
 

 

 

 

Behavioral Specification of a Circuit using SyncCharts: 

A Case Study 

 
 

Charles André, Marie-Agnès Peraldi-Frati 
I3S Laboratory - University of Nice Sophia-Antipolis / CNRS 

2000 route des Lucioles, BP 121 
06903 Sophia Antipolis cédex - France  

{andre,map}@i3s.unice.fr 

 

 
Abstract 

 
In this paper we propose a high-level description of the behavior of digital systems. Behaviors are specified with a 

graphical synchronous model: “SyncCharts”. SyncCharts supports hierarchical descriptions, concurrency and preemption. 
It is fully compatible with the programming environment of the Esterel synchronous language and can generate output 
formats understandable by synthesis tools. Thanks to the mathematical semantics of the model, the correctness of the 
design can be formally established. Taking the example of a non-trivial binary encoder/decoder, we show how our 
approach makes the design easier, without loss of rigour or efficiency. 

 
Keywords: 
 

System specification and modeling, Validation, Synchronous programming. 

 
Presented at: 
 

Euromicro’2000 - Digital System Design 2000 (DSD’2000), September 5-7, 2000 
Maastricht (NL) 

 
I3S Research Report : #00-06 , May 2000 
 



Behavioral Specification of a Circuit using SyncCharts: a Case Study 2 

 

Behavioral Specification of a Circuit using SyncCharts: a Case Study 
 
 

Charles André, Marie-Agnès Peraldi-Frati 
I3S Laboratory - University of Nice Sophia-Antipolis / CNRS 

2000 route des Lucioles, BP 121 
06903 Sophia Antipolis cédex - France  

{andre,map}@i3s.unice.fr 
 
 

In this paper we propose a high-level description of the 
behavior of digital systems. Behaviors are specified with 
a graphical synchronous model: “SyncCharts”. Sync-
Charts supports hierarchical descriptions, concurrency 
and preemption. It is fully compatible with the 
programming environment of the Esterel synchronous 
language and can generate output formats understandable 
by synthesis tools. Thanks to the mathematical semantics 
of the model, the correctness of the design can be 
formally established. Taking the example of a non-trivial 
binary encoder/decoder, we show how our approach 
makes the design easier, without loss of rigour or 
efficiency. 

 

1. Introduction  

Different approaches can be adopted in digital circuit 
design. Depending on his/her scientific background, the 
designer may prefer either abstract specifications 
(equational or functional) or state-based specifications 
with graphical representation. In both cases, there exist 
pros and cons. Mathematical expressions lend themselves 
to advanced compilation techniques and easy connections 
to formal verification tools. Unfortunately, mathematical 
formulations are often reserved to experts. A non 
mathematically-inclined customer is never sure that the 
proposed mathematical expression fully addresses his/her 
requirements. The gap between requirements and 
specifications also exists in state-based descriptions, but 
to a lesser extent. Many people feel more comfortable 
with graphical representations. Explicit representation of 
states facilitates the understanding of behaviors; possible 
animation of the model makes it still easier. A danger of 
graphical representations may be a weak, or even worse, 
the absence of, semantics.  Too many graphical models 
are semi-formal, indeed even informal. Ambiguity 
disqualifies such models in digital circuit design. “State 
Transition Graphs” do not suffer from weak foundations 
and they are often used in the design of simple sequential 
circuits. Their drawback is that they are “flat” models, 
liable to explosion of the state space for complex 

applications. To sum up, a mathematical approach allows 
a precise and powerful expression of behaviors, and easy 
connections to synthesis and verification tools. Graphical 
state-based representations of behaviors may be less 
abstract and thus within the reach of a larger audience.  
However, complex systems may lead to huge and useless 
graphs. Whatever the representation, it should be 
readable, easy to extend and to maintain, with possibilities 
of simulations and formal verifications. 

