
LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR 6070

MODELING TIME(S) IN UML
Charles ANDRE, Frédéric MALLET, Robert DE SIMONE

Projet AOSTE

Rapport de recherche
ISRN I3S/RR–2007-16–FR

Mai 2007

Laboratoire d’Informatique de Signaux et Systèmes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles – Les Algorithmes – Bât Euclide B – B.P. 121 – 06903 Sophia-Antipolis Cedex – France

Tél.: 33 (0)4 92 94 27 01 – Fax: 33 (0)4 92 94 28 98 – www.i3s.unice.fr
UMR6070



Modeling Time(s) in UML

Charles ANDRÉ, Frédéric MALLET, Robert DE SIMONE

Projet AOSTE
Laboratoire Informatique Signaux et Systèmes (I3S) / INRIA

Université de Nice Sophia Antipolis — CNRS UMR 6070
06903 Sophia Antipolis, France

E-mail: {andre, fmallet}@unice.fr, Robert.De Simone@sophia.inria.fr

Abstract

Time and timing features are an important aspect of modern electronic systems, often of embedded nature. We argue
here that in early design phases, time is often of logical (rather than physical) nature, even possibly multiform. The
compilation/synthesis of heterogeneous applications onto heterogeneous architecture platforms then largely amounts to
adjusting the former logical time(s) demands onto the latter physical time abilities. Many distributed scheduling tech-
niques pertain to this approach of “time refinement”.

We provide an extensive Time metamodel that opens the possibility to cast this approach in a Model-Driven Engineering
light. Then, meaningful transformations can extend allocation, as defined in SysML, to timed models. Time modeling also
allows for a precise description, in a OCL-like fashion, of timed properties of events and clocks (periodic, sporadic,
bounded jitter,...). Finally, Time can be interpreted to control the system dynamics, unlike other proposals based on
uninterpreted stereotype annotations.

This report starts with a presentation of the “Time” and “Allocation” sub-profiles of the UML profile for Marte.
Their use is illustrated on a communication example borrowed from the AADL standard. This study highlights semantic
variations between immediate and delayed communications, and provides a generalization.

Key words : UML profile, real-time embedded systems, time modeling, time constraints.



1 Introduction

Modeling of Time should be a central concern in Model-Driven Engineering for Real-Time Embedded systems. Nev-
ertheless, (too?) many modeling frameworks consider Time annotations as to be considered in timing/schedulability/per-
formance, and accordingly build uninterpreted stereotypes and label locations with insightful names only for the future
analysis tool (and no meaning at all for the time augmented profile). Given that the default operational semantics of the
UML is inherently untimed, and rightfully so since there is no Time information in the ground metamodel, one can reach
the situation where the same designed model can be interpreted and understood completely differently for its behavior
depending on whether it is considered from the UML causality model or the intended timed analysis viewpoint. Our pri-
mary goal here is to lay the foundation for a Time model which could be deeply embedded in UML as a profile allowing
the subsequent clean and precise definition of a timed causality model enforcing timed operational semantics of events
and actions.

Following some works on dedicated Models of Computation and Communication (MoCCs) for real-time embedded
systems [8, 3, 7], we view Time in a very broad sense. It can be physical, and considered as continuous or discretized, but
it can also be logical, and related to user-defined clocks. For instance durations could be counted in terms of numbers of
execution steps, or clock cycles on a processor, or activation steps in a systems or even more abstract time bases, without a
strong relation to the actual physical duration (which may not be known at design time, or fluctuate, or be a parameter that
allows the same model to be instantiated under different contexts and speeds). With modern embedded designs where,
for low-power reasons, the actual processor clock can be shut down and altered at times, such usage of logical time in the
application design will certainly become customary. In our approach, time can even be multiform, allowing different time
threads to progress in a non-uniform fashion.

This approach looks certainly non-standard, but is getting increasing interest from a number of directions. A mostly
untimed concurrent application can be considered as comprising several unrelated (or loosely coupled) time threads (there-
after called “clocks”, not to be confused with the physical measurement device which we will never consider). The process
of allocating the various operations/functions/actions of such a conceptually concurrent model onto an existing, heteroge-
neous embedded execution platform comprises aspects of spatial distribution and temporal scheduling (between multiple
logical times and single physical time). This is accomplished by resolving the mutual sets of timing constraints imposed
by the designer of the time scales of the application, the target architecture, and possibly the real-time requirements to be
met. While this can be seen as a timed version of a SysML-inspired allocation scheme, it results in a refined time structure
which can be traced back to the application for the designer’s understanding. In this sense, we call the approach one of
Time refinement.

A number of existing transformation techniques can be cast in this framework. Nested loop scheduling and paralleliza-
tion [4, 5] in high-performance computing, software pipe-lining, SoC synthesis phases from so-called transactional level
(TLM) down to cycle-accurate RTL level, to mention a few. In all cases, the purpose is to progressively refine the temporal
structure, which starts with a number of degrees of freedom, to attain a fully scheduled and precisely cycle-allocated
version, with predictable timing. In that sense our model allows, and it is in fact its primary aim, to describe formal clock
relations in a simple mathematical way. To understand this, the reader should try to contemplate how to state that an
event/signal is periodic, or sporadic, regarding another clock, using an OCL-like language extended to deal with infinite
sequences (of clock ticks) ?

We provide a UML model for Time in its different guises, physical/logical, dense/discrete, single/multiple, and some
useful basic operators and relations to combine timed events or full clocks. From this set of primitives, we hope to
build explicit representation of MoCCs, and to provide a Timed causality model to endow the timed models with a timed
semantics, according to the one that would be considered by analysis tools. When the relation are simple enough (periodic
or regular), the system of contraints imposed by these relations can be solved, and the schedule itself becomes an explicit
modeling element, traceable to the designer. In other, more complex cases, the constraints embody a given scheduling
policy, which can be analyzed with corresponding schedulability analysis techniques when applicable.

After describing some existing time and allocation models (Section 2), Section 3 introduces the Marte subprofiles for
time and allocation. Section 4 briefly illustrates their use.



2 Existing time and allocation models

2.1 Time modeling
This subsection focuses on time models and time-related concepts in use in the UML and some of its profiles.

2.1.1 UML

In UML [12] Time is seldom part of the behavioral modeling, which is essentially untimed (by default, events are handled
in the same order as they arrive in event handlers). UML describes two kinds of behaviors: the intra-object behavior—the
behavior occurring within structural entities—and the inter-object behavior, which deals with how structural entities com-
municate with each other [14]. The CommonBehaviors package defines the relationship between structure and behavior
and the general properties of the behavior concept. A subpackage called SimpleTime adds metaclasses to represent time
and duration, as well as actions to observe the passing of time. This is a very simple time model, not taking account of
problems induced by distribution or by clock imperfections. In particular the UML causality model, which prescribes
the dynamic evaluation mechanisms, does never refer to time (stamps). Instead, the UML specification document explic-
itly states that “It is assumed that applications for which such characteristics are relevant will use a more sophisticated
model of time provided by an appropriate profile”. Our contribution can be seen as providing the means for building such
sophisticated time models.

2.1.2 SPT

The UML Profile for Schedulability, Performance, and Time (SPT) [10] aimed at filling the lacks of UML 1.4 in some key
areas that are of particular concern to real-time system designers and developers. SPT introduces a quantifiable notion
of time and resources. It annotates model elements with quantitative information related to time, information used for
timeliness, performance, and schedulability analyses.

