
Scenario and Property Checking of Real-Time Systems
Using a Synchronous Approach

C. André, M-A. Peraldi-Frati, J-P. Rigault
Laboratoire Informatique Signaux et Systèmes (I3S)

Universit́e de Nice Sophia Antipolis
CNRS UMR 6070

06903 Sophia Antipolis, France

E-mail:fandre, map, jprg@i3s.unice.fr

Abstract

This paper addresses the design of control-dominated
systems using a synchronous approach and theUML .
The work aims at formally checking the design: scenar-
ios/controller consistency, and safety properties. For this,
a strengthening ofUML behavioral models is necessary:
SyncCharts are used instead of Statecharts, and Sequence
Diagrams are modified by adding synchronously sound con-
structs akin to Message Sequence Charts. The formal foun-
dations of the approach and the associated tools are briefly
presented.

1. Introduction

We are interested in the design of control-dominated sys-
tems as used in real-time applications. Our approach relies
on synchronous programming [6] and object-oriented mod-
eling (UML).

In theUML, Sequence Diagrams and Statecharts [10] are
generally used for expressing dynamic behavior of objects
and classes.Sequence Diagramsexpress scenarios, which
are rather informal and constitute partial examples of sys-
tem usage. Moreover they often “leave required proper-
ties about the intended system implicit” [13]. Statecharts
are a state-based representation of class and object behav-
iors. Although they rely on formal semantics, the evaluation
of their semantics is complex and may induce undesirable
non-deterministic input/output behaviors. Note that the cur-
rentUML definition does not provide any form of semantic
relationship between these two types of diagrams.

Introduced by the telecom community,Message Se-
quence Charts(MSC) [12] are a popular substitute for Se-
quence Diagrams. Their introduction in theUML has even

been considered. They offer high level constructs like mod-
ularity, concurrency, iteration,. . . There are many reports
in the literature about analysis ofMSC (e.g.,[1]) and asso-
ciated tools (e.g.,uBET from Lucent). However, there ex-
ist several semantic interpretations ofMSC and each of the
above mentioned works relies on a particular one. Choos-
ing “a simple, yet expressive formal framework”, Kr üger et
al [11] proposed an automated translation fromMCS to Stat-
echarts. This is a formal attempt to bridge the gap between
the scenario-based and the state-based models.

The work presented in this paper adopts a similar type
of translation between scenarios and state-based models. It
differs by choosing paragdims, hypotheses, and techniques
that make it possible to check formal properties of the de-
sign.

Our underlying paradigm is thesynchronous program-
ming paradigm[6] which is based on a clear and determin-
istic semantics. The word “synchronous” may be mislead-
ing. It is in no way related to such concepts as “synchronous
exception” or “synchronous rendez-vous”. . . . It refers to
strongly controlled executions of software in a way similar
to synchronous circuits. The synchronous graphical model
SyncCharts1 [3] is substituted for theUML Statecharts in or-
der to express the state model. Concerning the expression of
scenarios, we introduce synchronous-oriented enrichments
to the Sequence Diagram model. These extensions, relying
on a formal synchronous semantics, are suitable to express
typical control situations and are liable to automated pro-
cessing. Thus, model checkers likeXEVE [7] can be used to
establish properties such as whether a scenario is executable
or whether it is never possible.

Substituting SyncCharts for Statecharts may seem only

1“SyncCharts” is the name of the model. A syncChart is an instance of
this model.

a matter of personal convenience. Already published pa-
pers (e.g.,[2]) justify this choice. In the present paper we
replace sequence diagrams withSynchronous Interface Be-
havior (SIB), which is a synchronous variant ofMSC. Such
a proposal is surprising becauseMSCs address distributed
systems which are basically asynchronous. Indeed, we keep
theMSC structuring power but we change its semantics for
a synchronous one that is more suitable for tightly coupled
agents. This is one of the objectives of this paper to point
out the benefit of this approach in the field of modeling
and validation of control-dominated systems subject to real-
time constraints.

The paper is organized as follows. In section 2, we
briefly describe the Synchronous approach. Section 3 in-
troduces theSynchronous Interface Behaviormodel, its
(graphical) syntax, and gives the flavor of its mathematical
semantics. The use ofSIB in scenario and property check-
ing constitutes the next section. Realistic examples ofSIB

modeling are presented in section 5. As a matter of conclu-
sion, we sum up the main features of the new model as well
as our research in progress.