What we propose is a behavioral description based on 
a state-transition model, mathematically well-founded. 
State transition graph is a low-level model not suited to 
complex system design.  Instead, we opt for a higher-level 
model, like Statecharts [1], able to deal with hierarchy, 
concurrency and pre-emption. The actual model we use is 
“SyncCharts” [2], clearly inspired by Statecharts. The two 
models differ in their underlying semantics. The 
SyncCharts1 semantics is fully synchronous and perfectly 
fits Esterel’s semantics [3]. The semantics of Statecharts, 
such as the one adopted in Statemate [4], is more comp lex 
(micro-step semantics). Moreover, SyncCharts offers 
richer constructions for preemption. Being akin to Esterel, 
SyncCharts may also include textual descriptions written 
in Esterel: the designer may choose textual or graphical 
descriptions for different parts of his/her design.  

In fact, SyncCharts is now fully integrated in the 
“Esterel Studio” platform, marketed by Simulog [5]. As a 
consequence, SyncCharts has direct access the whole 
programming platform developed for Esterel: compilers, 
simulators(XES), model-checkers (XEVE [6]) and circuit 
optimizers that rely on SIS [7] and TiGeR [8] (an efficient 
BDD-based tool). 

 
SyncCharts can be used to specify the behavior of any 

control-dominated discrete-event system. In this paper we 
present the use of SyncCharts in the design of a binary 
stream encoder/decoder. Through this example we try to 
draw advantages of our approach, and contrast it with the 

                                                                 
1 “SyncCharts” is the name of the model, whereas a 

“syncChart” is an instance of the model. 
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classical approach proposed in Zahnd’s book on 
Sequential Machines [9]. 

 
The next section describes the encoder problem. This 

small example contains several pitfalls that are analyzed.  
The solution proposed in Zahnd’s book is then recalled 
and commented. This is the occasion to point out 
strengths and limitations of finite state machine modeling. 
The next section illustrates our approach. Main features of 
SyncCharts are introduced through the example. We 
explain how to specify the expected behavior in a 
modular way. The fifth section considers optimization 
issues and formal proofs of properties. 

2. Example of an Encoder/Decoder  

The Encoder/Decoder system, represented on Figure 1 , 
is classical in the field of data transfer. It has been devised 
for electrical transmission by wire. Even if wireless 
communication has lessened the significance of this 
coding technique, it is still worth studying it because it 
raises several interesting algorithmic issues. 

 

Figure 1. Encoder/decoder 

Informal presentation 

This encoding/decoding system is used to transmit 
binary streams. Bits are encoded into a three-level valued 
electrical voltage: positive ( p=+U ), negative (  n=-U ), 
or null ( z=0 ), for a given constant positive voltage U. 
Two requirements are imposed: 
1. The mean voltage must be 0, and at each instant the 

accumulated voltage must stay between –U and +U. 
This avoids electronic problems due to bias polarity. 

2. The transmitted code shall never contains more than 
three consecutive null values. This prevents from 
clock de-synchronization and misinterpretation of a 
line break as a continuous stream of z’s. 
 
Typically these requirements are imposed for 

physical/electrical reasons. The first requirement is easily 
captured by a simple encoding technique: z for 0, and 
either n or p, in alternation, for 1. The second requirement 

is trickier: sub-sequences of four consecutive 0’s are also 
encoded with n or p.  In order to set apart “true” 1’s from 
“false” 1’s (series of four 0’s) “Violation” of polarity is 
used, instead of “Alternation”.  

Formal specification 

Encoding. Let X = {0,1} be the input alphabet, U = 
{n,z,p} the output alphabet; the encoding function is a 
mapping from X-sequences onto U-sequences:  

encoding : X* → U*. 
This mapping is length-preserving: 

∀x ∈  X*   |x| = | encoding (x) |  where |x| denotes the 
length of  sequence x. 
Let x  = (x(1), x(2), …, x(n), …) be the input sequence, 

where x(k) ∈ X, and u = (u(1), u(2), …, u(n), …) be the 
associated encoded sequence, where u(k) ∈ U.  x(1..k) 

denotes the sub-sequence (x(1), x(2), …, x(k)), • the 
sequence concatenation, and λ the empty sequence. 
Recall that λ is neutral element for • . 

 
The first requirement is expressed by 
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the second one by 
 ∀n > 3  ¬ (u(n) = u(n-1) = u(n-2) = u(n-3) = z) 
 
The encoding functions defined below are supposed to 

respect these requirements. Establishing this property is 
one of our challenge. 