SPT only considers metric time, which makes implicit reference to physical time. It provides time-related concepts:
concepts of instant and duration, concepts for modeling events in time and time-related stimuli. SPT also addresses mod-
eling of timing mechanisms (clocks, timers), and timing services. But “time” here is only introduced through dedicated
stereotype annotations that are not interpreted and given meaning as part of UML semantics. Instead, their purpose is
to be understood by external analysis tools to perform schedulability or performance evaluation, given that are the right
ones, and after translation from the UML model into such tool input format.

SPT, which relies on UML 1.4, had to be aligned with UML 2.1. This is one of the objectives of the Marte profile,
presented in Section 3.

2.1.3 Non OMG profiles

Several “unofficial” UML profiles are also considering time modeling. We mention a few, developed for different pur-
poses, as work related to ours.

EAST-EEA is an ITEA project on Embedded Electronic Architecture [13]. It provides a development process and
automotive-specific constructs for the design of embedded electronic applications. Temporal aspects in EAST are handled
by requirement entities. The concepts of Triggers, Period, Events, End to End Delay, physical Unit, Timing restriction,
can be applied to any behavioral EAST elements.

The UML profile Omega-RT [6] focuses on analysis and verification of time and scheduling related properties. It is
a refinement of the SPT profile. The profile is based on a specific concept of event making it easy to express duration
constraints between occurrences of events. The concept of observer, which is a stereotype of state machine, is a convenient
way for expressing complex time constraints. Note that the Omega Event is a stereotype of UML 1.4 Class, while in UML
2, an Event is not even a Classifier. This difference poses a serious compliance issue between Omega and UML 2.

TURTLE-P [2] is a UML profile for the formal validation of critical and distributed systems. This profile introduces
temporal operators and composition (parallel, sequence, synchronization, and preemption). It deals with temporal nonde-
terminism, usual in distributed systems. Properties of a TURTLE-P model can be evaluated and/or validated thanks to the
formal semantics given in RT-LOTOS (LOTOS extended with temporal operators).

2.1.4 Summary

All the abovementioned profiles introduce relationships between Time and Events or Actions. They annotate the UML
model with quantitative information about time. Omega and TURTLE-P introduce temporal operators in behavioral
models according to their time semantics. None consider logical and multiform time.



2.2 Allocation models
These are concerned with the mapping of application elements onto architectural platform resources and services. The

following frameworks are currently untimed. It is in fact our main goal that a Time Model can be used to select and
optimize such mapping according to the timing demands of both sides (and possibly additional real-time requirements).

2.2.1 UML deployments

UML deployments consist in assigning concrete software elements of the physical world (artifacts) to nodes. Nodes can
represent either hardware devices or software execution environments. Artifacts are physical piece of information—a file
or a database entry—and model elements are stored in resources specified by artifacts. The Marte allocation mechanism
is complementary to the UML deployment mechanism, the differences are described in section 3.2.

2.2.2 SysML allocation

SysML provides a mechanism to represent, at an abstract level, cross-associations among model elements with the broad-
est meaning. A SysML allocation is expected to be the precursor of more concrete relationships. It differentiates three
of the many possible and not exclusive categories: behavior, flow and structure allocations. Behavior allocations separate
the functions from the structure; they provide a way to allocate a behavior to a behavioral feature. Flow allocations have
many usages; they include allocations of activity transitions (SysML flows) to connectors of structured activities (SysML
blocks). Structure allocations acknowledge the needs for a mapping relation of logical parts to more physical ones. The
Marte allocation is inspired from the SysML allocation and the differences are described in section 3.2. One reason for
this choice is that we want to be able to define, in the most convenient way, how various durations and clock streams are
connected in the course of the allocation. This can easily fit some of SysML constraints/parametrics and requirements
modeling features, which were originally used to model physical constraints or uninterpreted requirement engineering
information respectively.

2.2.3 AADL binding

AADL offers a binding mechanism to assign software components (data, thread, process, etc.) to execution platform
components (memory, processor, buses, etc.). Each software component can define several possible bindings and prop-
erties may have different values depending on the actual binding. This binding mechanism encompasses both the UML
deployment and the MARTE allocation, while sometimes it is useful to separate the two concepts.

2.3 Timed allocation models
We believe that suitable models for real-time and embedded systems design and analysis should support both time and

allocation. We give here a brief insight of the SAE AADL standard [15].

2.3.1 Architecture and Analysis Description Language (AADL)

The temporal semantics of AADL concepts is defined using ”hybrid automata”. These automata are hierarchical finite
state machines with real-valued variables that denote the time. Temporal constraints, expressed as state invariants and
guards over transitions, define when the discrete transitions occur. Concurrent executions are modeled using threads
managed by a scheduler. The dispatch protocol (periodic, aperiodic, sporadic and background) determines when an active
thread executes its computation. AADL supports multiform time models. However, it lacks model elements to describe
the application itself, independently of the resources. UML activities allow for a description of the application, actions
executed sequentially or concurrently, without knowing, at first, whether actions are executed by a periodic thread or a
subprogram. This important information is brought by an orthogonal process, the allocation. After several iterations,
analysis, the threads are eventually deployed (or bound) to the execution platform.



3 MARTE

Marte is a response to the OMG RFP to provide a UML profile for real-time and embedded systems [9]. Marte is a
successor of SPT, aligned with UML 2, and with a wider scope. Marte introduces a number of new concepts, including
time and allocation concepts, which are central to this paper.

3.1 Marte time model
Time in SPT is a metric time with implicit reference to physical time. As a successor of SPT, Marte supports this model

of time. However, Marte goes beyond this quantitative model of time and adopts more general time models suitable for
system design. In Marte, Time can be physical, and considered as continuous or discretized, but it can also be logical,
and related to user-defined clocks. Time may even be multiform, allowing different times to progress in a non-uniform
fashion, and possibly independently to any (direct) reference to physical time.

3.1.1 Concept of time structure

MultipleTimeBase

TimeBase

date: Real

Instant

{ ordered }
instants

base1

1..*

memberTB0..*

TimeStructureRelation
tsRelations

0..*

currentInstant1

TimeBaseRelation

TimeInstantRelation

2..*

/relatedInstants
{ union, ordered }

0..*

0..1 parentMTB

subMTB

0..*

1

ownedTB
{ subsets memberTB }

2..*

{ union, ordered }
/relatedTB

Figure 1. Time structure (Domain view).

Figure 1 shows the main concepts introduced in Marte to model time. This is a domain view. The corresponding UML
representations will be presented later. The building element in a time structure is the TimeBase. A time base is a totally
ordered set of instants. A set of instants can be discrete or dense, even continuous. The linear vision of time represented
by a single time base is not sufficient for most of the applications, especially in the case of multithreaded or distributed
applications. Multiple time bases are then used. A MultipleTimeBase consists of one or many time bases. A time structure
contains a tree of multiple time bases.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relationships (coincidence or precedence). The abstract class TimeInstantRelation in Figure 1 has CoincidenceRelationand
PrecedenceRelation as concrete subclasses. Instead of imposing local dependencies between instants, dependencies can
be directly imposed between time bases. A TimeBaseRelation (or more precisely one of its concrete subclasses) specifies
many (possibly an infinity of) individual time instant relations. This will be illustrated later on some time base relations.
TimeBaseRelation and TimeInstantRelation have a common generalization: the abstract class TimeStructureRelation. As
a result of adding time structure relations to multiple time bases, time bases are no longer independent and the instants are
partially ordered. This partial ordering of instants characterizes the time structure of the application.