2. The Synchronous Approach

Synchronous languages have been introduced to address
the issue of reactive programming. The synchronous ap-
proach adopts anabstractand ideal viewof a system. In-
teractions take place at discrete instants.Simultaneityof
occurrences is an unambiguous concept. The synchronous
paradigm relies on two main hypotheses: Communications
are supported by signals which areinstantaneously broad-
cast; Reactions are generatedwithout a delayand inper-
fect synchronywith the stimuli that triggered them. A note-
worthy specificity of synchronous programming is the use
of a multi-form logical time. Any event, and especially
repetitive ones, may be considered as defining a time unit.
Thanks to these strong hypotheses, synchronous languages
have been given a clear and strict mathematical semantics
so that the correctness of the design can be formally estab-
lished.

Esterel is an imperative textual synchronous language
and SyncCharts is a graphical form of Esterel. SyncCharts
are clearly inspired by Statecharts but differ in several as-
pects. The SyncCharts semantics is fully synchronous and
perfectly fits Esterel’s semantics. The semantics of Sync-
Charts, relying on the synchronous hypotheses, is simpler
than the Statecharts one (micro-step semantics). Moreover,
SyncCharts offer a richer expression of pre-emption. Sync-
Charts are now fully integrated in the Esterel commercial
platform2. As a consequence, SyncCharts have direct ac-
cess to the whole programming platform developed for Es-
terel: compilers, simulators (XES), model-checkers (XEVE),

2“Esterel Studio” marketed by Simulog.

and circuit optimizers that rely onSIS andTIGeR (an effi-
cientBDD-based tool).

3. The Synchronous Interface Behavior Model

Usually, Sequence Diagrams show the sequence of mes-
sages between objects. We have enriched the semantics of
sequence at the object interface (corresponding to the events
on the vertical line associated with an object). The model
we propose, calledSynchronous Interface Behavior(SIB), is
a trade-off between complexity, expressiveness, and rigor.
Basically, a sib3 represents asequence of expected event
occurrences(signals in terms of synchronous modeling) as
seen at a given controller-object interface. In what follows,
signals and events are synonyms.

The SIB model has a textual and a graphical syntax. Both
syntaxes can even be mixed, which is very useful in some
applications. In this paper, we focus on the graphical nota-
tion.

Since a sib describes a partial observation of an object
behavior, a set of “observed events” must be given. To cap-
ture time-related constraints or properties, some events are
chosen as “time-bases” and their occurrences denote time
passing. An evolution either can match a sib, or can fail
because an observed event has occurred when not expected.
In the former case the bottom of the sib is reached, the sib
is said to be “accepted”; in the latter case, the sib is said to
be “not applicable”.

3.1. Basic Constructs

The flow of control is top-down in a sib. A vertical red
line (black on the pictures) represents this flow.Expected
eventsare denoted by solid red dots on this line. Fig. 1
shows that a signal can be received (input) or sent (output).
The distance between two consecutive expects is meaning-
less, only the ordering is relevant, in accordance with the
logical time used by synchronous models.

s

Expect Input

s

Expect output

Figure 1. Expect.

SIB is a block-stuctured model. Expects are the bricks.
The main construct is the sequence. In the figures below,
sequences are drawn as green (grey on the pictures) vertical
rectangles. A sequence is an ordered set of actions.expect

3SIB is the model; a sib is an instance of this model.

is the simplest action. Any block described below is also an
action.

3.2. Temporal behaviors

In real-time applications, event occurrences are tempo-
rally constrained. Binding logical time to real time can
be done by relevant events (e.g.,a 1 kHz physical clock
that generates signal “ms”). Multi-form (discrete) timing
constraints are expressed by two special constructs:within
(Fig. 2a) andbefore (Fig. 2b).

Basically, to beaccepted, a sequence of actions must
be completely matched within a temporal window for the
within construct, and before a deadline for thebefore con-
struct. Under the hypotheses of a synchronous approach
which is fully deterministic, a strict application of these
constraints would be too restrictive for high-level specifica-
tions. So, we have weakened the rules. First, we introduce
a slack in the deadline occurrence: the deadline can occur
at random within a given interval. Second, we permit de-
parture from the rule of full matching of the sequence of
actions. The trailing part of the sequence can be optional,
that is if the deadline occurs while in the optional part, the
sib is still considered to match, so far. Graphically, the op-
tional part of the sequence is denoted by a dashed control
flow line. Fig.2 shows the graphical notation for the within
and before constructs. Below are examples with their (in-
formal) semantics.