Encoding functions: 

• Normal encoding:  
encoding(0) = z and encoding(1) = either p, or n, 
alternately. 
 

• Exceptional encoding:  
encoding(0000) = P•z•z•V, where P stands for 
“Parity” and V for “Violation”. P,V ∈ U are 
computed with the auxiliary functions Π and ∇ 
defined below. 

 
Let  Π :  U*× Nat → Boolean, such that  

Π(u,k) = (card({u(j) | (u(j) ≠ z)∧(1 ≤ j ≤ k) }) = 0 mod 2).  
Given a U-sequence u and an index k , this function 
returns the (even) parity of the number of u(j) components 
before or at index k , which are different from z. 

 

Transmitter Receiv er
Bin Bout

+U

-U
0

z p n z z n z p z

010000010 010000010

time
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Let ∇: U*× Nat → Nat, such that  
∇(u,k) =Max{j | (1≤ j≤k)∧(u(j)≠z)} if defined, 0 otherwise. 
Given a U-sequence u and an index k , this function 
returns the index j of the nearest U-component, before or 
at index k  such that u(j) is different from z. 
 
By convention, we assume that u(0) = n , Π(λ,0) = true 
and encoding(λ)=λ. 
Let – be a unary operation on U, such that -n = p , -p = n , 
-z = z. 
Standard encoding is such that  : 

∀ x(1..k) such that  ¬ (x(k) = x(k-1) = x(k-2) = x(k-3) = 0) 
let y = x(1..k-1), v = encoding(y), and u = encoding(x) 

u = encoding (y•0) = v • z 
u = encoding (y•1) = v • –v(∇(v,k-1) ) (Alternation) 

Exceptional encoding is such that  : 
∀ x ending with 0000 ,   x(k) = x(k-1) = x(k-2) = x(k-3) = 0 
let y = x(1..k-4),  v = encoding (y),  and  ϖ = v(∇(v,k-4)) 
u = encoding (y•0•0•0•0) = v•P•z•z•V  where 

P = if Π(v,k-4) then  z else –ϖ 
and V = if Π(v,k-4) then  ϖ else –ϖ (Violation) 
 

For a U-sequence u(1..k) , a violation occurs when u(k) = 

u(∇(u,k-1)), an alternation when u(k) = −u(∇(u,k-1)). 
So, P is z if Parity is even, or Alternation if odd; whereas 
V is always a Violation. 

This formal description is all but obvious (recursion 
and case separations). It needs some familiarity with 
notations, mathematics, and above all, the links between 
the requirements and this specification have to be 
justified. This is definitely beyond the scope of this paper. 
A solution to the implementation of such an encoder 
should be a compiler that directly generates a circuit from 
this mathematical specification. What is great with 
mathematics is that the satisfaction of the requirements 
might be automatically checked. We did not do that for 
two reasons: 1) we do not have access to such checkers, 
2) we adopt another approach, less formal, albeit rigorous. 
 

Table 1.  Encoding example 

 
 
 
 
 
 
 
 
 
 
 

Table 1 illustrates the encoding of a sequence. The 
different lines of the array represent from top to bottom: 
the instant (k),  the input sequence (x), the encoded output 
sequence (u), the Parity status, the Violation and 
Alternation occurrences, the accumulated value of the 
voltage on the wire showing that requirement 1 is 
fulfilled. Last line indicates N(ormal) or E(xceptional) 
encoding. Bold 0’s highlight “exceptional” sub-sequences.  

Causality. The specification shows that the value of 
u(k) depends on values of x(k), but also of x(k+1), x(k+2), 
x(k+3), that is, on the future. Therefore, this system is not 
causal, and so, it cannot be realized, as such, by a 
sequential machine. The classical solution to make a 
system causal, is to introduce a bounded delay (a 3-delay 
is needed in this application). Figure 2  shows the classical 
solution. The synthesis effort is then in the design of a 
standard Mealy machine (box on the right in Figure 2). u’ 
is the new output signal, such that ∀ k, u’(k) = u(k-3). Of 
course the first three values of u’ are meaningless. 

 

 

 

 

 

 

Figure 2. Solving the causality problem. 