This model of time is sufficient to check the logical correctness of the application. Quantitative information, attached
to the instants, can be added to this structure when quantitative analyses become necessary.

3.1.2 Clock

In real world technical systems, special devices, called clocks, are used to measure the progress of physical time. In
MARTE, we adopt a more general point of view: a clock is a model giving access to the time structure. Time may be
logical or physical or both. Marte qualifies a clock refering to physical time as a chronometric clock, emphasizing on the
quantitative information attached to this model. A Clock makes reference to a TimeBase. Clocks and time structures have
mathematical definitions introduced below. This formal modeling is transparent to the user of the profile.

The mathematical model for a clock is a 5-tuple (I, �,D, λ, u) where I is a set of instants, � is an order relation on
I, D is a set of labels, λ : I → D is a labeling function, u is a symbol, standing for a unit. For a chronometric clock,
the unit can be the SI time unit s (second) or one of its derived units (ms, us. . . ). The usual unit for logical clocks is tick,
but clockCycle, executionStep . . . may be chosen as well. To address multiform time, it is even possible to consider other
physical units like angle degrees (this is illustrated in an application of our time model to an automotive application [1]).
Since a clock refers to a TimeBase, the poset (I, �) is a linear ordered set.

A Time Structure is a 4-tuple (C,R,D, λ) where C is a set of clocks, R is a relation on
⋃

a,b∈C,a�=b (Ia × Ib), D is a
set of labels, λ : IC → D is a labeling function. IC is the set of the instants of a time structure. IC is not simply the
union of the sets of instants of all the clocks; it is the quotient of this set by the coincidence relation induced by the time
structure relations represented by R. A time structure specifies a poset (IC , �C).

3.1.3 Time-related concepts

Events and behaviors can be directly bound to time. The occurrences of a (timed) event refer to points of time (instants).
The executions of a (timed) behavior refer to points of time (start and finish instants) or to segments of time (duration of
the execution). In Marte, Instant and Duration are two distinct concepts, specializations of the abstract concept of Time.
TimedEvent (TimedBehavior, resp.) is a concept representing an event (a behavior, resp.) explicitly bound to time through
a clock. In this way, time is not a mere annotation: it changes the semantics of the timed model elements.

3.1.4 The Marte TimeModeling profile

The time structure presented above constitutes the semantic domain of our time model. The UML view is defined in
the “Marte TimeModeling profile”. This profile introduces a limited number of powerful stereotypes. We have striven
to avoid the multiplication of too specialized stereotypes. Thanks to the sound semantic grounds of our styereotypes,
modeling environments may propose patterns for more specific uses.

«stereotype»
TimedElement

«metaclass»
UML::Classes::Kernel::Class

nature: TimeNatureKind [1]
unitType: Enumeration [0..1]
isLogical: Boolean [1]=false
resolAttr: Property [0..1]
maxValAttr: Property [0..1]
offsetAttr: Property [0..1]
getTime: Operation [0..1]
setTime: Operation [0..1]
indexToValue: Operation [0..1]

«stereotype»
ClockType

«metaclass»
UML::Classes::Kernel::
InstanceSpecification

«stereotype»
Clock

«stereotype»
NFP_profile::Unit

«stereotype»
TimedDomain

«metaclass»
UML::Classes::Kernel::

Package

on 1..*

unit
1

type
1

«metaclass»
UML::Classes::Kernel::

EnumerationLiteral

Figure 2. Marte TimeModeling profile: Clock.

The main sterotypes are presented in figures 2 to 4. ClockType is a stereotype of the UML Class. Its properties specifies
the kind (chronometric or logical) of clock, the nature (dense or discrete) of the represented time, a set of clock properties



(e.g., resolution, maximal value. . . ), and a set of accepted time units. Clock is a sterotype of InstanceSpecification. An
OCL rule imposes to apply the Clock stereotype only to instance specifications of a class stereotyped by ClockType. The
unit of the clock is given when the stereotype is applied. Unit is defined in the NFP profile of Marte (NFP is the acronym of
Non Functional Property). It is a stereotype of EnumerationLiteral. This sterotype is very convenient since an unit can be
used like any user-defined enumeration literal, and conversion factors between units can be specified (e.g., 1ms = 10 −3s).
TimedElement is an abstract stereotype with no defined metaclass. It stands for model elements which reference clocks.
All other timed stereotypes specialize TimedElement.

3.1.5 Clock constraints

ClockConstraint is a stereotype of the UML Constraint. The clock constraints are used to specify, in UML models, the time
structure relations of a time domain. In turn, these relations characterize the R relation of the underlying mathematical
model of the time structure.

The context of the constraint must be a TimedDomain. The constrained elements are clocks of this timed domain
and possibly other objects. The specification of a clock constraint is a set of declarative statements. This raises the
question of choosing a language for expressing the clock constraints. A natural language is not sufficiently precise to be
a good candidate. UML encourages the use of OCL. However, our clocks usually deal with infinite sets of instants, the
relations may use many quantifiers. OCL supports recursive definitions and predefined operations on the collection types
(e.g., exists, forAll. . . ). However, their usage in complex quantified expressions leads to intricate OCL expressions. The
advantage of OCL, which claims to be “a formal language that remains easy to read and write” [11, Chapter 7], is then
lost. So, we have chosen to define a simple constraint expression language endowed with a mathematical semantics. For
UML, the specification of a clock constraint is an opaque expression. This expression makes use of pre-defined (clock)
relations the meaning of which is given in mathematical terms, outside the UML. Our Constraint Specification Language
is not normative. Other languages can be used, so long as the semantics of clocks and clock constraints is respected.

3.1.6 TimedEvent and TimedProcessing

repetition: Integer[0..1]

«stereotype»
TimedEvent

«metaclass»
UML::CommonBehavior::

SimpleTime::
TimeEvent

«metaclass»
UML::Classes::Kernel::

ValueSpecification 0..1 0..1

every «stereotype»
TimedElement

Figure 3. Marte TimeModeling profile: TimedEvent.

In UML, an Event describes a set of possible occurrences; an occurrence may potentially trigger effects in the system.
A UML 2 TimeEvent is an Event that defines a point in time (instant) when the event occurs. In Marte, we define
TimedEvent a sterotype of TimeEvent (Figure 3) in which the instant specification explicitly refers to a clock. Moreover,
if the event is recurrent, a repetition period—duration between two successive occurrences of the event—and the number
of repetitions may be optionally specified.

In UML, a Behavior describes a set of possible executions; an execution is the performance of an algorithm according
to a set of rules. Marte associates a duration, an instant of start, an instant of termination with an execution, these times
being read on a clock. Figure 4 shows that this concept has been extended: the stereotype TimedProcessing extends the
metaclasses Behavior, Action, ans also Message. The latter extension assimilates a message tranfer to a communication
action.

Note that, StateMachine, Activity, Interaction being Behavior, they can be stereotyped by TimedProcessing. Thus, state
machines, activities and interactions can be explicitly bound to clocks.