� “do p within 1..4 ms” says that the sequence of
actionsp must take place between the first and the
fourth future occurrence ofms. Note that replac-
ing ms with meter is semantically perfectly correct
and allows generalized forms of time constraints: “do
stop the car within 20 .. 30 meter”.

� “do p before 2..4 ms” expresses another behavior:
the sequence of actionsp must terminate before a de-
lay of 2, 3 or 4 occurrences ofms has elapsed. The
deadline is clearly denoted by an (implicit)expect, at
the exit of the before block. Taking a lower bound dif-
ferent from the upper bound of the delay is a way to in-
troduce a restricted form of non determinism. At each
instant between the lower and the upper bound, the
deadline can or cannot occur, arbitrarily. In Fig. 2c,p
is the sequenceA;B followed by the optional sequence
C;B. SequencesA;B, A;B;C, A;B;C;B are definitely
accepted if they occur before the second future occur-
rence ofms. A thenB occurring later than the fourth
future occurrence ofms is definitelynot applicable.
A thenB occurring between the second and the fourth
future occurrence ofms, may or may not be accepted.

2..4 ms

A

C

B

B

Observed = {A,B,C,D}
Timebase = {ms}Before

m .. M s

Within

m .. M s

(a) (b) (c)

Figure 2. Temporal constraints.

3.3. Synchronous specific constructs

Synchronous modeling induces subtle issues, generally
irrelevant to traditional approaches. Since instants are dis-
crete, one can expect a stricly future occurrence of an event,
or consider a possible present occurrence (immediatevari-
ant of expect). Also, since simultaneous occurrences are
possible, one can expect a conjunction of event occurrences
(Conjunctiveexpect). Our notation captures these nuances
(see Fig. 3).

Expect immediate Conjunctive expect

s s3 s1

s2

Figure 3. Variants of Expect.

3.4. Advanced constructs

A strict sequential representation of concurrent evolu-
tions needs interleaving of events and induces “parasitic”
ordering. A parallel construct is better at expressing par-
tial ordering. Fig. 4 shows theparallel construct made of
at least two sequences. This is a restricted form of concur-
rency (fork-join).

Theupto construct, in Fig. 4, expresses alternative: One
out of several sequences is taken. The taken sequence is the
one whose guarding event occurs first. If several guarding
events occur at the same instant, which is perfectly possible
in a synchronous model, the left-most sequence for which
the guard is satisfied, is taken. Thus, we have a determinis-
tic choice. This construct has been called upto because, be-
fore the occurrence of the guard, the sib has been awaiting
in an optional sequence, and stays there up to the occurrence
of a guarding event.

Parallel Upto

Figure 4. Advanced SIB (1).

Like with MCS, subsequences can be iterated. There-
peat construct (Fig.5) allows folding of sequences. This
is only “syntactic sugar” that denotes the unfolding of the
loop.

A last construct is also very useful, especially in real-
time systems and in protocols. We call it thewatchdog
construct (Fig.5). This block is abandoned on the occur-
rence of a deadline event, the solid red (black) dot on the
exit of the block. As suggested by the picture, the watchdog
construct is akin to the before block. The difference is that
the former uses a disarming of the deadline: If the sequence
in the watchdog block terminates before the deadline, then,
the deadline is “re-armed”. For flexibility, the number of
occurrences may vary within an interval, and the sequence
may have one optional part. An example of watchdog will
be presented in section 5, Fig.6.

Repeat

n

Watchdog

m..M s

Figure 5. Advanced SIB (2).

3.5. Mathematical semantics of the SIB

Let I be the set of signals seen by the application (i.e.,
the controller). I � Observed [Timebase. The set of
output signals isO = fActive;Accepted;Not Applicableg.

At the j th instant, letIj be the current input event:Ij �

I such that

8S 2 I; S 2 Ij () S is present at instantj

For a given sequence of input eventsI1 ; I2 ; � � � , the
behavior of a sib “p” is defined by a sequence ofreactions:

p = p0
O17�!
I1

p1
O27�!
I2

� � �
On7�!
In

pn
;
7�!
In+1

0
;
7�!
In+2

0 � � �

for somen 2 N [f!g; and

O 2 ffAcceptedg ; fNot Applicableg ; fActivegg :

If n is finite, the execution ofp is said to terminate at instant
n.

