
Synchronous Programming

Properties within a Reaction

Charles André* — Robert de Simone**

* Laboratoire I3S, UMR 6070, Université de Nice/CNRS
BP 121
06903 Sophia Antipolis Cedex, France

{andre@unice.fr}

** INRIA Sophia Antipolis
BP 93
06902 Sophia Antipolis Cedex, France

{rs@sophia.inria.fr}

ABSTRACT.Complex reactive behaviours can be expressed by synchronous imperative formalisms
like ESTERELor SYNCCHARTS. To make the best of these models and to avoid the pitfall of
“causality cycles”, the user has to understand the underlying semantics, known as the “con-
structive semantics”. The first part of this paper is an informal introduction to this semantics.
In the second part, this semantics is used to analyze “intra-instant properties” (partial order-
ing of simultaneous action executions). It appears that the compiler, which implements the
constructive semantics, can carry out such analyses. Our method is illustrated by a zFIFO
(0 fall-through time FIFO queue), which is a system envolving numerous simultaneous actions
whose execution order may be critical.

RÉSUMÉ. Les formalismes impératifs synchrones (ESTERELet SYNCCHARTS) permettent d’ex-
primer des comportements réactifs complexes. La connaissance de la sémantique de ces mo-
dèles est indispensable si on veut exploiter pleinement leur richesse expressive et éviter les
“cycles de causalité”. La première partie de ce papier rappelle les grandes lignes de la sé-
mantique constructive. Cette sémantique est utilisée dans la seconde partie pour analyser des
propriétés dans l’instant portant sur les ordres partiels d’exécutions d’actions simultanées.
Il est montré comment les fonctionnalités du compilateur, issues de la sémantique construc-
tive, permettent une telle analyse. La technique est illustrée par un exemple de zFIFO(0 fall-
through time FIFO queue)un système qui présente de nombreuses actions simultanées dont
l’ordonnancement est critique.

KEYWORDS: Reactive systems, synchrony,ESTEREL, SYNCCHARTS, constructive semantics,
model checking.

MOTS-CLÉS : systèmes réactifs, synchrone,ESTEREL, SYNCCHARTS, sémantique constructive,
vérification de modèle.

APII - JESA – 36/2002. Reactive Systems, pages 891 to 903

892 APII - JESA – 36/2002. Reactive Systems

1. Introduction

TheSynchronous Paradigm, introduced in the mid 80’s, has been succesfully ap-
plied to control-dominated systems, in which safety and predictability are essential.
The synchronous approach relies on the notion ofinstant. Time is considered as dis-
crete. The system performs a series ofreactions. With each reaction is associated one
instant. Given a sequence of input events (stimuli), a synchronous program generates
a fully deterministic sequence (total order) of reactions. An imperative synchronous
language, likeESTEREL(Boussinot andal., 1991), introduces another kind of order-
ing: a causal orderwithin one instant: elementary actions that compose a reaction are
partially ordered. Usually, a reaction is considered as atomic, so that instantaneous
broadcasting of signals, and even instantaneous protocolar dialogs are meaningful.
This is a key point that explains both the expressiveness and the simplicity of the
language.

The verification of (logical) temporal properties of a synchronous program has
become a classical and useful process. For instance, the symbolic model-checker
XEVE (Bouali, 1998), available in theESTERELprogramming environment, allows the
designer to formally establish safety properties of his/her program. These properties
can be either combinatorial (e.g.,the mutual exclusion of two actions, at each instant),
or sequential (i.e.,properties envolving the instant ordering). In both cases, reactions
are taken as atomic.

Analyzing the behaviourwithin a reaction (intra-instant properties) is a much less
explored domain, up to now almost restricted to the designers of synchronous lan-
guage compilers. One of their major concern is about the existence ofcausality cycles.
This is an issue inherent to the synchronous approach: several actions can be simulta-
neously (i.e.,at the same instant) performed, but all orderings are not necessarily ac-
ceptable. Some orderings must be rejected because they lead to inconsistent behaviour
(e.g.,a signal that should be both present and absent at one instant). Other orderings
are troubling for they violate the causality principle: the effect preceds its cause in the
reaction. To cope with these problems, G. Berry has introduced theconstructive se-
manticsfor theESTERELlanguage (Berry, 1996). Our study on intra-instant properties
relies on Berry’s results.