3.2 Marte allocation model
Allocation of functional application elements onto the available resources (the execution platform) is main concern of

real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communication resources and services.

The Marte profile defines relevant application and execution platform models. A Marte allocation is an association
between a Marte application and a Marte execution platform. Application elements may be any UML element suitable for



«stereotype»
TimedProcessing

start
0..1

finish
0..1

duration
0..1 0..1

«metaclass»
UML::CommonBehavior::

Communication::
Event

«metaclass»
UML::Actions::

Action

«metaclass»
UML::CommonBehaviors::

Behavior

«metaclass»
UML::Interactions::
BasicInteractions::

Message

«stereotype»
TimedElement

«metaclass»
UML::Classes::Kernel::

ValueSpecification

Figure 4. Marte TimeModeling profile: TimedProcessing.

modeling an application, with structural and behavioral aspects. An execution platform is represented as a set of connected
resources, where each resource provides services to support the execution of the application. So, resources are basically
structural elements, while services are rather behavioral elements. Application and Execution platform models are built
separately, before they are paired through the Allocation process. Often this requires prior adjustment (inside each model)
to abstract/refine its components so as to allow a direct match. Allocation can be viewed as a “horizontal” association, and
abstraction/refinement layering as a “vertical” one, with the abstract version relying on constructs introduced in the more
refined model. While different in role, allocation and refinement share a lot of formal aspects, and so both are described
here.

Application and Execution platform elements can be annotated with time information based on logical or chronometric
clocks (Section 3.1). Allocation and refinement provide relations between these timing under the form of constraints
between the clocks and their instants. Other similar non-functional properties such as space requirement, cost, or power
consumption are also considered.

In Marte, we use the word allocation rather than deployment (as in UML) since allocation does not necessarily imply
a physical distribution and could simply represent a logical distribution or scheduling. Execution platform models can be
abstract at some points and not necessarily seen as concretization models. For instance, two pieces of an algorithm could
be allocated to two different processor cores, while the executable file containing both pieces would be deployed on the
memory of the processor and the source file containing the specification of the algorithm would be deployed on a hard
disk. This dual function was recognized in SPT, where allocation was called realization, while refinement was used as
such. Marte allocation and refinement are complementary to the UML deployment; we prefer to keep the three concepts
separated. This is not the case of AADL that provides a single mechanism—the binding—for all three concepts. The
allocation mechanism proposed by Marte is actually very close to the structure allocations of SysML because it allocates
logical parts to more physical ones. However, Marte makes it explicit that both the logical and physical parts could
be either of a behavioral or structural nature. Contrary to SysML, Marte makes a difference between allocation—from
application model elements to execution platform model elements—and refinement of an abstract model elements (logical
or physical) into more specific elements.

3.2.1 The stereotype Allocate

A Marte allocation is materialized by the stereotype Allocate (Figure 5), which is an extension of the UML metaclass
Abstraction. A Marte allocation can be associated with non functional property constraints. Allocation can be specified
in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association between a group of structural
elements and a group of resources. Behavioral allocation is an association between a set of behavioral elements and a
service provided by the execution platform. When clear from context, hybrid allocations can also be allowed (for instance
when an implicit service is uniquely defined for a resource). At the finer level of detail, behavioral allocation deals with
the mapping of UML actions to resources and services.

3.2.2 The stereotype Allocated

Marte advocates the need to differentiate the potential sources of an allocation from the targets. Each model element
involved in an allocation is annotated with the stereotype Allocated (as in SysML) or rather one of its specializations. This
stereotype (Figure 6) is an extension of the metaclass NamedElement, so almost any model elements can be allocated
to or from any other model elements. The stereotype ApplicationAllocationEnd, noted by the keyword «app allocated»,



«metaclass»
UML::Abstraction

«stereotype»
NFP_Modeling::
NfpConstraint

impliedConstraint

*

«enumeration»
AllocationKind

structural
behavioral
hybrid

«enumeration»
AllocationNature

spatialDistribution
timeScheduling

«stereotype» 
Allocate

kind : AllocationKind
nature : AllocationNature

Figure 5. The stereotype «allocate».

denotes a source of an allocation. The stereotype ExecutionPlatformAllocationEnd, noted by the keyword «ep allocated»,
represents the target of an allocation. The stereotype Allocated is not abstract to ensure compatibility with SysML,
but one of its specializations should be preferred. The property allocatedTo, respectively allocatedFrom, is a derived
property resulting from the process of creating the abstraction (allocation); they facilitate the identification of the targets,
respectively the sources, of the allocation when all model elements cannot be drawn on the same diagram.

«stereotype»
Allocated

«metaclass»
NamedElement

«stereotype»
ApplicationAllocationEnd

«stereotype»
ExecutionPlatformAllocationEnd

/allocatedTo

*/allocatedFrom

*

Figure 6. The stereotype «allocated».



4 Illustrative Examples

4.1 Chronometric clocks

currentTime( ): Real

«clockType»
{ nature = dense, unitType = TimeUnitKind,

getTime = currentTime  }
IdealClock

«clock»
{ unit = s }

idealClk:IdealClock currentTime( ): Real

resolution: Real {readOnly}

«clockType»
{ nature = discrete, 

unitType = TimeUnitKind,
resolAttr=resolution, 

getTime = currentTime  }
Chronometric

Figure 7. Ideal and Chronometric clocks.

The Marte TimeLibrary provides a model for the ideal time used in physical laws: idealClk, which is an instance of the
class IdealClock, stereotyped by ClockType (Fig. 7). idealClk is a dense time clock, its unit is the SI time unit s.

Starting with idealClk, the user can define new discrete chronometric clocks (Fig. 8). First, the user specifies Chrono-
metric—a class stereotyped by ClockType—which is discrete, not logical (therefore chronometric), and with a read only
attribute (resolution). Clocks belong to timed domains. In the example shown in Fig. 8, only one time domain is consid-
ered. It owns 3 clocks: idealClk, cc1 and cc2, which are two instances of Chronometric. cc1 and cc2 use s (second) as
a time unit; and they have a resolution of 0.01 s. The three clocks are a priori independent. A clock constraint specifies
relationships among them.

resolution = 0.01

«clock»
{ unit = s }

cc1:Chronometric

resolution = 0.01

«clock»
{ unit = s }

cc2:Chronometric

«clockConstraint»
{ Clock c is idealClk discretizedBy0.001;
   cc1 isPeriodicOn c period10;
   cc2 isPeriodicOn c period10;
   cc1 hasStability1E-5;
   cc2 hasStability 1E-5;
   cc1,cc2 haveOffset [0..5] ms on idealClk;
}

«clock»
{ unit = s }

idealClk:IdealClock

«timeDomain»
ApplicationTimeDomain

Figure 8. Clock constraints.

The first statement of the constraint defines a clock c local to the constraint. c is a discrete time clock derived from
idealClk by a discretization relation (see Annex A). The resolution of this clock is 1 ms. The next two statements specify
that cc1 and cc2 are subclocks of c with a rate 10 times slower than c. The fourth and fifth statements indicate that cc1
and cc2 are not perfect clocks. Flaws are characterized by non functional properties like stability and offset. Their rate
may have small variations (a stability of 10−5 implicitly measured on idealClk). The last statement claims that the two
clocks are out of phase, with an offset value between 0 and 5 ms measured on idealClk. Note that even if cc1 and cc2 look
alike, they are not identical because relations are not necessarily functional.