 
Decoding. The decoding problem is analogous to the 

encoding one. Due to the symmetry of the problem, 
decoding requires 3 delays to make the system causal and 
the algorithm is a bit simpler than for encoding: Parity has 
not to be taken into account. Detailed design of the 
decoder is omitted in this presentation.  

3. A classical solution  

In his book, Zahnd chose a Mealy machine as a model 
to represent the encoder example. Figure 3 specifies the 
behavior of the Mealy machine whose inputs are d and f, 
and output u’.  

Graphical representation may have a great explanatory 
power. What is difficult is to choose a “good” layout. The 
one in Figure 3 , is specially effective. 

 
Annotations (text, dashed lines and line thickness) may 

be very useful to improve understanding: 
• Two dashed lines delimit 4 quadrants. The vertical 

line is associated with “Parity”, the horizontal line 
with “Violation”. 

D D D

f

d

u’

x 3-delayed x

f = 1 iff 4 consecutive 0

k  1 2 3 4 5 6 7 8 9 10 11 
x 0 1 0 0 0 0 1 0 0 0 0 
u   z p n z z n p z z z p 
Π t f t t t f t t t t f 
A/V  A A   V A     V 
Acc 0 +U 0 0 0 -U 0 0 0 0 +U 
N/E N N E E E E N E E E E 

 
k: instant; x: input; u: output  ; Π:  Π(u,k); 

A/V: Alternation/Violation; Acc: Accumulated value; 
N/E: Normal/Exception. 
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• Transitions that cross the horizontal line correspond 
to violations. 

• In states on the left-side of the vertical line, parity is 
even; in states on the right-side, parity is odd. All 
transitions between states in the two upper quadrants, 
or the two lower quadrants correspond to 
alternations. 

• Exceptional sub-sequences are distinguished  by 
thicker lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3. Mealy machine of the Encoder 

 
 
 

In spite of its qualities this graph has several 
drawbacks: 
• The graph is not the state graph of the encoder, but 

only of a part. The actual graph is a composition of 
this one with a 3-delay machine. Besides its number 
of states too large to be reasonably displayed on a 
single sheet, we did not succeed in drawing an “easy-
to-interpret” graph. 

• The graph Figure 3  may be misleading: variables f 
and d are not independent inputs: f = 1 implies d = 0. 
A careless user should believe that, according to the 
graph, a sequence of 4 consecutive inputs df = 00 lets 
the machine in the initial state, which violates 
requirement 2.  

• Even a small change in the specifications could 
jeopardize this bright design. This is a well-known 
problem with automata. This is a serious impediment 
to incremental design. 

4. The SyncCharts Approach  

We illustrate the use of SyncCharts through the 
“Encoder” example. A detailed presentation of the syntax 
and the semantics of SyncCharts has been published 
elsewhere [2]. 

Signals 

In synchronous modeling, communications are 
abstracted as  “signals”. With each signal is associated a 
presence attribute and optionally a value attribute. A 
signal that conveys a value is  said to be a “valued 
signal”, otherwise it is a “pure signal”. For binary circuit, 
Boolean valued signals can be used. A better choice is to 
use pure signals with the convention that a present signal 
is “true”, an absent signal is “false”. Since this is a matter 
of interpretation, the designer is free to assign a different 
meaning to the presence status. Having only pure signals 
is important when we plan to use symbolic model-
checkers like XEVE. 

With respect to the environment two kinds of signals 
are distinguished: input signals that convey information 
to the controller, and output signals that export 
information. 

For the Encoder, we have : 
• input Bin; 
• output Minus , Zero, Plus; 

There is a third kind of signals: the local signals. They 
are not visible to the outside, they convey internal 
information and are used in synchronization. 