Why to study the ordering of a set of actions that are perceived simultaneous? The
interest of this study is obvious when actions assign values to variables, call functions
or procedures (all 0-duration actions inESTEREL). Reading and writing a memory cell
during a reaction is typical: according to the ordering the result is different. With in
mind a concern for producing safe code, the designer should be given a mean to check
if the ordering chosen by the compiler respects the semantics of his/her application1.

1. This is about the semantics of the appication, not the semantics of the language. We assume
that the compiler generates code in accordance with the constructive semantics.

Intra-Instant Properties 893

To prove the intra-instant properties, we adopt a classical approach by refutation:
The program is augmented with explicit causalities that may conflict with the causality
structure of the program.

The paper is organized as follows:

– In the first section, a small example illustrates the interests and the drawbacks of
mixing parallel evolutions with pre-emptions and immediate reactions.

– The second section shows how the constructive semantics gives unambiguous
interpretation to complex reactive behaviour. The constructive semantics itself is be-
yond the scope of this paper. Thecausality refutationis then explained and applied in
the next section.

– The third part presents a case study taking the best of the synchronous approach
without falling in the trap of causality cycle. The chosen example is a z-FIFO (zero
fall-through time FIFO queue): it is a queue applying a first-in, first-out policy, with
possible simultaneous put and get actions, even on an empty or a full queue.

2. Complex reactive behaviours

Idle

Normal Degraded# Failure

Fixed

On Off

Figure 1. A plain controller

The syncChart displayed in figure 1 represents high-level control for a system with
modes Idle, Normal, and Degraded. The Degradedmode is instantly reached upon
occurrence of signal Failure. SYNCCHARTS (André, 1996) are a graphical descrip-
tion model of synchronous systems close to Harel’s Statecharts (Harel and al., 1985),
except with a richer expressive power concerning prioritary preemptions, and a full
synchronous semantics. In particular SYNCCHARTS make a clear syntactic distinc-
tion between instantaneous presence testing (where a # symbol prefixes the triggering
event), and next-instant state transitions (without this # symbol on labels). It is here
important to note that several instantaneous transitions can be fired in sequel in the
same reaction. A looping such behaviour has to be forbidden.

We should further emphasize here the expressive power of the model (figure 1),
including hierarchic macrostates (Normal, Degraded), instantaneous preemption (for

894 APII - JESA – 36/2002. Reactive Systems

instance from mode Normal to Degraded). Instantaneous transitions (with # event
triggers) eliminate the need for transient behaviours which might prejudice the clarity
of modelisation. Something similar exists in the semantics of Grafcet with the search-
for-stability interpretation : intermediate steps are not externally visible then. One
last advantage is that translations can generally be modular, in the sense that sub-state
refinement due not contradict the translation part obtained from the unrefined system.

compilers currently produce semantically equivalent ESTEREL programs. Fig-
ure 2 displays the skeleton of such a program, showing in particular how local signals
(goto1, goto2, goto3) are introduced. The % sign begins a one-line comment. This
program contains altogether

– an iterative construct (loop . . .end loop),

– concurrent instructions (k),

– signal preemptions (await, abort . . .when)

– immediate signal testing (immediate Failure).