4.2 AADL communication
As a demonstration of the expressiveness of Marte, a forthcoming UML profile for Modeling and Analysis of Real-

Time Embedded systems, we take as an example the inter-thread data communication semantics of AADL.
In AADL, the communications can be immediate (Fig. 9a) or delayed (Fig. 9b). The threads are concurrent schedulable

units of sequential executions. Several properties can be assigned to threads, the one of concern here is the dispatch
protocol. We actually consider only periodic threads, associated with a period and a deadline, specified as chronometric
time expressions (e.g., period=50ms or frequency=20Hz). By default, when the deadline is not specified it equals the
period.



Thread

Component property 
(e.g., frequency, 

subprogram ...)

immediate connection

delayed connection

Legendt1 fd

(a) Immediate (b) Delayed

read_data

t1 fd

read_data

t2 fc

control
t2 fc

control

Figure 9. AADL inter-thread data communication.

« timedProcessing »
{ on = ^d }
read_data

« timedProcessing »
{ on = ^c }
control

« dataStore »
sample

Process

« clock »
t1:Thread

« clock »
t2:Threads:SharedVariable

« clockRefine » « clockRefine »« clockRefine »

« clockConstraint »
^t1 alternatesWith^d

« clockConstraint »
^t2 alternatesWith^c

Figure 10. Application/Execution platform in Marte.

4.2.1 Application, execution platform and allocation

A first difference with AADL is that Marte differentiates the algorithm, which can be represented as an activity diagram
(Fig. 10, upper part), from the underlying structure, which is modeled here as a composite structure diagram (Fig. 10, lower
part), and that implies a logical scheduling. Each part has its own causality constraints. Marte refinement mechanism, and
its associated clock constraints, allows for explicit relations amongst the clocks of both parts. In Marte, activation condi-
tions of all application model elements are represented by clocks identified with the appropriate stereotypes, for instance
TimedProcessing. As a starting point, we consider the clocks of each element as independent, then the context (depen-
dencies and refinements) constrains these clocks. At last, a timing analysis tool may resolve the constraints to determine
a (family of) possible schedules. We strive to avoid overspecification and keep the model as generic as possible, adding
only required constraints. From the algorithmic point of view, the actions read data and control are CallBehaviorAction

that execute a given behavior repetitively according to their activation condition (clocks d̂ and ĉ respectively).

4.2.2 Introducing clock constraints

From the execution platform point of view, the threads t1 and t2 are also associated with clocks ( t̂1 and t̂2 respectively). In
AADL, the period of a thread is expressed as a chronometric time expression and therefore clocks t̂1 and t̂2 are necessarily
chronometric.

When allocated to a periodic thread with a given period, an additional constraint must express that these behaviors
are executed on the thread dispatch and must complete before the deadline (the next dispatch by default). In Marte, we
can differentiate atomic behaviors, for which the execution time is considered negligible as compared to the period, from
non-atomic ones. If we consider the behaviors as atomic, the allocation is simply expressed with the constraint given by
Eq. 1. Note that this constraint is not symmetrical since t1 may cause d, but not the converse.



t̂1 alternatesWith d̂ (1)

If the execution time is not negligible, each action can be represented by two events, the start (e.g., ds for d, cs for
c) and the finish (e.g., df for d, cf for c), and a duration. In that latter case, we need three constraints to express that the
behavior read data is repetitively executed on thread t1 (Eqs. 2–4).

t̂1 alternatesWith d̂s (2)

t̂1 alternatesWith d̂f (3)

d̂s isFasterThan d̂f (4)

The first two constraints express that the behavior starts and finishes between two consecutive dispatches of thread t1.
The last constraint, which reads clock d̂s is faster than clock d̂f , specifies that the action read data starts before it finishes;
it is sufficient to impose that it finishes within the same cycle of execution.

«timedProcessing»
{ on = ^d, 

start=ds, finish=df }
read_data

«timedProcessing»
{ on = ^c,

start=cs, finish=cf }
control

«dataStore»
sample

act

«allocate»
t1 : Thread

«allocate»
t2 : Thread

«clockConstraint»
^t1 alternatesWith ̂ d
^t1 alternatesWith ̂ df
^ds isFasterThan ̂ df

«clockConstraint»
^t2 alternatesWith ̂ cs
^t2 alternatesWith ̂ cf
^cs isFasterThan ̂ cf

Figure 11. Alternative representation of “Allocation”.

An alternative, more compact, representation of the allocation is presented in Figure 11. A new compartment is created
in the AllocationActivityGroup.

The next constraint comes from the communication itself, according to the application point of view. We use a UML
data store to mean that the action read data can overwrite the existing value (in the object node) without generating a new
token and this very same value can be read several times by the action control (non depleting read). In UML, there must
be at least one writing before any reading (Eq. 5).

d̂[1] precedes ĉ[1] (5)

Let ŵr be the (logical) clock for significant writings in the data store. There could be several consecutive writings in
the datastore before one reading. In that case, only the last one is considered significant. Let r̂d be the corresponding
(logical) clock for significant readings from the data store. When the same value is read several times, only the first read is
considered to be significant. Furthermore, AADL assumes that communicating threads must have common dispatches. A
simple way to achieve that is if all threads start their execution at the same time (they are in phase). The AADL standard
considers three cases: synchronous threads with the same period, oversampling (the period of control is evenly divided by
the period of read data), undersampling (the period of read data is evenly divided by the period of control). Let q1 and q2
be natural numbers such that fd/fc = q1/q2. They represent the relative periods of read data and control. Section 4.2.6
discusses how to compute q1 and q2 in the general case. When the threads are synchronous (Eq. 6), q1 = q2 = 1. When
oversampling (Eq. 7), q1 = 1 and q2 > 1. When undersampling (Eq. 8), q1 > 1 and q2 = 1. max{q1, q2} is called the
hyper-period. In Eq. 7 (resp. Eq. 8), the binary word expresses that each instant of t̂1 (resp. t̂2 ) is synchronous with
every q2th (resp. q1th) instant of t̂2 (resp. t̂1 ).

t̂1 ≡ t̂2 (6)

t̂1 ≡ t̂2 filteredBy (1.0q2−1) (7)

t̂2 ≡ t̂1 filteredBy (1.0q1−1) (8)



Selecting the significant writings and readings consists in choosing one event of d̂ every q1th (Eq. 9) and one event of
ĉ every q2th (Eq. 10). Additionally, Eq. 11 states that each significant writing must precede its related significant reading.

ŵr isPeriodicOn d̂ period q1 (9)

r̂d isPeriodicOn ĉ period q2 (10)

ŵr alternatesWith r̂d (11)

We restrict our comparison to the three cases considered by the AADL standard. However, in subsection 4.2.6 we
elaborate on the general case.

We have defined all general constraints. In particular, these constraints do not state which instant is considered as a sig-
nificant writing or reading. This depends on the semantics of the communication. The following two subsections study the
three different cases (synchronous, oversampling, undersampling) with both an immediate and a delayed communication,
each subsection gives stronger constraints compatible with Eqs. 9–11.