1

3

2

Legend:
d f / u’

10/n

10/p

01/z

4

0-/z

5

0-/z

01/n

Violation

67

8

9

10

0-/p0-/p

0-/n

0-/z

0-/z

01/z 10/n

10/p

01/p

00/z 00/z

00/z00/z

(even) Parity (odd)
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Agents 

The Encoder is decomposed into several cooperating 
agents. Each agent has a simple and well-defined mission. 
For the Encoder, we chose 4 agents (Figure 4): 

• The detector of 4 consecutive 0’s (DETECTOR), 
• The parity manager (PARITY), 
• The output manager that decides to emit either 

Plus or Minus (NONZERO), 
• The sequence manager that is the core of the 

encoding algorithm (SEQUENCER). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure.4: SyncChart of the encoder (level 0) 

 
In SyncCharts, the behavior of an agent is specified 

with a macro-state. A macro-state is translated into a 
module in Esterel. A macro-state is drawn as a rounded-
corner rectangle. It is advisable to give a name to a 
macro-state. An icon at the upper right corner of a macro-
state indicates the type of macro-state (@ stands for 
reference, i.e., the body of the macro-state is defined 
elsewhere; the icon in SEQUENCER says that the graphical 
representation is defined “in-place”; a third icon, not used 
in Figure 4, indicates a textual body, directly written in 
Esterel). Dashed lines mean that all the macro-states are 
composed in parallel.  

Interactions  

According to the synchronous hypotheses, communi-
cations among agents are modeled by instantaneous 
broadcasting of signals. Local signals  DelayedX, Alterna-
tion, Violation, FourZeros, PlusOrMinus  have been intro-
duced to support communications among the Encoder’s 
agents. The text at the bottom of the macro-state Figure 4 
is a declaration of these local signals. 

Agents’ behavior 

Macro-states are recursive structures: the body of a 
macro-state is itself a syncChart. That is a way to deal 
with hierarchy. SyncCharts also applies the “Write Once, 
Read Many” principle: a macro-state defined once, can be 
re-used several times with possible signal renamings.  

To leave a macro-state, SyncCharts uses pre-emptions. 
Pre-emption is the possibility for an agent to prevent other 
agents from executing. A pre-emption may be temporary 
(suspension) or definitive (abortion). In imperative 
synchronous programming, pre-emption is used for 
synchronization. There exist two kinds of abortion: weak 
and strong, and also a special form called “normal 
termination”. SyncCharts supports all of them. The shape 
of the transition reflects the type of pre-emption: a simple 
arrow stands for weak abortion, an arrow with a small 
circle at the end is a strong abortion, and an arrow ending 
with a triangle is a normal termination. As in Statecharts, 
arrows are labeled with triggering events (signals whose 
presence causes the transition), effects (signals emitted 
during the transition) and possibly a guard (pre-condition 
for the transition to be fired). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. SyncChart of the Detector. 

 
Figure 5 is the syncChart for the DETECTOR. The 3-

stage shift register is made by the parallel composition of 
three instances of the DELAY macro-state (the DELAY 
macro-state and the renamings of the DELAY instances are 
omitted). The detection is made by a textual macro-state: 
the Esterel code says that signal FourZeros  is emitted 
whenever all 4 bits (Bit0, …, Bit3) are absent. Note that 
Bit1 and Bit2 are local signals. Bit0 is renamed as Bin (the 
input of the Encoder) and Bit3 as  DelayedX. 

Figure 6 is the syncChart for the SEQUENCER. This 
syncChart expresses the algorithm. The two cases are set 
apart; The treatment in each case is clearly identified. 
Switching from mode “Normal” to mode “Exception” is 
instantaneous: as soon as FourZeros  is present (this signal 

@DETECTOR[..] @

SEQUENCER

@PARITY @

@NONZERO @

signal DelayedX, Alternation, Violation, FourZeros, PlusOrMinus

ENCODER

D0@DELAY[..] @ D1@DELAY[..] @ D2@DELAY[..] @

loop
      present  Bit0 or Bit1 or Bit2 or Bit3  else
             emit   FourZeros
       end present
each  tick

signal Bit1, Bit2

@DETECTOR [ signal  Bin/Bit0, DelayedX/Bit3 ]
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is emitted by DETECTOR) the control leaves the NORMAL 
macro-state to enter the EXCEPTION macro-state by a 
strong pre-emption. When the exceptional sequence is 
finished, spontaneously (normal termination) the control 
returns to the NORMAL macro-state. 