A reaction is computed by induction on the structure of
the term. For this, we use an auxiliary relation (structural
transition) defined by conditional rewriting rules. A struc-
tural transition is denoted by:

p
A;k;b
���!
E

p0

wherep is a term of the algebra,E the signal environment
(the set of present signals),A the set of signalsacceptedby
p underE. k is either an integer or!, called the termination
code,b is a Boolean that indicates whether the transition has
been taken in an optional process, or not.p 0 is the residue of
p after the rewriting.k = ! means thatp has gone through
a deadline.

pj
Oj

7�!
Ij

pj+1 iff there exists a rewriting pj
A;k;b
���!
Ij

pj+1

Oj and the continuation depends onA and k. Let
I 0j = Ij \Observed be the set of present signals at instantj

restricted to the set of observed signals.

Oj = fNot Applicableg and the execution terminates

if (I 0j nA 6= ;) _ (k = !)

Oj = fAcceptedg and the execution terminates

if (I 0j nA = ;) ^ (k = 0)

Oj = fActiveg and the execution pauses till the next

instant otherwise.

Each primitive construct in SIB, is associated with an
operation of the process algebra; then the semantics of the
operation is given by conditional rewriting rules. This tech-
nique is often used in synchronous programming (see for
example the semantics of the (pure) Esterel language [5]
and the semantics of SyncCharts [3]). About thirty rules de-
fine the semantics ofSIB, details are available in a research
report [4].

4 Using SIB in Scenario and Property

A sib may be used for a better understanding of the be-
havior of the object, or for formally checking a property
of the object. In both cases, the idea is to consider the sib
as a specification of anobserver. In synchronous program-
ming, an observer [9] is a synchronous module, run in paral-
lel (synchronous composition) with the controller (the syn-
chronous program to check). The sib, or more accurately
the associated module, observes the inputs and outputs of
the controller. As soon as an unexpected event occurs, the
sib module terminates and emitsNot Applicable. If the re-
actions of the controller match the whole scenario, then the
sib module emitsAccepted.

The interpretation ofAccepted andNot Applicable de-
pends on the type of property to check, either in an existen-
tial or a universal form.

4.1. Existantial form

The simplest form is theapplicabilityof a scenario: does
the given sib match the input-output trace of a possible exe-
cution of the controller? To answer this question it is suffi-
cient to show thatAccepted is possiblyemitted. Whenever
Not Applicable is emitted, the considered input sequence
must be given up, and another one is tried. This is just to
see if the controller we have designed can do what has been
specified with the given sib.

4.2. Universal form

More interesting is checkingsafety properties. A safety
property claims that “bad news” will never occur. A clas-
sical way to establish a safety property is to verify that no
sequence leading to a violation of the property is applica-
ble. So, it is sufficient to elaborate a sib that expresses the
violation of the property. In this case, theAccepted signal
indicates the violation. For all evolutions the sib must never
match. The module associated with the sib is run in an infi-
nite loop, so that each termination of the sib makes it restart
again.

Bounded responsiveness(i.e., an event B must occur in
response to an event A, before the occurrence of an event
C) is an instance of safety property often required in real-
time applications. Thewithin construct we have proposed
is especially suited for expressing bounded responsiveness.

However, even if your design passes successfully all
your simulation tests, you are not sure that a safety property
holds. You need an exhaustive simulation of the controller
behavior. Symbolic executions of the model can solve this
problem.XEVE, the symbolic model checker, part of the Es-
terel distribution, does this job very well. A limitation is that
signals must not convey values. This is the case for modules

associated with a sib: SIB uses only pure signals (associated
with event occurrences) and counters. When a safety prop-
erty is violated,XEVE generates a counter-example input
sequence. This sequence can be played back withXES in
order to understand the flaw.

4.3. Higher description level

SinceSIB has been given a semantics compatible with
SyncCharts semantics, modules associated with sibs can be
composed as SyncCharts macro-states. A high-levelSIB

(HLSIB) is an arbitrary complex composition of sibs us-
ing iteration, parallel composition and various preemptions.
HLSIBs are at least as powerful as advancedMSCs and they
are compilable into equivalent Esterel programs. The study
of HLSIB is definitely beyond the scope of this paper.