4.2.3 Immediate communication

read_data

control

(c) undersampling 
(q1=3, q2=1)

(b) oversampling 
(q1=1, q2=3)

(a) synchronous 
(q1=q2=1)

wr

rd

Figure 12. Immediate communications.

An immediate communication means that the result of the sending thread (here read data) is immediately available
to the receiving thread (here control). When threads are synchronous (Fig. 12a), this is denoted by “ ŵr ≡ d̂ ” and

“ r̂d ≡ ĉ ”, or more precisely by “ ŵr ≡ d̂f ”and “ r̂d ≡ ĉs ”. In case of oversampling (Fig. 12b), the result of the
action read data must be written in the object node early enough so that the first (for each q2-long hyper-cycle) execution
of the action control can use it, q2 being the quotient of the period of control over the period of read data. This is denoted
by “ ŵr ≡ d̂ ” and “ r̂d ≡ ĉ filteredBy

(
1.0q2−1

)
”. In case of undersampling (Fig. 12c), AADL specifies that the

execution of the first (for each q1-long hyper-cycle) execution of the action read data must complete before the execution
of the action control. This is stated by “ r̂d ≡ ĉ ” and “ ŵr ≡ d̂ filteredBy

(
1.0q1−1

)
”.

4.2.4 Delayed communication

A delayed communication means the result of the sending thread is made available only at its next dispatch while the
receiving thread only reads after its own dispatch and ultimately when the data is required. The dispatches of the sending
and the receiving threads are not necessarily all synchronous, even if there must be a synchronization at some point. When
the thread are synchronous (Fig. 13a), the constraint is denoted by Eqs. 12–13. Note that δ4 offers the possibility to
delay the actual execution of read data. The thread t1 can either be idle or be executing another action before starting to

execute read data. Eq. 12 states that (∃δ4 ∈ N) (∀k ∈ N
�)

(
ŵr[k] ≡ t̂1[δ4 + k]

)
.

(∃δ4 ∈ N)
(
ŵr ≡ t̂1 filteredBy 0δ4 (1)

)
(12)

r̂d ≡ ĉ (13)



read_data

control

(c) undersampling 
(q1=3, q2=1)

(b) oversampling 
(q1=1, q2=3)

(a) synchronous 
(q1=q2=1)

rd

wr

Figure 13. Delayed communications.

In case of oversampling (Fig. 13b), the result will be available for the first execution of the action control of the next q2-
long hyper-cycle. This leaves lots of freedom to schedule the action read data anywhere within the current hyper-cycle.
We keep the relation Eq. 12 while Eq. 13 is replaced by Eq. 14.

r̂d ≡ ĉ filteredBy
(
1.0q2−1

)
(14)

In the case of undersampling (Fig. 13c), the result of the last execution (for each q1-long hyper-cycle) of the action
read data will be available for the action control at the next hyper-cycle. This is denoted by combining Eq. 15 with Eq. 13.

(∃δ4 ∈ N)
(
ŵr ≡ t̂1 filteredBy 0δ4

(
1.0q1−1

))
(15)

Note that the relations are not fully symmetrical. This is due to the AADL semantics that changes the rule depending
on the kind of communication.

4.2.5 Getting a schedule

In most of the discussed cases, we get in the end a total order amongst events of d̂ and ĉ, that is to say we have given
a schedule. In few cases, we need additional constraints. Besides, to represent the resulting schedule we have to set up
constraints between a chronometric clock and, t1 and t2. We start by the creation of three chronometric clocks c 100, c10

and c30 of respective frequency 100Hz, 10Hz and 30Hz. The usual way to proceed (see Section. 4.1) is to discretized the
ideal clock (idealClk) as in Eqs. 16–18. Note that these are relations, thus the definition of the 30Hz-clock from c 10.

c100 ≡ idealClk discretizedBy 0.01 (16)

c10 ≡ c100 filteredBy (1.09) (17)

c10 ≡ c30 filteredBy (1.02) (18)

Now a schedule can be given with the kind of communication and with the three cases: t̂1 ≡ t̂2 ≡ c10 (syn-
chronous), t̂1 ≡ c10 and t̂2 ≡ c30 (oversampling), t̂1 ≡ c30 and t̂2 ≡ c10 (undersampling),

For an immediate communication, the only case where a partial order remains is for undersampling. From the specified
constraints we can only infer that, for each hyper-cycle, the first execution of read data must complete before the execution
of control. However, we cannot decide when to execute control relatively to other executions of read data. To determine
this schedule, we can take as a criterion the actual size of the buffer used for the communication. To get this buffer as
small as possible (size=1), we need to schedule control before the second execution of read data. Were we to schedule
according to an earliest deadline first (EDF) policy we would get another schedule. See Fig. 14 for possible schedules.

For a delayed communication, we just have partial orders. Additionnal criterion must be given to get only one schedule.
For synchronous threads, the use of an EDF policy is of no help. However, reducing the size of the communication buffer
give a schedule (top-most part of Fig. 15). For oversampling, both criterion are compatible and we get the second schedule
on Fig. 15. For oversampling, we get two different schedules depending on whether we apply an EDF policy or we attempt
to reduce the buffer size.



data control synchronous

0s 0.1s

data control

0s

control control

0.1s

oversampling

data control

0s

data data

0.1s

undersampling (buffer=1)

data

0s

data data

0.1s

undersampling (EDF)control

Figure 14. Schedules with immediate communications.

data synchronous

0.1s

datacontrol

0.2s

data control

0.1s

control control

0.2s

oversampling (EDF&buffer=1)data

datacontrol

0.1s

data data

0.2s

undersampling (buffer=1)data

data

0.1s

data data

0.2s

undersampling (EDF)data control

Figure 15. Schedules with delayed communications.

4.2.6 Generalization

We can generalize the constraints to get only two sets of constraints, one for the immediate communication and one for
the delayed communication.

In this section we do not restrict to the three special cases addressed in the AADL standard. This generalization does
not assume that the frequencies of the threads are natural numbers, it just assumes that they are rational numbers. It also
assumes that in the notation of our binary words Y.x0 = Y , for any binary word Y and any bit x.

Let fd = nr/dr and fc = nc/dc, fd/fc = (nr ∗ dc) / (nc ∗ dr) with nr, nc, dr, dc ∈ N
�. Let r1 = nr ∗ dc and

r2 = nc ∗ dr. We choose q1 and q2 such as q1 = r1/ gcd(r1, r2) and q2 = r2/ gcd(r1, r2). Note, that we still have
fd/fc = q1/q2. Then, the general constraints are given in Table 1. Note that, in particular cases mentioned in previous
sections we get exactly the same constraints.

Again, these constraints are purely logical. In the general case, these constraints are not strong enough to identify
deterministically the significant writings and readings. If we take for instance, the case where q1 = 2 and q2 = 5

Constraints

immediate ŵr ≡ d̂ filteredBy
(
1.0q1−1

)
delayed ŵr ≡ t̂1 filteredBy

(
1.0q1−1

)
both cases t̂1 filteredBy

(
1.0q1−1

) ≡ t̂2 filteredBy
(
1.0q2−1

)
r̂d ≡ ĉ filteredBy

(
1.0q2−1

)
Table 1. Generalization of constraints



(Fig. 16). If we apply the AADL semantics, we can only say that, within an hyper-cycle (of period lcm(q1, q2)), the
first execution of read data produces the sample for the first control, but we cannot know what sample is used by other
executions of control. In particular, there is no relation between t1[2 ∗ n + 1] and t2[5 ∗ n + 2].

read_data

control

general (q1=2, q2=5), immediate

wr (sample)

rd (sample)

t1[2*n] t1[2*n+1]

t2[5*n] t2[5*n+1] t2[5*n+2] t2[5*n+3] t2[5*n+4]

Figure 16. General case with immediate communications and purely logical clocks.