Compilation 

The outlines of the compilation chain are: 
• SyncCharts compiler: From a syncChart to a 

semantically equivalent Esterel program;  
• Esterel compiler: From an Esterel program to output 

code: 
• C programs for simulation with XES 
• Blif description for optimization (with SIS) and 

verification (XEVE). 
Blif (Berkeley Logic Interchange Format) is a textual 
representation of a circuit. It is an input format to 
SIS. 

 
 
 
 

 

 

 

 

Figure 6. SyncChart of the sequencer 

5. Validation and Performance 

To validate the design, we proceed in two steps: 
simulation and formal verification. 

Test of scenarios 

XES is an interactive simulator, which is part of the 
Esterel distribution. Given an Esterel program, XES 
automatically builds simulation panels that show the 
status of input signals (set by the user) and output signals 
(set by the program under test). Execution is traced in the 
source program, so that the user can visualize concurrent 
evolutions and pre-emptions. This possibility is now 
extended to SyncCharts. “Esterel Studio” can do the 
animation of the syncChart of the controller. Active 
macro-state are colored red, fired transitions are colored 
green. This is an invaluable aid to the understanding of 
the behavior. A software “tape recorder” allows the user 
to record and play sequences of inputs (scenarios). 
Testing of scenarios reveals many misconceptions. Since 

SyncCharts is a high-level description of the behavior, it 
is often easy to find out the bug and correct it. 

Safety properties 

Even if the design passes successfully all the tests, it is 
not sure that all the cases have been covered. In order to 
establish a safety property, we have to check this property 
in all reachable states of the controller. The size of the 
actual reachability set can make the analysis untractable. 
Fortunately, there exist symbolic computations of the 
reachability set that allow for state abstraction without 
loss of exhaustivity. XEVE, a symbolic model-checker 
available in the Esterel platform, is able to compute 
(symbolically) the state space of a given program. XEVE 
can formally establish whether or not a safety property is 
satisfied. Safety properties can be expressed by temporal 
logic formulas. We prefer to use the same formalism to 
express both behaviors and properties: a property is given 
as an Esterel module or a syncChart.  

The principle of the proof is to associate an observer 
with the property and compose this observer in parallel 
with the controller to check. An observer is a reactive 
agent that “observes” input and output signals of the 
program and emits a “violation signal” as soon as the 
property is not satisfied. XEVE symbolically executes the 
program composed with the observer. If the violation 
signal is never emitted, then the property is satisfied, 
otherwise XEVE returns a sequence leading to the 
counter-example. This is a very effective way to find out 
deeply hidden errors. Of course, several properties can be 
checked at once if you use several observers. Note that 
the safety property observers are used during the 
verification phase (i.e., the symbolic execution of the 
controller augmented with the observers). There are 
needless at run-tine for a guaranteed property.  

 
 
 
 
 
 
 
 

 
Figure 7. Observer for requirement 1 

 
For the Encoder, a simple state transition graph (a 

special case of SyncCharts) is sufficient to prove that 
requirement 1 is satisfied (see Figure 7). For requirement 
2, a syncChart with a strong abortion is more suitable (see 
Figure 8).  

 

present  Even  then
      emit  Zero
else
       emit  Alternation
end  present ;  pause;
emit  Zero ;  pause;
emit  Zero ;  pause;
emit  Violation ;  pause

EXCEPTION

loop
    present  DelayedX  
then 
         emit  Alternation
    else
          emit  Zero
    end present
each tick

NORMAL

# FourZeros

SEQUENCER

TooNegative

n n n

p p p

-U 0 +U

TooPositive

OBSERVER_R1
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Figure 8. Observer for requirement 2 

 
Other interesting safety properties:  
A first property concerns the behavior of the encoder: at 
each instant one and only one signal out of n, z, p is 
emitted. This kind of property is expressed by a 
combinatorial formula, easily captured by a textual 
Esterel module. 

 
module OBSERVER_EXCLUSION : 

 
input n, z, p;  % emitted by the controller 
output non_exclusive; % violation signal 
 
loop 

present  (n and not z and not p)  
         or (not n and z and not p) 
         or (not n and not z and p) 

   else  
        emit  non_exclusive  
 end present 
each tick 
 
end module  

 
 