This code is automatically produced, and so perhaps not easily readable. Con-
sider the system being in its Idle mode. Control then resides at line 6 on the await
instruction. All other branches of the parallel construct are idling. If then signals
On and Failure occur simultaneously, signal goto2 (ligne 6) gets emitted, then the
parallel block terminates, and control reaches loop termination (line 28). The loop is
thus instantly restarted (ligne 4), and so are the 4 concurrent branches. The present
instruction at line 9 passes control to the following abort (line 10), which gets in-
stantly preempted (line 14), triggering emission of signal goto3. The associated par-
allel branch then reaches completion (through lines 15 and 16). Signal goto3 makes
the present instruction at line 18 handle control to the Degraded mode (lines 19
and 20). The pause statement at line 27 stops the reaction of the fourth parallel
branch. Then signal goto1 cannot be emitted any longer in the current reaction, so
the present statement at line 5 handles control to the implicit else part, terminating
line 7 present statement, and thus the first parallel branch.

The previous description shows how complex instantaneous reactive behaviours
can be, involving several (finite) subprogram executions, and inducing a partial order
on simultaneously performed data operations. This expressive richness inside instant
reactions avoids transient states and some inherent difficulties of asynchronous con-
currency (nondeterminism most notably), by encapsulating reaction protocols inside
given instants. But it may turn to be too powerful, when simultaneous causality rela-
tions can build up to a contradiction. Berry’s constructive semantics allows to build
an effective static scheduling between operations for each reaction, or prove that none
is feasible (programs are then considered causally incorrect).

In the next section we shall only sketch the basic principles of this semantics,
focusing on how it provides a partial ordering of data actions.

Intra-Instant Properties 895

1 ... % declarative part

2 signal goto1, goto2, goto3 in

3 emit goto1; %initial state

4 loop % forever

5 present goto1 then

6 await On; emit goto2

7 end present

8 ||

9 present goto2 then

10 abort

11 run Normal % Normal mode

12 when

13 case Off do emit goto1

14 case immediate Failure do emit goto3

15 end abort

16 end present

17 ||

18 present goto3 then

19 abort

20 run Degraded % Degraded mode

21 when

22 case Off do emit goto1

23 case Fixed do emit goto2

24 end abort

25 end present

26 ||

27 pause

28 end loop

29 end signal

Figure 2. Esterel program skeleton

3. The constructive approach

3.1. General notions

The operational semantics of the language must provide a way to determine unique
output event and next-state configuration of a program from any given current state and
input event provided by the environment. It must also provide a structural interpreta-
tion of programming constructs (in accordance with their intuitive meaning), and in a
causal way: no “ look-aheads” or “oracle guesses” should be allowed. While the reg-
ular control flow provides an obvious precedence ordering between instructions put
in sequence, signal communication between parallel components may require more
sophisticated scheduling needs, and even at times build up causality contraditions.

Consider the following program:

896 APII - JESA – 36/2002. Reactive Systems

1 signal S in

2 present S then emit Yes else emit No end present;

3 emit S

4 end signal

It allows only one logically consistent solution: Yes present, No absent, and S

present. And yet, this solution is disturbing because the test of the presence of S
(line 2) uses the fact that S is emitted (line 3). In other words, the effect precedes
its cause, and the behaviour is not constructed in accordance with the intuitive se-
quencing semantics of the semicolon. ESTEREL’s compilers reject this program as a
non-constructive one.

In constructive computations, signals other than input signals, are declared present
when execution provokes an emission, but are declared absent whenever the progress
of control flow provably discards all further emissions from this point on because of
choices made in the current reaction so far (and none were performed in that same
reaction). This last feature is very important to keep in mind, as it departs from an ex-
ecution scheme tighty ressembling classical simulation (of active parts of programs).
Syntactical acyclic programs form a subset in which more regular, “positive” simula-
tion is feasible.

In case of valued signals the rule becomes that the value can only be used (and
thus considered stable) when no further emissions could be performed in the current
reaction (again according to control flow choices already established). If emissions
on that signal were performed in the reaction then their compound value is used, else
if the signal is currently absent then the value inherited from the previous instant is
preserved.