To get a deterministic behavior, we need to give more constraints. A simple solution consists in giving constraints in
relation to a chronometric clock. For instance, we can model the cases where f d = 10Hz and fc = 25Hz. We proceed by
using the clock c100 previously defined (see Eq. 16). Then, we add the two constraints given in Eq. 19 and Eq. 20.

t̂1 ≡ c10 (19)

t̂2 ≡ c100 filteredBy (1.03) (20)

With such constraints, we get a total order (Fig. 17) and then there are two possible cases. The first case appears
when duration(read data) + duration(control) ≥ 0.02s. Then, we exactly get the result presented in Fig. 17, where,
within an hyper-cycle, the third execution of control uses the sample computed by the first execution of read data and
the fourth execution of control uses the sample computed by the second execution of read data. In the second case, if
duration(read data) + duration(control) < 0.02s, the third execution of control should use the sample computed by
the second execution of read data. However, note that such systems that very much depend on the exact duration of tasks
are not very robust.

If we now take a look at the situation with a delayed communication, with have several possible interpretations of the
AADL semantics. The simplest interpretation is that the data is made available (written in the object node) at the first
dispatch (of the sending thread) following the execution of the behavior that has produced it (read data). And the data is
read at the first dispatch of the receiving thread following the write (see Fig. 19).

A second interpretation could be that the data is read at the first dispatch of the receiving thread following the actual
production of the data (not waiting for the following dispatch of the sending thread). This second interpretation leads to
Fig. 20.

The two interpretations are deterministic. The first one is very simple to implement and the second one requires to be
able to control very tighly the communication times.

A UML object node has two interesting attributes: it has an upper bound, possibly unlimited, and it can order events,
by default according to a FIFO policy. Thus, there is no reason to assume that the threads are in phase, the sending
thread writes (and possibly overwrites) tokens in the object node, while the receiving thread reads them when required.
Our definition of the significant writings and readings helps defining when the token is the same—the content must be
ovewritten—and when the token is different, which implies that a new token must be created. Actually, the occurrence of
ŵr should create a new token.



read_data

control

general (q1=2, q2=5), immediate , fd=10Hz, fc=25Hz

wr (sample)

rd (sample)

0s 0.1s

0s 0.04s 0.08s 0.12s 0.16s

0.2s

0.2s

Figure 17. General case with immediate communications and chronometric clocks.

read_data

control

general (q1=2, q2=5), delayed

wr (sample)

rd (sample)

t1[2*n] t1[2*n+1]

t2[5*n] t2[5*n+1] t2[5*n+2] t2[5*n+3] t2[5*n+4]

Figure 18. General case with delayed communications.

read_data

control

general (q1=2, q2=5), delayed (1)

wr (sample)

rd (sample)

0.2s 0.3s

0.2s 0.24s 0.28s 0.32s 0.36s

0.4s

0.4s

Figure 19. General case with delayed communications (first interpretation).



read_data

control

general (q1=2, q2=5), delayed (2)

wr (sample)

rd (sample)

0.2s 0.3s

0.2s 0.24s 0.28s 0.32s 0.36s

0.4s

0.4s

Figure 20. General case with delayed communications (second interpretation).



5 Conclusion

We presented a UML profile for comprehensive Time Modeling. Time here can be of discrete or dense, physical
or logical nature. Logical time allows to model various time threads sustaining asynchronous or loosely time-related
concurrent processes. This philosophy (of assigning logical clocks in order to explicitly handle time rates) borrows to
foundational notions in embedded MoCC design. To this we add a kernel language of clock constraint relations, as well
as timed events constraint relations. This constraint language, while currently simple, allows to define most useful clock
relations (such as being periodic and so on). While the profile can be considered as a “creative” translation of existing ideas
on tagged systems to a UML setting (with all the alignments it required that were far from trivial), the clock constraint
language and its use as a formal specification of classical time relation notions is original, to the best of our knowledge.

Time annotation can then be applied to behavioral elements, leading to TimedEvents and TimedProcessing, and to
structural elements, leading to clocked Classes and clocked Objets. This can be performed on application models and
architecture models of the embedded design. Then the system dynamics should run according to (partial) timing con-
straints, if possible, according to a timed operational semantics. Providing timed constructs in UML behavioral models
(state diagrams and activity diagrams mostly) would be the next step here. Numerous examples exist (outside the UML)
of timed languages and calculi under the form of MoCC constructors inside the proper time domain.

Clock constraints provide partial scheduling information, and an actual schedule can be obtained by solving such a
set of constraints, some of which originate from the application model, some from the execution platform model, and
some from the system’s real-time requirements. The same formalisms of clock relations can also be used in some case to
represent the result of the scheduling decisions, and display them to the designer.

We provided modeling instances and case studies to illustrate and motivate the modeling framework. We showed how
it allows to introduce a number of useful time predicates on events in a formal way. We also showed the intent behind
logical time by considering examples with various clocks running at unrelated speeds.



References

[1] C. André, F. Mallet, and M.-A. Peraldi-Frati. A multiform time approach to real-time system modeling: Application to an
automotive system. Technical Report ISRN I3S/RR–2007–14–FR, I3S laboratory, Sophia-Antipolis, France, April 2007.

[2] L. Apvrille, P. Saqui-Sannes, and F. Khendek. TURTLE-P: a uml profile for the formal validation of critical and distributed
systems. Software and Systems Modeling (SoSyM), 5(4):449–466, December 2006.

[3] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for simulating and prototyping heterogeneous systems.
International Journal of Computer Simulation, special issue on “Simulation Software Development”, 4:155–182, April 1994.

[4] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkhaüser, 2000.
[5] P. Feautrier. Compiling for massively parallel architectures: a perspective. Microprogramming and Microprocessors, (41):425–

439, 1995.
[6] S. Graf, I. Ober, and I. Ober. A real-time profile for UML. STTT, Software Tools for Technology Transfer, 8(2):113–127, April

2006.
[7] A. Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time in Models of Computation. Morgan Kaufman, 2003.
[8] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for comparing models of computation. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–1229, December 1998.
[9] OMG. UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE), Request for proposals. Object

Management Group, Inc., 492 Old Connecticut Path, Framing-ham, MA 01701., February 2005. OMG document number:
realtime/2005-02-06.

[10] OMG. UML Profile for Schedulability, Performance, and Time Specification. Object Management Group, Inc., 492 Old Con-
necticut Path, Framing-ham, MA 01701., January 2005. OMG document number: formal/05-01-02 (v1.1).

[11] OMG. Object Constraint Language, version 2.0. Object Management Group, Inc., 492 Old Connecticut Path, Framing-ham, MA
01701., May 2006. OMG document number: formal/06-05-01.