 
 
 
 
 

 
 

Figure 9. Observer for sequence preserving 

Another essential property to prove is that the pair 
“Encoder Decoder” works correctly. This property is a 
safety property, too. You compose in parallel the 
syncChart of the Encoder, and the syncChart of the 
Decoder. Then you build an observer that compares the 
input of the Encoder (signal Bin) with the output of the 
Decoder (signal Bout). They should be identical, up to 
some delay (here a 6 instant delay). The observer puts Bin 
as input to a 6-stage shift register (see the DETECTOR) and 

compares the output of the shift register with Bout. 
Fortunately the property is satisfied. Figure 9  outlines the 
solution and clearly shows that an observer modifies in no 
way the behavior of the controller 

Performance 

The translation from SyncCharts to Esterel is 
structural: The translation is fully automatic but not 
always clever. In many cases an expert in Esterel 
language, can find more efficient translations. However, 
this is not a problem because there exist tools able to 
optimize the generated code, at the circuit level. 

 Efficiency must be assessed for the whole process, 
from the requirements to the implementation. 

Examples 
Encoder || Observer for requirement 1: reachability set: 
159 states. 
Encoder || Observer for requirement 2: reachability set: 
175 states. 
Encoder: reachability set: 105 states. 
But Encoder and optimization with SIS: 35 states, that is 
what you obtain with much effort using the classical 
approach. 
Decoder and optimization with SIS: 31 states. 
Encoder || Decoder || Observer for identical bit streams: 
623 states. 

6. Conclusion 

State transition graphs are often used to express the 
behavior of sequential systems. They are understandable 
even by non-specialists, but this flat model is not suitable 
for complex systems. Moreover, state machine 
descriptions are very sensitive to small changes in the 
specifications. This is detrimental to incremental design. 
Since systems involve more and more concurrency and 
exceptional behaviors, there is a demand for hierarchical 
models, dealing with concurrency and pre-emption. In 
this paper, we have proposed SyncCharts, a model 
derived from Statecharts, to address this  problem. 

SyncCharts allows high-level specification of reactive 
behaviors. It is a synchronous model, fully compatible 
with the Esterel language, so that, a syncChart can mix 
graphical and textual descriptions sharing a common 
semantics. 

Taking an example of Binary stream Encoder/Decoder 
we have shown how SyncCharts favors decomposition of 
the system into interacting agents. These agents are 
tightly coupled. Because synchronous operations compose 
well, the emergent behavior remains tractable.  

Encoder Decoder
z
p

n

6_stage_shift_register

Bin Bout

Violation

OBSERVER

# z z

p or n

OBSERVER_R2

z
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SyncCharts takes advantage from the programming 
environment developed for Esterel. Given a syncChart, an 
interactive simulator can be automatically built. This 
simulator is used to test scenarios. Moreover, 
programming facilities allows the user to visualize the 
execution at the source level, i.e., by animation of the 
syncChart.  

The mathematically defined semantics of the model 
makes it easy to conduct formal verifications on 
SyncCharts. Safety properties are checked by symbolic 
model-checking. The expression of the properties can be 
made in SyncCharts itself, or in Esterel. 

Finally, we consider the possibility to use SyncCharts 
as a language for the design of digital circuits. After 
compilation, a subclass of syncChart can be compiled into 
a circuit (blif file) and therefore be further optimized. The 
results obtained with the Encoder/Decoder are 
encouraging, since after optimization, our high-level 
approach gives the result that could have been obtained 
by hand-coding, but at the price of much effort. Moreover 
the design was proven correct.  

We have, now, to tackle larger designs, for which 
hand-coding is ruled out. The Esterel compiler, on which 
SyncCharts indirectly relies, has been developed to cope 
with large problems. In order to improve the efficiency of 
the circuit design we plan to explore two ways:  
• First, better structural translations of SyncCharts into 

Esterel without any change in the Esterel language 
itself,  

• Second, cooperative development2 of SyncCharts 
translator and Esterel compiler so that behavioral 
information present in  SyncCharts can be directly 
used by the Esterel compiler (e.g., mutual exclusion 
between sub-systems, sequential execution of sub-
systems…).  
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