5 Application of SIB

In order to illustrate the use ofSIB in modeling and val-
idation, we consider the design of a controller for a “pre-
mium car seat”. It contains 6 motors, 28 sensors, driven
and controlled by software. This challenge was proposed
by Daimler-Chrysler. The main constraint is that “For the
modeling contest, the seat control software must be mod-
elled and implemented in an object-oriented manner”. For a
full description of the application, interested readers should
refer to the web page (http://www.automotive-
uml.de). We extract some typical scenarios and properties
for illustrative purpose.

5.1. The calibration function : sequence, parallel
and watchdog constructs

The controller of the seat must start periodically a cali-
bration of the position of all the adjustment axes. The spec-
ification of the calibration function is defined as follows:
“The seat is calibrated in that all adjustment axes are moved
to their stops. A stop is identified when no more ticks are
supplied by the Hall sensor although the motor is supplied
with voltage. Once the stop is reached, the motors remain
activated for 250 ms so that the control unit can identify the
end position.”

Modeling this specification using a sib is almost straight-
forward. LetObserved = fCal, Tick, LAon, LAoff, . . . g
andTimebase = fmsg, whereLAon, Laoff, . . . are com-
mands sent to motor LA (Longitudinal Adjustment). . . . For
simplicity we only represent one branch of the parallel con-
struct and we give the generic namesXon andXoff to rep-
resent the motor commands.

In Fig. 6 we can see the sequence, the parallel and the
watchdog constructs.Cal is the Calibration event. Since the

Cal

Tick

250..250
ms

Xon

Xoff

Figure 6. Sib of the calibration function.

calibration operates on all adjustment axes, as soon as the
Cal event occurs, the six motors are started concurrently.

On the watchdog construct two signals appear:

� Tick, which is produced by the Hall sensors and indi-
cates the adjustment evolution.

� ms, which is the time base for the watchdog

The watchdog is re-armed everyTick, and the stop posi-
tion is reached when the 250 ms timer expires without re-
ceiving aTick.

5.2. The memory function: sequence, within and
upto constructs

The position of the seat can be stored in anEEPROMand
restored using a control panel. This control panel contains
four buttons:M, M1, M2, E. M is the button that starts the
memory phase,M1 andM2 characterize the storage loca-
tion, andE is used to restore a position. All of them have
two states: pressed or released. The sib in Fig. 7a describes
the following behavioral requirements: “If the position of
the seat is to be stored, first the memory button has to be
pressed and then, within two seconds, the desired storage
button . . .”

For simplicity, we consider only the storage associated
with memory 1. Observed = fMbp, M1bp, M1doneg
where bp stands for button pressed andM1done is the sig-
nal emitted when the memory process completes success-
fully. This signal is not part of the specification.Timebase
= fSecg. The sib in Fig. 7a can be interpreted as follows:
as soon asMbp is received, ifM1bp occurs within 0 and
2 seconds, then the storage process completes successfully
andM1done is emitted. The immediate expect allows the
controller to emit theM1done signal, instantaneously or
later.

Mbp

M1bp

M1done

0..2
Sec

(a) (b)

Mbp

M1bp

M1done

0..2
Sec

LAFbp RHUbp

Figure 7. Sib of the memory function.

For the same function an additional specification says
that: “The storage process is stopped when another button
is pressed.”

This sentence raises the classical problem of real-time
systems which ispreemption. The SIB construct that ex-
presses preemption is theupto construct. Possible events
that may preempt the memory updating are those which ac-
tivate the adjustment motors: Longitudinal Adjustment For-
ward (LAFbp), Rear Height Up (RHUbp) Note that in
Fig.7b,Expect M1bp is now in an optional part (dashed
line) and can be preempted without making the sib not ap-
plicable.

(a)

Mbp

M1done

LAFbp

Mbp

M1bp

M1done

(b)

Figure 8. Safety properties.

The following safety property P1: “Whenever Memory
1 is updated, a pre selection by M1 has occurred since the
last occurrence of the activation of the memory function by
M” can be restated as “Whenever M1done is emitted, M1bp
has occurred since the last occurrence of Mbp”. The sib
in Fig. 8a, whereObserved = fMbp,M1bp,M1doneg, ex-
presses the negation of this property. Notice the absence of
M1bp in the sib, but its presence in the set of observed sig-
nals. In order to check P1, it is sufficient to show that this

sib is never accepted. Given a controller and this sib, XEVE
can easily do that.

P2 is another safety property that shows that memory
1 cannot be updated if an adjustment, say the “Longitu-
dinal Adjustment Forward”, occurs between the activation
of the memory function and the selection of memory 1.
In this case, take the sib in Fig. 8b, whereObserved =
fMbp,M1bp,M1done,LAFbpg.