[12] OMG. UML 2.1 Superstructure Specification. Object Management Group, Inc., 492 Old Connecticut Path, Framing-ham, MA
01701., April 2006. OMG document number: ptc/2006-04-02.

[13] I. project. EAST-ADL: The EAST-EEA Architecture Description Language, June 2004. ITEA Project Version 1.02.
[14] B. Selic. On the semantic foundations of standard uml 2.0. In SFM-RT 2004, volume 3185 of LNCS, pages 181–199. Springer-

Verlag, 2004.
[15] S. Standards. SAE Architecture Analysis and Design Language (AADL), June 2006. document number: AS5506/1.



A Clock Constraint Specifications

In this annex, a non-exhaustive list of useful clock relations is provided. Remember that these relations are often
relational in the sense that they do not lead to a unique solution, and that a specific solution is provided only when a
specific deterministic scheduling is given. In the expressions below, a, b, c are clock references.

Clock relations based on the coincidence relation :

Equality “a ≡ b” (or equal(a, b)) states that the two clocks are identical (all their instants are pairwise coinci-
dent).

Disjunction “a # b” (or disjoint(a, b)) states that they share no instant (no coincident instant).

Subclocking stands between these two extreme cases. b is a subclock of a if for each instant i of b there exists a
coincident instant h(i) of a, and the injective mapping h from I b to Ia is order preserving ((∀i, j ∈ Ib)i �b

j ⇒ h(i) �a h(j) ). “a is a superclock of b” stands for “b is a subclock of a”. Several clock relations rely
subclocking.

“a isFinerThan b” states that b is a subclock of a.

“b isCoarserThan a” stands for “a isFinerThan b”.

“b = a restrictedTo p”, where p is a predicate on the instant set of clock a. This relation states that b is a sub-
clock of a, and p selects the instants of a that are coincident with the instants of b (I b = h−1 ({i ∈ Ia | p(i)})).
For convenience, specializations of this relation have been defined:

“b = a discretizedBy r”, where a is a dense time clock, and r is a non negative real number. This relation
says that b is a discrete time clock equal to the dense clock a discretized with a period r.

“b = a filteredBy p”, where p is a pattern, states that b is the finest subclock of a such that only the
instants of a selected by the pattern p are coincident with instants of b. The patterns are periodic words
on {0, 1}.

Two clock relations :

“c = a excluding b”, states that c is the finest subclock of a with no instant coinciding with instants of b.
“c = a followedBy b”, where a # b and a is finite. This relation states that a and b are subclocks of c; any

instant of c is coincident with an instant of either a or b; and any instant of c coincident with an instant of
a precedes any instant of c coincident with an instant of b.

Relations involving a third implicit clock c, superclock of the operand clocks

“a isFasterThan b” states that the kth instant of a always precedes the kth instant of b, this ordering being
observed on c.

“n maxDrift(a, b)”, where n is a natural number, means that the absolute difference between the number of
instants of c coincident with instants of a and the number of instants of c coincident with instants of b,
before the kth instant of c is bounded by n for all k. In other words: clocks a and b are not diverging.

Clock relations based on the precedence relation :

Periodicity isPeriodicOn is a general relation stating kinds of periodic dependencies.

“b isPeriodicOn a”, where a and b are discrete time clocks. This relation roughly says that there exists
a natural number p such that there is one instant of b every p consecutive instants of a. A more precise
formulation is given below, with the extended form of this relation.

“b isPeriodicOn a period p jitter jmin , jmax”, where p, jmin, and jmax are natural numbers. This
relation means:

(∃d ∈ N) (∀k ∈ N) (a[d + p ∗ k − jmin] ≺ b[k] � a[d + p ∗ k + jmax])

“b alternatesWith a” is a particular instance of isPeriodicOn where p = 1, jmin = 1, jmax = 0, so
that instants of b and a alternate.

“b isSporadicOn a”, where a and b are discrete clocks, means that there exists a natural number n such that
there are at least n consecutive instants of a between two successive instants of b.

Weak Subclocking A variant of the subclocking relation replaces coincidence by precedence. b is a weak subclock
of a if for each instant i of b there exists a instant h(i) of a, such that i � h(i) and ◦h(i) ≺ i, where ◦j denotes
the immediate predecessor of instant j in a discrete time clock.



Other clock relations :

“c = a sampleTo b”, where a, b, and c are discrete time clocks. This relation states that c is a subclock of b
such that for each instant b[k] of b coincident with an instant of c, there exists an instant a[l] of a such that
b[k − 1] ≺ a[l] � b[k].

“a = when e”, where e is a reference to an event. This is a way to create a clock from an event: there is an instant
of the clock for each occurrence of the event.

Clock non functional property relations :
A clock non functional property (clock NFP) relation is a constraint that applies to chronometric clocks, and spec-
ifies time related non functional properties for a chronometric clock or a group of chronometric clocks. These
relations involve time measurements performed on a reference clock (idealClk, by default). We only describe the
relations used in Section 4.

“a hasStability r”, where a is a chronometric clock and r is a real number. This relation states that the stability
of clock a is r. Stability is the ability of a clock to report consistent intervals of time; it is measured by deriva-
tives of the clock rate against environmental factors. By default, the stability is against time (max{∂f/∂t},
where f is the clock rate).

“a , b haveOffset r”, where a and b are chronometric clocks and r is a real number. The offset is the difference
between two chronometric clocks at a particular instant in time. This relation states that the offset between
the two clocks a and b is r. By default, r is measured on idealClk.

Two functional relations : a projection (filtering) operator can be applied to a clock to define new (sub) clocks. There
exist two versions (strong and weak) of this operation. The left-hand side argument is a clock, the right-hand side
argument is a binary word, often infinite and periodic.

(strong) filtering “a � w”, where a is a discrete time clock, and w a binary word. This relation specifies a discrete
clock c such that, c is a subclock of a, and ∀k ∈ N

�, c[k] ≡ a[w ↑ k].

weak filtering “a � w”, where a is a discrete time clock, and w a binary word. This relation specifies a set of
discrete clocks such that, these clocks are weak subclocks of a, and for each subclock c the following property
holds: ∀k ∈ N

�, a[(w ↑ k) − 1] ≺ c[k] � a[w ↑ k].

w ↑ k is the index of the k th 1 in w. This operation can be recursively defined by: (1.w) ↑ k = 1 + w ↑ (k − 1),
(0.w) ↑ k = 1 + w ↑ k, and the trivial cases are w ↑ 0 = 0 and ε ↑ k = 0, where ε is the neutral element for
the binary word concatenation.



Contents

1 Introduction 2

2 Existing time and allocation models 3
2.1 Time modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 SPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Non OMG profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Allocation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 UML deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 SysML allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 AADL binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Timed allocation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.1 Architecture and Analysis Description Language (AADL) . . . . . . . . . . . . . . . . . . . . . 4

3 MARTE 5
3.1 Marte time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Concept of time structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Time-related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.4 The Marte TimeModeling profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.5 Clock constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.6 TimedEvent and TimedProcessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Marte allocation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 The stereotype Allocate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 The stereotype Allocated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Illustrative Examples 10
4.1 Chronometric clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 AADL communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2.1 Application, execution platform and allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Introducing clock constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.3 Immediate communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.4 Delayed communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.5 Getting a schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.6 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Conclusion 19

A Clock Constraint Specifications 21




