosion of the
state space, the model checking may become untractable.
Fortunately, for the ATM (about 106 states) we stay within
the capabilities of the current version of XEVE.

Actual Implementation
When the synchronous program has successfully got
through the interactive simulation and the property
checking phases, the designer has to adapt its input/output
modules. Actual handlers are then instantiated and the
application is recompiled. libIO supports serial/parallel
ports, and sockets. The synchronous program has not to be
modified since its interface to the input/output modules is
unchanged. “Logical” handlers used in simulation and
“physical” handlers are different implementations of the
same classes.

CONCLUSION

The synchronous paradigm was introduced in the mid-
80’s and has been developed in the 90’s. It is now a
credible approach to real-time reactive system
programming.
Theoretical issues (semantics, validation) have been
intensively studied. In order to transfer the synchronous
technology from academic research to the industrial
world, compilation techniques have been tremendously
improved and languages made more user-friendly.
Commercial supports for synchronous languages are now
available. The European project called “Synchron” aims at
developing a common platform for synchronous
programming. The concept of execution machine,
presented in this paper, is a contribution to this objective.
The role of an execution machine for synchronous
programs is to reduce the gap between the “ideal”
synchronous world and the real-world. We have adopted a
pragmatic approach that combines synchronous and
asynchronous programming. An execution machine is
made of cooperating objects, is programmed in a widely
used (asynchronous) language and relies on a standard
real-time operating system. This is, however, transparent
to the user. The user has
• To express the expected behavior in a synchronous

formalism,
• To program the transformational part of the

application in a sequential language like C or C++,
• And to configure the application (i.e., to give the

relationships between physical and logical signals).
The architecture of an execution machine is modular. The
building block is the reactive box. A reactive box is
characterized by its inputs, its outputs, and its behavior.
Predefined generic reactive boxes are available for input

and output processing. The coordination of the reactive
boxes is ensured by controllers automatically instantiated
during the compilation.
Our execution machine have been developed for controller
implementations. It could be applied, as well, to not “hard
real-time” but highly reactive applications like Human-
Machine Interfaces.

ACKNOWLEDGMENTS

This research has been supported by the CNET (French
Telecom), contract 94-1B-111.

REFERENCES

Benveniste A., and Berry G., 1991, “The Synchronous
Approach to Reactive and Real-Time Systems”,
Proceedings of the IEEE, 79(9):1270-1282, September
1991.

Berry G., 1997, “The Esterel v5 Language Primer”,
not yet published, available on the web,
www.inria.fr/meije/esterel, INRIA, Sophia Antipolis,
1997

Bouali A., 1997, “XEVE: an Esterel Verification
Environment”, Technical Report, CMA-ENSMP, Sophia
Antipolis.

Boufaïed H., 1998, “Machines d’exécution pour
langages synchrones”, PhD thesis, Université de Nice,
November.

Boulanger F., 1993, “Intégration de modules
synchrones dans une programmation par objets”, PhD
Thesis, Supélec/Université Paris-Sud (Orsay), December.

Douglass B.P., 1998, “Real-Time UML: Developing
Efficient Objects for Embedded Systems”, Object
Technology Series, Addison-Wesley, Reading,
Massachussetts.

Halbwachs N., 1993, “Synchronous Programming of
Reactive Systems”, Kluwer Academic Publishers,
Amsterdam.

Rumbaugh J, Blaha M., Premerlani W., Eddy F., and
Lorensen W., 1991, “Object-Oriented Modeling and
Design”, Prentice-Hall, Englewood Cliffs.

Selic B., Gullekson G., and Ward P., 1994, “Real-
Time Object-Oriented Modeling”, John Wiley Publishing.