6 Conclusion

Our main objective is the design of safe controllers
for critical reactive systems. TheUML is now a standard
methodology for the design of complex systems. In order to
use it in reactive and real-time system design, well-founded
models are necessary for expressing the dymanic behavior
of classes and objects whereas ambiguous models are dis-
qualified. Real-timeUML, such as proposed in Douglass’s
book [8], makes use of enriched Sequential Diagrams with
stereotypes taylored to real-time applications. We propose
to go further and adopt two models that rely on a strict se-
mantics:Synchronous Interface Behavior(SIB) for scenar-
ios and SyncCharts for based-state model. In this paper we
have addressed only theSIB model.

Indeed,Sequential Diagrams(SDs) are often used to ex-
press expected behaviors of the controller. Since Sequential
Diagrams are not given a clear semantics, there is no way
to formally validate the behavior they specify. To overcome
this problem, we have introducedSIB as a substitute forSD.
The semantics ofSIB is mathematically defined in terms of
a synchronous process algebra.SIB can be composed with
SyncCharts, a synchronous state-based graphical model. A
behavior expressed withSIB can be compiled into a seman-
tically equivalent Esterel program. This program is then
liable to validation either by interactive simulation (with
XES) or by formal property checking (withXEVE).

Our first experience and the examples ofSIB given in this
paper address a real application and show the concisness
and power of expression of the model. Yet we still have to
assess its scalability and its user-friendliness:

� Scalability: The current translation fromSIB to Es-
terel programs is a structural translation, with little op-
timization. The size of the generated code might be
excessive for real-world systems. A second limitation
is the size of the (symbolic) reachability set, which is
used in property validations. The quantified timing
constraints (within, before, and watchdog constructs)
might cause rapid expansion of the state space.

� User-Interface: SIB and its semantics are strongly in-
fluenced by the synchronous approach. Some concepts
may seem strange to users not familiar with the syn-

chronous paradigm. A collection of typical examples
should be available to convince potential users.

We believe that a better collaboration between the object
paradigm (throughUML) and the synchronous paradigm
may facilitate the specification and design of embedded
real-time controllers and the formal verification and vali-
dation of some of their properties.

References

[1] R. Alur, G. J. Holzmann, and D. Peled. An analyzer for
message sequence charts.TSoftware Concepts and Tools,
17(2):70–77, 1996.

[2] C. André and M.-A. Peraldi-Frati. Behavioral Specification
of a Circuit Using Synccharts: a Case Study. InEuromicro
2000, Digital System Design, pages 91–98, Maastricht (NL),
September 2000. IEEE.

[3] C. André. Representation and analysis of reactive behaviors:
A synchronous approach. InComputational Engineering in
Systems Applications (CESA), pages 19–29, Lille (F), July
1996. IEEE-SMC.

[4] C. André. Synchronous Interface Behavior: Syntax and
Semantics. Technical Report RR 00–11, I3S, Sophia-
Antipolis, France, December 2000.

[5] G. Berry. Preemption in concurrent systems.Proc FSTTCS,
Lecture notes in Computer Science, 761:72–93, 1992.

[6] G. Berry. The foundations of Esterel. In C. S. G. Plotkin and
M. Tofte, editors,Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 2000.

[7] A. Bouali. XEVE: An esterel verification environment. Van-
couver (BC, Canada), 1998. Int’l Conf. on Computer-Aided
Verification (CAV’98). also available as a technical report
INRIA RT-214, 1997.

[8] B. P. Douglass.Doing Hard Time. Object technology series.
Addison-Wesley, Reading, Massachusetts, 1999.

[9] N. Halbwachs.Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, Amsterdam, 1993.

[10] D. Harel. STATECHARTS: A visual formalism for complex
systems. Science of computer programming, 8:231–274,
1987.

[11] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From mscs to
statecharts. In F. J. Rammig, editor,Distributed and Parallel
Embedded Systems, pages 61–71. Kluwer Academic Pub-
lishers, 1999.

[12] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on
message sequence charts.Computer Networks and ISDN
Systems, 28(12):1629–1641, December 1996.

[13] A. van Lamsweerde and L. Willemet. Inferring declara-
tive requirements specifications from operational scenarios.
IEEE Tr. on Software Engineering, 24(12):1089–1114, De-
cember 1998.