3.2. Circuit translation and formal semantics

The semantics of the language is most simply explained on schematic gate logics
circuit description, obtained by translation of Esterel control flow and signal propaga-
tion into explicit Boolean variables in a system of Boolean equations. In this represen-
tation there is a symmetry between presence (Boolean value 1) and absence (Boolean
value 0) of activity. For instance, a signal status is represented by a Boolean variable
which is the disjunction of (variables representing) all possible emissions on that sig-
nal. This disjunction becomes true whenever a conjunct is, but will become false only
if all emission variables are.

Formaly, we let I (resp., O) represent the set of input (resp. output) signals of
a given ESTEREL program. We call input event a subset of I, representing signals
that are considered present, others being absent. We define output events similarly.
Also we let L represent the set of local signals (we shall assume for simplicity that
all local signal declarations provide distinct names). We shall often confuse an input
event I with its characteristic function (or Boolean vector) I : I ! f0; 1g, defined
by: 8s 2 I; I(s) = 1 iff s 2 I . We define similarly Boolean vectors O, L (local

Intra-Instant Properties 897

signals), and X (Boolean vectors of currently active pause control points). A circuit
can be seen as a system of Boolean equations:

O = F (X; I;O; L)

L = G(X; I;O; L)

X 0 = H(X; I;O; L)

The system is not always monotonic in the classical Boolean domain if there are loops
in the dependency relation between variables (a variable depends on another if it uses
it in its definition). But it is monotonic in the 3-valued domain (? < 0; ? � 1)
with adequate interpretation of Boolean connectives, and thus admits a least fixed-
point solution. In essence this solution allows simplification of the form (1 _ exp)!
1 ; (0 ^ exp) ! 0, but not (exp _ :exp) ! 1, which would undo a dependency on
a variable not yet fully defined. If this solution is such that completely defined input
events (no ? values for inputs) provide completely defined outputs and next states
when applied inside the reachable state space, then the system is called constructively
causal. Further details about this semantics are beyond the scope of this paper. The
reader may refer to the paper of G. Berry on The Constructive Semantics of Pure
Esterel (Berry, 1996).

In what follows, we informally present an example of fact propagation. We focus
on the present ...then ...else ...end construct, which will be used in the
analysis of intra-instant properties (Section 3.3). Consider the instruction:

present S then statement1 else statement2 end present

1) If S is (certainly) present then statement1must be executed, and statement2
cannot be executed at the current instant.

2) If S is (certainly) absent then statement2must be executed, and statement1

cannot be executed at the current instant.

3) If the presence status of S is not known yet, nothing can be said about
statement1 and statement2. The compiler has to explore other parts of the pro-
gram, hoping to become certain of either the absence, or the presence of S. If it fails to
get this information, the program is said to be non-constructive, and therefore rejected.

3.3. Causality refutation

Let a and b be two signals in a constructive program P . Let @ be a dependency
relation between signals, within an instant. Let P 0 be an instrumented version of P ,
such that a @ b is imposed in P 0. This is done by guarding the emissions of b. The
guard is passing when the presence status of a is known prior to the emission of b. A
practical solution is to replace “emit b” by “present a then emit b else emit

b end present” in P .

898 APII - JESA – 36/2002. Reactive Systems

If P 0 is not constructive (whereas P is constructive), then there exists at least one
reaction involving a and b in a dependency relation conflicting with a @ b.

If P 0 is constructive (like P), then in P , for all reactions involving the modified
code, a and b are such that

– either a and b are not simultaneously present in the reaction,

– or a and b are simultaneously present in the reaction and a @ b,

– or a and b are simultaneously present in the reaction and independent
(written a ^ b).

This refutation technique is applied in the following example (Section 4.3.2).

4. Illustrating example: the zFIFO

4.1. Informal description

A zero-fall-through time FIFO queue (zFIFO for short) is a memory cell array,
with directed shift ability (values are “pushed” from the entrance of the FIFO to the
exit at the other side of the array). This is a fairly standard FIFO description. What
is special here is that data values flow instantly to the empty cell closest to the exit,
and even straight across the FIFO to the exit in case it is all empty (hence the name 0
fall-through time).

Data input (Put) and data withdraw (Get) operations can be simultaneous, which
leads to special “borderline” cases when the FIFO is full or empty. These cases must
be accepted, and this poses a strand on data operations ordering.

4.2. Formal specification

We consider zFIFOs accepting data objects of a given type T . We note fn;k for a
zFIFO of size n with k occupied cells; fn;0 is empty, fn;n is full. Cells are numbered
from the exit to the entry point of the zFIFO, so that, in fn;k with k > 0 cells 0 to
k � 1 are occupied. We note fn;k(j) the content of cell j; j � k.

We introduce two operations on zFIFO :

– append : zFIFO� T ! zFIFO is such that, if k < n, then append(fn;k ; v) is
f 0n;k+1 with f 0n;k+1(k) = v and 8j : 0::k � 1; f 0n;k+1(j) = fn;k(j).

– shift : zFIFO! zFIFO is such that, if k > 0 then shift(fn;k) is f0n;k�1
with 8j : 0::k � 2; f 0n;k�1(j) = fn;k(j + 1).

We now consider a zFIFO as a reactive system with two input event signals Put:T
and Get, triggering data operations with the same name, and two corresponding output
signals Taken and Got:T notifying back success of operations.

Intra-Instant Properties 899

The following SOS rewrite rules describe the zFIFO semantic behaviour. Input
signals appear on top of the transition arrows, and output signals below.

0 < k � n =)fn;k
fGot(fn;k(0)); Takeng
����������������!

fPut(v); Getg
append(shift(fn;k); v) (1)

fn;0
fGot(v); Takeng
������������!
fPut(v); Getg

fn;0 (2)

0 � k < n =)fn;k
fTakeng
������!
fPut(v)g

append(fn;k; v) (3)

fn;n
;

������!
fPut(v)g

fn;n (4)

0 < k � n =)fn;k
fGot(fn;k(0))g
����������!

fGetg
shift(fn;k) (5)

fn;0
;

����!
fGetg

fn;0 (6)

Our solution has been designed as a collection of properly connected memory cells
(Cells) whose behaviour is prescribed by syncCharts and ESTEREL modules. Details
about the implementation are available in an extended version of this paper (André
and al., 2002).

4.3. Formal verification

The correctness of our specification (with respect to the semantics rules) was es-
tablished in two steps :

1) Validation of behaviours across instants,

2) Validation of action ordering inside the instants.

For the first phase we applied the now casual technique of observers (Halbwachs,
1993), which are reactive programs embodying safety properties, set in parallel with
the observed programs. The global system is checked using classical symbolic model-
checking. This step is a preliminary to the second stage of verification.

The second phase needs to check that in each single reaction, the order between
concurrent actions performing data read and write respects the FIFO discipline (first-
in, first-out). We shall resort to constructive semantics here to prove our properties,
again on a system composed with an observer.

900 APII - JESA – 36/2002. Reactive Systems

During a reaction, a Cell can be read (signal R) by a Load; written (signal W) par
un Store; read and then written (signal RbW, Read before Written); or even written
and then read (signal WbR, Written before Read). Signals R, W, RbW, WbR are added to
the program to make observations easier.

4.3.1. Classical properties

Thanks to XEVE the symbolic model-checker part of the ESTEREL platform, we
have established several properties. The first two properties are about Cells’ be-
haviour:

P1: For all Cells and all instants, R, W, RbW et WbR are exclusive.

P2: For all Cells, execution traces on {R,W,RbW,WbR} are

- prefixes of (WbR*;W;RbW*;R)* , for the Cell with index 0;

- prefixes of (W;RbW*;R)*, for Cells with index j > 0.

These properties guarantee that there is no loss of information by overwriting.
Moreover, P2 ensures that each read value has been written beforehand. Note that
“before” refers either to an earlier instant, or to a previous microstep within the in-
stant. The latter is only possible through code instrumentation (introduction of the
new signals RbW, WbR).

The next 5 properties concern the behaviour of a zFIFO fn;k:

P3: For all Cells with index j, 0 < j < n; Occupied[j] =) Occupied[j � 1].

P4: For all Cells with index j, 0 � j < l < k; Occupied[l] and Get =) RbW[j].

P5: An item can be withdrawn from the zFIFO if and only if Get is present, and
either the file is not empty, or the file is empty but Put is present.

P6: An item can be put into the zFIFO if and only if Put is present, and either the
file is not full, or the file is full but Get is present.

P7: not Occupied[0] and Put(v) and Get =) WbR[0]

Property P3 is a structural property stating that the information is “packed” in low
indices Cells. Property P4 expresses information shifting when a Get is performed.
Properties P5 and P6 are typically the expected behaviour for Get and Put operations.
Finally, property P7 shows that specification 2 is satisfied.

The other specifications (1,3,5), which refer to functions append and shift, can
not be directly checked by XEVE: XEVE deals with Booleans but not with arbitrary
types like T . Checking these properties is the duty of the second phase.

4.3.2. Properties established by causal analysis

Proving that adding information to a zFIFO by a Put operation is always done at
the “ tail” of the zFIFO is relatively easy. This is a safety property that can be expressed
with auxiliary signals and checked by XEVE.

Intra-Instant Properties 901

Only the shift operation is a really problematic. Let rj (wj respectively) be the
reading (the writing respectively) of Cell j. Let � be the (partial) order relation over
actions within an instant.

Thanks to properties given in section 4.3.1 and especially property P4, it follows
that: “For each occupied Cell with index j, the last one excepted, r j � wj when
executing a Get operation” .

Now, consider the shift operation. It is not clear whether the semantics of this
operation is respected by the concurrent executions of Cells or not. We have to prove
that when executing a Get operation, for all occupied Cells, the following property
holds: 8j; 1 � j < k; rj � wj�1

That is the information written in Cell j�1 has been read in Cell j beforehand (during
the same instant).

In order to establish this property we first note that action r j (wj respectively) can
be executed only by an instruction belonging to the body of the module associated
with Cell j. This strong “ localization” of actions owes much to our approach based
on�capsule�.

1 trap occupied in % Cell[j]

2 loop

3 await Load;

4 % our test insertion point

5 emit Read(vj); % rj

6 present Store then vj := ?Store % wj

7 else exit occupied end present

8 end loop

9 end trap

Figure 3. Excerpt from the module of the Dual-Access Elementary Memory (DAEM)

Figure 3 shows an excerpt from the code of the module DAEM, focusing on the be-
haviour of an occupied Cell. The program that contains this code successfully passes
the compilation: it is constructive. Let call P this program.

Now, the comments line 4 is substituted by the ESTEREL’s instruction:
present Check then nothing else nothing end present;

Check is the identifier of a dummy signal that will be replaced by an actual signal
of the application when instantiating the module. The sequence operator (;) between
instructions (4) and (5) imposes a causality relation: “Check � r j” .

We then carry out two compilations associating Check with rj+1 in the first, and
with rj�1 in the second. The former is constructive, the latter is not.

From the first compilation it follows that in P , for each reaction emitting r j ,

– either rj+1 and rj are not simultaneously present,

902 APII - JESA – 36/2002. Reactive Systems

– or rj+1 and rj are simultaneously present, and rj+1 � rj ,

– or rj+1 and rj are simultaneously present, and rj+1 ^ rj .

From the second test we conclude that P contains a relation which is conflicting
with rj�1 � rj . The conjunction of the two conclusions, up to a change in indices,
shows that in P , when rj+1 and rj are simultaneously present, rj+1 � rj holds. This
is precisely the case when executing the shift operation.

The relation rj+1 � rj holds for 0 � j < k � 1, with k the number of occupied
Cells. Moreover, we already know that rj � wj for an occupied Cell in the presence
of the Get signal. We infer that rj+1 � wj pour 0 � j < k � 1, or with a change
of variable rl � wl�1 pour 1 � l < k. This is the ordering expected to guarantee a
correct shift.

Note that the compiler has imposed rj+1 � rj , while rj+1 � wj would have
been sufficient. But anyway, this solution is acceptable. On complex programs, it
is difficult for the programmer to guess (and check) the effective ordering of actions
during a reaction. On the other hand, the ESTEREL’s compiler has to do this job, and
it does it very well. Thus, our technique to check intra-instant properties has been to
use the compiler as a constraint checker.

5. Conclusion

We highlighted the expressive strongpoints of synchronous reactive modeling on
the zFIFO case study. We also showed how expressive power then requires careful
analysis, especially of correct ordering of data operations. We showed how to conduct
such analysis using constructive semantics, and proper observers to record contradic-
tion when good order fails.

Concerning the design specification, combination of graphical SYNCCHARTS and
textual ESTEREL proved especially valuable. Hierarchical AND/OR states, paral-
lelism and preemption allowed to do away with transient, unstable behaviours in a
deterministic manner. The formal constructive semantics of both formalisms allows
clear specification, even on complex reactions. The industrial plateform solution Es-
terel Studio 2 combines these approaches.

The ultimate goal behind formal (constructive) semantics of synchronous reactive
languages with all its intricacies was to allow for safe, unambiguous programming of
embedded systems. We performed successfully a number of verifications of classical
safety requirements on our zFIFO. Then we turned to a more novel use of observers
and constructive semantics for the verification of proper partial ordering of actions
inside an instant. This type of verification was in fact mandatory to establish the basic
property of the FIFO (first-in, first-out) discipline. It is important here to note that
classical observer verification between instants could not establish such properties. To

2. http://www.esterel-technologies.com

Intra-Instant Properties 903

the best of our knowledge this is the first attempt at proving correct ordering of ac-
tions inside a reaction by parallel observers that will introduce a constructive causality
contradiction if and only if the property can be refuted.

The current work opens further research directions:

– Other properties inside instants, apart from action ordering, could be investi-
gated in the context of safety-critical systems;

– Methodological aspects, as examplified by the design style of the model and its
properties which was largely inpired by OO-modeling concepts. The application was
designed as a collection of cooperating capsules. Nevertheless, we departed from such
approaches (as ROOM for instance) by insisting on synchronous semantics, including
instantaneous broadcast of signals and immediate reactive answers. An ambitious
goal behind the current example is to provide for a fully deployed methodological
framework for OO synchronous design;

– Verification methods, which can be developped by using the compiler itself. This
is not entirely surprising as the compiler often needs powerful analysis, of the same
nature as model-checking, to perform constructive causality of programs. Symbolic
computation of the reachable state space is a simple example of this. Extending this
approach to more properties is a current goal.

6. References

André C., “Representation and analysis of reactive behaviors: A synchronous approach” , In
Computational Engineering in Systems Applications (CESA), pages 19–29, Lille (F), July
1996. IEEE-SMC.

André C. and De Simone R., “Synchronous Programming: Properties within a Reaction
(extended version)” , I3S Research Report 2002-5, Sophia Antipolis (F), March 2002.

Boussinot F. and De Simone R., “The ESTEREL language” , Proceeding of the IEEE,
79(9):1293–1304, September 1991.

Berry G., The Constructive Semantics of pure Esterel, not yet published, available on the web,
www.inria.fr/equipes/meije/esterel, Sophia Antipolis (F), 1996.

Bouali A., XEVE: An esterel verification environment. Int’ l Conf. on Computer-Aided Ver-
ification (CAV’98), LNCS, vol. 1427, Vancouver (BC, Canada), 1998, also available as a
technical report INRIA RT-214, 1997.

Halbwachs N., Synchronous Programming of Reactive Systems, Kluwer Academic Publishers,
Amsterdam, 1993.

Harel D. and Pnueli A., “On the development of reactive systems in logic and models of
concurrent systems” , NATO ASI Series, K.R Apt Ed., Springer-Verlag, 13:477–498, 1985.

